mirror of
https://github.com/TheRedShip/RT_GPU.git
synced 2025-09-27 10:48:34 +02:00
+ | New file for volumetric
This commit is contained in:
@ -80,6 +80,8 @@ struct hitInfo
|
||||
#include "shaders/random.glsl"
|
||||
#include "shaders/intersect.glsl"
|
||||
#include "shaders/scatter.glsl"
|
||||
#include "shaders/light.glsl"
|
||||
#include "shaders/volumetric.glsl"
|
||||
|
||||
Ray portalRay(Ray ray, hitInfo hit)
|
||||
{
|
||||
@ -139,68 +141,6 @@ hitInfo traceRay(Ray ray)
|
||||
return (hit);
|
||||
}
|
||||
|
||||
float sampleHG(float g, inout uint rng_state)
|
||||
{
|
||||
if (abs(g) < 0.001)
|
||||
return 2.0 * randomValue(rng_state) - 1.0;
|
||||
|
||||
float sqr_term = (1.0 - g * g) / (1.0 + g - 2.0 * g * randomValue(rng_state));
|
||||
return (1.0 + g * g - sqr_term * sqr_term) / (2.0 * g);
|
||||
}
|
||||
|
||||
vec3 sampleDirection(vec3 forward, float cos_theta, inout uint rng_state)
|
||||
{
|
||||
float phi = 2.0 * M_PI * randomValue(rng_state);
|
||||
float sin_theta = sqrt(max(0.0, 1.0 - cos_theta * cos_theta));
|
||||
|
||||
vec3 dir;
|
||||
dir.x = sin_theta * cos(phi);
|
||||
dir.y = sin_theta * sin(phi);
|
||||
dir.z = cos_theta;
|
||||
|
||||
vec3 up = abs(forward.z) < 0.999 ? vec3(0, 0, 1) : vec3(1, 0, 0);
|
||||
vec3 right = normalize(cross(up, forward));
|
||||
up = cross(forward, right);
|
||||
|
||||
return normalize(
|
||||
dir.x * right +
|
||||
dir.y * up +
|
||||
dir.z * forward
|
||||
);
|
||||
}
|
||||
|
||||
vec3 sampleLights(vec3 position)
|
||||
{
|
||||
vec3 light = vec3(0.0);
|
||||
|
||||
for (int i = 0; i < u_objectsNum; i++)
|
||||
{
|
||||
GPUObject obj = objects[i];
|
||||
GPUMaterial mat = materials[obj.mat_index];
|
||||
|
||||
if (obj.type == 0 && mat.emission > 0.0)
|
||||
{
|
||||
vec3 light_dir = normalize(obj.position - position);
|
||||
float light_dist = length(obj.position - position);
|
||||
|
||||
Ray shadow_ray = Ray(position + light_dir * 0.01, light_dir);
|
||||
hitInfo shadow_hit = traceRay(shadow_ray);
|
||||
|
||||
if (shadow_hit.obj_index == i)
|
||||
light += mat.emission * mat.color / (light_dist);
|
||||
}
|
||||
}
|
||||
|
||||
return (light);
|
||||
}
|
||||
|
||||
struct VolumeProperties {
|
||||
vec3 sigma_a; // absorption coefficient
|
||||
vec3 sigma_s; // scattering coefficient
|
||||
vec3 sigma_t; // extinction coefficient
|
||||
float g; // phase function parameter
|
||||
};
|
||||
|
||||
vec3 pathtrace(Ray ray, inout uint rng_state)
|
||||
{
|
||||
vec3 color = vec3(1.0);
|
||||
@ -218,23 +158,10 @@ vec3 pathtrace(Ray ray, inout uint rng_state)
|
||||
{
|
||||
hitInfo hit = traceRay(ray);
|
||||
|
||||
float t_scatter = -log(randomValue(rng_state)) / volume.sigma_t.x;
|
||||
float t_surface = hit.t;
|
||||
|
||||
if (t_scatter < t_surface && volume.sigma_t.x > 0.0)
|
||||
float t_scatter = 0.0;
|
||||
if (atmosScatter(volume, hit, t_scatter, rng_state))
|
||||
{
|
||||
vec3 scatter_pos = ray.origin + ray.direction * t_scatter;
|
||||
|
||||
transmittance *= exp(-volume.sigma_t * t_scatter);
|
||||
color *= volume.sigma_s / volume.sigma_t;
|
||||
|
||||
light += transmittance * color * sampleLights(scatter_pos);
