Files
RT_GPU/shaders/compute.glsl
2025-01-29 18:38:55 +01:00

275 lines
5.9 KiB
GLSL

#version 430 core
layout(local_size_x = 16, local_size_y = 16) in;
layout(binding = 0, rgba32f) uniform image2D output_image;
layout(binding = 1, rgba32f) uniform image2D accumulation_image;
struct GPUObject {
mat4 rotation;
vec3 position; // 12 + 4
vec3 normal; // 12 + 4
vec3 vertex1; // 12 + 4
vec3 vertex2; // 12 + 4
float radius; // 4
int mat_index; // 4
int type; // 4
};
struct GPUTriangle
{
vec3 position;
vec3 vertex1;
vec3 vertex2;
vec3 normal;
vec2 texture_vertex1;
vec2 texture_vertex2;
vec2 texture_vertex3;
int mat_index;
};
struct GPUMaterial
{
vec3 color; // 12 + 4
float emission; // 4
float roughness; // 4
float metallic; // 4
float refraction; // 4
int type; // 4
int texture_index; // 4
};
struct GPUCamera
{
mat4 view_matrix;
vec3 position;
float aperture_size;
float focus_distance;
float fov;
int bounce;
};
struct GPUVolume
{
vec3 sigma_a; // absorption coefficient
vec3 sigma_s; // scattering coefficient
vec3 sigma_t; // extinction coefficient
float g; // phase function parameter
int enabled;
};
struct GPUBvhData
{
mat4 transform;
mat4 inv_transform;
vec3 offset;
float scale;
int bvh_start_index;
int triangle_start_index;
};
struct GPUBvh
{
vec3 min;
vec3 max;
int index;
int primitive_count;
};
layout(std430, binding = 1) buffer ObjectBuffer
{
GPUObject objects[];
};
layout(std430, binding = 2) buffer TriangleBuffer
{
GPUTriangle triangles[];
};
layout(std430, binding = 3) buffer BvhDataBuffer
{
GPUBvhData BvhData[];
};
layout(std430, binding = 4) buffer BvhBuffer
{
GPUBvh Bvh[];
};
layout(std430, binding = 5) buffer MaterialBuffer
{
GPUMaterial materials[];
};
layout(std430, binding = 6) buffer LightsBuffer
{
int lightsIndex[];
};
layout(std140, binding = 0) uniform CameraData
{
GPUCamera camera;
};
layout(std140, binding = 1) uniform VolumeData
{
GPUVolume volume;
};
uniform int u_objectsNum;
uniform int u_bvhNum;
uniform int u_lightsNum;
uniform vec2 u_resolution;
uniform int u_pixelisation;
uniform int u_frameCount;
uniform float u_time;
struct Ray
{
vec3 origin;
vec3 direction;
vec3 inv_direction;
};
struct hitInfo
{
float t;
float last_t;
vec3 normal;
vec3 position;
int obj_index;
int mat_index;
int obj_type;
float u;
float v;
};
#include "shaders/random.glsl"
#include "shaders/intersect.glsl"
#include "shaders/scatter.glsl"
#include "shaders/light.glsl"
#include "shaders/volumetric.glsl"
#include "shaders/trace.glsl"
vec3 pathtrace(Ray ray, inout uint rng_state)
{
vec3 color = vec3(1.0);
vec3 light = vec3(0.0);
vec3 transmittance = vec3(1.0);
for (int i = 0; i < camera.bounce; i++)
{
hitInfo hit = traceRay(ray);
#if 0
float t_scatter = 0.0;
bool scatter_valid = bool(volume.enabled != 0 && atmosScatter(hit, t_scatter, rng_state));
if (scatter_valid)
{
calculateVolumetricLight(t_scatter, ray, color, light, transmittance, rng_state);
continue ;
}
#endif
float miss_condition = float(hit.obj_index == -1);
light += miss_condition * transmittance * GetEnvironmentLight(ray);
float p = max(color.r, max(color.g, color.b));
float rr_continue = float(randomValue(rng_state) <= p);
float break_condition = miss_condition + (1.0 - rr_continue);
if (break_condition > 0.0) break;
color /= max(p, 0.001);
GPUMaterial mat = materials[hit.mat_index];
calculateLightColor(mat, hit, color, light, rng_state);
if (mat.emission > 0.0)
break;
ray = newRay(hit, ray, rng_state);
ray.inv_direction = 1.0 / ray.direction;
}
return color * light;
}
Ray initRay(vec2 uv, inout uint rng_state)
{
float focal_length = 1.0 / tan(radians(camera.fov) / 2.0);
vec3 origin = camera.position;
vec3 view_space_ray = normalize(vec3(uv.x, uv.y, -focal_length));
vec3 ray_direction = normalize((inverse(camera.view_matrix) * vec4(view_space_ray, 0.0)).xyz);
vec3 right = vec3(camera.view_matrix[0][0], camera.view_matrix[1][0], camera.view_matrix[2][0]);
vec3 up = vec3(camera.view_matrix[0][1], camera.view_matrix[1][1], camera.view_matrix[2][1]);
vec3 focal_point = origin + ray_direction * camera.focus_distance;
float r = sqrt(randomValue(rng_state));
float theta = 2.0 * M_PI * randomValue(rng_state);
vec2 lens_point = camera.aperture_size * r * vec2(cos(theta), sin(theta));
origin += right * lens_point.x + up * lens_point.y;
ray_direction = normalize(focal_point - origin);
return (Ray(origin, ray_direction, 1.0 / ray_direction));
}
void main()
{
ivec2 pixel_coords = ivec2(gl_GlobalInvocationID.xy);
if (pixel_coords.x >= int(u_resolution.x) || pixel_coords.y >= int(u_resolution.y))
return;
// vec2 uv = ((vec2(pixel_coords)) / u_resolution);
// uv.x *= u_resolution.x / u_resolution.y;
// imageStore(output_image, pixel_coords, vec4(vec3(uv, 0.), 1.));
// return ;
if (u_pixelisation != 1 && (uint(pixel_coords.x) % u_pixelisation != 0 || uint(pixel_coords.y) % u_pixelisation != 0))
return;
uint rng_state = uint(u_resolution.x) * uint(pixel_coords.y) + uint(pixel_coords.x);
rng_state = rng_state + u_frameCount * 719393;
vec2 jitter = randomPointInCircle(rng_state) * 1;
vec2 uv = ((vec2(pixel_coords) + jitter) / u_resolution) * 2.0 - 1.0;;
uv.x *= u_resolution.x / u_resolution.y;
Ray ray = initRay(uv, rng_state);
vec3 color = pathtrace(ray, rng_state);
float blend = 1.0 / float(u_frameCount + 1);
vec4 accum = imageLoad(accumulation_image, pixel_coords);
accum.rgb = mix(accum.rgb, color, blend);
accum.a = 1.0;
imageStore(accumulation_image, pixel_coords, accum);
vec4 final_color = vec4(sqrt(accum.r), sqrt(accum.g), sqrt(accum.b), accum.a);
for (int y = 0; y < u_pixelisation; y++)
for (int x = 0; x < u_pixelisation; x++)
imageStore(output_image, pixel_coords + ivec2(x, y), final_color);
}