|
||||
|
||||
float cos_theta = sampleHG(volume.g, rng_state);
|
||||
vec3 new_dir = sampleDirection(ray.direction, cos_theta, rng_state);
|
||||
|
||||
ray.origin = scatter_pos;
|
||||
ray.direction = new_dir;
|
||||
calculateVolumetricLight(t_scatter, volume, ray, color, light, transmittance, rng_state);
|
||||
continue;
|
||||
}
|
||||
|
||||
@ -245,7 +172,7 @@ vec3 pathtrace(Ray ray, inout uint rng_state)
|
||||
break;
|
||||
}
|
||||
|
||||
transmittance *= exp(-volume.sigma_t * t_surface);
|
||||
transmittance *= exp(-volume.sigma_t * hit.t);
|
||||
|
||||
GPUObject obj = objects[hit.obj_index];
|
||||
GPUMaterial mat = materials[obj.mat_index];
|
||||
@ -257,9 +184,7 @@ vec3 pathtrace(Ray ray, inout uint rng_state)
|
||||
color /= p;
|
||||
//
|
||||
|
||||
color *= mat.color;
|
||||
light += mat.emission * mat.color;
|
||||
// light += sampleLights(hit.position);
|
||||
calculateLightColor(color, light, mat, hit);
|
||||
|
||||
if (mat.emission > 0.0)
|
||||
break;
|
||||
|
53
shaders/light.glsl
Normal file
53
shaders/light.glsl
Normal file
@ -0,0 +1,53 @@
|
||||
|
||||
vec3 GetEnvironmentLight(Ray ray)
|
||||
{
|
||||
vec3 sun_pos = vec3(-1., 1.0, 0.);
|
||||
float SunFocus = 1.5;
|
||||
float SunIntensity = 0.5;
|
||||
|
||||
vec3 GroundColour = vec3(0.5, 0.5, 0.5);
|
||||
vec3 SkyColourHorizon = vec3(135 / 255.0f, 206 / 255.0f, 235 / 255.0f);
|
||||
vec3 SkyColourZenith = SkyColourHorizon / 2.0;
|
||||
|
||||
float skyGradientT = pow(smoothstep(0.0, 0.4, ray.direction.y), 0.35);
|
||||
float groundToSkyT = smoothstep(-0.01, 0.0, ray.direction.y);
|
||||
vec3 skyGradient = mix(SkyColourHorizon, SkyColourZenith, skyGradientT);
|
||||
float sun = pow(max(0, dot(ray.direction, sun_pos.xyz)), SunFocus) * SunIntensity;
|
||||
// Combine ground, sky, and sun
|
||||
vec3 composite = mix(GroundColour, skyGradient, groundToSkyT) + sun * int(groundToSkyT >= 1);
|
||||
return composite;
|
||||
}
|
||||
|
||||
hitInfo traceRay(Ray ray);
|
||||
|
||||
vec3 sampleLights(vec3 position)
|
||||
{
|
||||
vec3 light = vec3(0.0);
|
||||
|
||||
for (int i = 0; i < u_objectsNum; i++)
|
||||
{
|
||||
GPUObject obj = objects[i];
|
||||
GPUMaterial mat = materials[obj.mat_index];
|
||||
|
||||
if (obj.type == 0 && mat.emission > 0.0)
|
||||
{
|
||||
vec3 light_dir = normalize(obj.position - position);
|
||||
float light_dist = length(obj.position - position);
|
||||
|
||||
Ray shadow_ray = Ray(position + light_dir * 0.01, light_dir);
|
||||
hitInfo shadow_hit = traceRay(shadow_ray);
|
||||
|
||||
if (shadow_hit.obj_index == i)
|
||||
light += mat.emission * mat.color / (light_dist);
|
||||
}
|
||||
}
|
||||
|
||||
return (light);
|
||||
}
|
||||
|
||||
void calculateLightColor(inout vec3 color, inout vec3 light, GPUMaterial mat, hitInfo hit)
|
||||
{
|
||||
color *= mat.color;
|
||||
light += mat.emission * mat.color;
|
||||
// light += sampleLights(hit.position);
|
||||
}
|
@ -35,22 +35,3 @@ vec3 randomHemisphereDirection(vec3 normal, inout uint rng_state)
|
||||
vec3 direction = randomDirection(rng_state);
|
||||
return (direction * sign(dot(normal, direction)));
|
||||
}
|
||||
|
||||
vec3 GetEnvironmentLight(Ray ray)
|
||||
{
|
||||
vec3 sun_pos = vec3(-1., 1.0, 0.);
|
||||
float SunFocus = 1.5;
|
||||
float SunIntensity = 0.5;
|
||||
|
||||
vec3 GroundColour = vec3(0.5, 0.5, 0.5);
|
||||
vec3 SkyColourHorizon = vec3(135 / 255.0f, 206 / 255.0f, 235 / 255.0f);
|
||||
vec3 SkyColourZenith = SkyColourHorizon / 2.0;
|
||||
|
||||
float skyGradientT = pow(smoothstep(0.0, 0.4, ray.direction.y), 0.35);
|
||||
float groundToSkyT = smoothstep(-0.01, 0.0, ray.direction.y);
|
||||
vec3 skyGradient = mix(SkyColourHorizon, SkyColourZenith, skyGradientT);
|
||||
float sun = pow(max(0, dot(ray.direction, sun_pos.xyz)), SunFocus) * SunIntensity;
|
||||
// Combine ground, sky, and sun
|
||||
vec3 composite = mix(GroundColour, skyGradient, groundToSkyT) + sun * int(groundToSkyT >= 1);
|
||||
return composite;
|
||||
}
|
||||
|
60
shaders/volumetric.glsl
Normal file
60
shaders/volumetric.glsl
Normal file
@ -0,0 +1,60 @@
|
||||
|
||||
struct VolumeProperties {
|
||||
vec3 sigma_a; // absorption coefficient
|
||||
vec3 sigma_s; // scattering coefficient
|
||||
vec3 sigma_t; // extinction coefficient
|
||||
float g; // phase function parameter
|
||||
};
|
||||
|
||||
float sampleHG(float g, inout uint rng_state)
|
||||
{
|
||||
if (abs(g) < 0.001)
|
||||
return 2.0 * randomValue(rng_state) - 1.0;
|
||||
|
||||
float sqr_term = (1.0 - g * g) / (1.0 + g - 2.0 * g * randomValue(rng_state));
|
||||
return (1.0 + g * g - sqr_term * sqr_term) / (2.0 * g);
|
||||
}
|
||||
|
||||
vec3 sampleDirection(vec3 forward, float cos_theta, inout uint rng_state)
|
||||
{
|
||||
float phi = 2.0 * M_PI * randomValue(rng_state);
|
||||
float sin_theta = sqrt(max(0.0, 1.0 - cos_theta * cos_theta));
|
||||
|
||||
vec3 dir;
|
||||
dir.x = sin_theta * cos(phi);
|
||||
dir.y = sin_theta * sin(phi);
|
||||
dir.z = cos_theta;
|
||||
|
||||
vec3 up = abs(forward.z) < 0.999 ? vec3(0, 0, 1) : vec3(1, 0, 0);
|
||||
vec3 right = normalize(cross(up, forward));
|
||||
up = cross(forward, right);
|
||||
|
||||
return normalize(
|
||||
dir.x * right +
|
||||
dir.y * up +
|
||||
dir.z * forward
|
||||
);
|
||||
}
|
||||
|
||||
bool atmosScatter(VolumeProperties volume, hitInfo hit, inout float t_scatter, inout uint rng_state)
|
||||
{
|
||||
t_scatter = -log(randomValue(rng_state)) / volume.sigma_t.x;
|
||||
|
||||
return (t_scatter < hit.t && volume.sigma_t.x > 0.0);
|
||||
}
|
||||
|
||||
void calculateVolumetricLight(float t_scatter, VolumeProperties volume, inout Ray ray, inout vec3 color, inout vec3 light, inout vec3 transmittance, inout uint rng_state)
|
||||
{
|
||||
vec3 scatter_pos = ray.origin + ray.direction * t_scatter;
|
||||
|
||||
transmittance *= exp(-volume.sigma_t * t_scatter);
|
||||
color *= volume.sigma_s / volume.sigma_t;
|
||||
|
||||
light += transmittance * color * sampleLights(scatter_pos);
|
||||
|
||||
float cos_theta = sampleHG(volume.g, rng_state);
|
||||
vec3 new_dir = sampleDirection(ray.direction, cos_theta, rng_state);
|
||||
|
||||
ray.origin = scatter_pos;
|
||||
ray.direction = new_dir;
|
||||
}
|
Reference in New Issue
Block a user