mirror of
https://github.com/TheRedShip/RT_GPU.git
synced 2025-09-27 18:48:36 +02:00
+ | Transparency Material
This commit is contained in:
@ -86,6 +86,7 @@ struct Ray
|
||||
struct hitInfo
|
||||
{
|
||||
float t;
|
||||
float last_t;
|
||||
vec3 normal;
|
||||
vec3 position;
|
||||
int obj_index;
|
||||
@ -141,6 +142,7 @@ hitInfo traceRay(Ray ray)
|
||||
if (intersect(ray, obj, temp_hit) && temp_hit.t > 0.0f && temp_hit.t < hit.t + 0.0001)
|
||||
{
|
||||
hit.t = temp_hit.t;
|
||||
hit.last_t = temp_hit.last_t;
|
||||
hit.obj_index = i;
|
||||
hit.position = temp_hit.position;
|
||||
hit.normal = temp_hit.normal;
|
||||
|
@ -7,9 +7,17 @@ bool intersectSphere(Ray ray, GPUObject obj, out hitInfo hit)
|
||||
float h = b * b - c;
|
||||
|
||||
float t = -b - sqrt(h);
|
||||
t = mix(t, -b + sqrt(h), step(t, 0.0));
|
||||
|
||||
float last_t = -b + sqrt(h);
|
||||
|
||||
if (t > last_t)
|
||||
{
|
||||
float temp = t;
|
||||
t = last_t;
|
||||
last_t = temp;
|
||||
}
|
||||
|
||||
hit.t = t;
|
||||
hit.last_t = last_t;
|
||||
hit.position = ray.origin + ray.direction * t;
|
||||
hit.normal = normalize(hit.position - obj.position);
|
||||
|
||||
|
@ -64,32 +64,29 @@ vec3 sampleQuadLight(vec3 position, GPUObject obj, GPUMaterial mat, inout uint r
|
||||
|
||||
vec3 normal = normalize(crossQuad);
|
||||
float cos_theta = max(0.0, dot(normal, -light_dir));
|
||||
return mat.emission * mat.color * cos_theta / (pdf * light_dist * light_dist);
|
||||
return mat.emission * mat.color / (light_dist);
|
||||
}
|
||||
|
||||
vec3 sampleLights(vec3 position, inout uint rng_state)
|
||||
{
|
||||
vec3 light = vec3(0.0);
|
||||
|
||||
int emissive_count = 0;
|
||||
|
||||
for (int i = 0; i < u_objectsNum; i++)
|
||||
if (materials[objects[i].mat_index].emission > 0.0)
|
||||
emissive_count++;
|
||||
{
|
||||
GPUObject obj = objects[i];
|
||||
GPUMaterial mat = materials[obj.mat_index];
|
||||
if (mat.emission > 0.0)
|
||||
{
|
||||
vec3 light_dir = normalize(obj.position - position);
|
||||
float light_dist = length(obj.position - position);
|
||||
|
||||
int target_light = int(floor(randomValue(rng_state) * float(emissive_count)));
|
||||
Ray shadow_ray = Ray(position + light_dir * 0.01, light_dir);
|
||||
hitInfo shadow_hit = traceRay(shadow_ray);
|
||||
|
||||
GPUObject obj = objects[target_light];
|
||||
GPUMaterial mat = materials[obj.mat_index];
|
||||
|
||||
vec3 light_dir = normalize(obj.position - position);
|
||||
float light_dist = length(obj.position - position);
|
||||
|
||||
Ray shadow_ray = Ray(position + light_dir * 0.01, light_dir);
|
||||
hitInfo shadow_hit = traceRay(shadow_ray);
|
||||
|
||||
if (shadow_hit.obj_index == target_light)
|
||||
light += mat.emission * mat.color / (light_dist);
|
||||
if (shadow_hit.obj_index == i)
|
||||
light += mat.emission * mat.color / (light_dist);
|
||||
}
|
||||
}
|
||||
|
||||
return (light);
|
||||
}
|
||||
@ -98,25 +95,21 @@ vec3 sampleLights(vec3 position, inout uint rng_state)
|
||||
// {
|
||||
// vec3 light = vec3(0.0);
|
||||
|
||||
// int emissive_count = 0;
|
||||
|
||||
// for (int i = 0; i < u_objectsNum; i++)
|
||||
// if (materials[objects[i].mat_index].emission > 0.0)
|
||||
// emissive_count++;
|
||||
// {
|
||||
|
||||
// GPUObject obj = objects[i];
|
||||
// GPUMaterial mat = materials[obj.mat_index];
|
||||
|
||||
// if (emissive_count == 0)
|
||||
// return (vec3(0.));
|
||||
|
||||
// int target_light = int(floor(randomValue(rng_state) * float(emissive_count)));
|
||||
|
||||
// GPUObject obj = objects[target_light];
|
||||
// GPUMaterial mat = materials[obj.mat_index];
|
||||
// if (mat.emission == 0.0)
|
||||
// continue ;
|
||||
|
||||
// if (obj.type == 0)
|
||||
// light = sampleSphereLight(position, obj, mat, rng_state);
|
||||
// else if (obj.type == 2)
|
||||
// light = sampleQuadLight(position, obj, mat, rng_state);
|
||||
// }
|
||||
|
||||
// if (obj.type == 0)
|
||||
// light = sampleSphereLight(position, obj, mat, rng_state);
|
||||
// else if (obj.type == 2)
|
||||
// light = sampleQuadLight(position, obj, mat, rng_state);
|
||||
|
||||
// return (light);
|
||||
// }
|
||||
|
||||
|
@ -32,6 +32,72 @@ Ray dieletricRay(hitInfo hit, Ray ray, GPUMaterial mat)
|
||||
return (ray);
|
||||
}
|
||||
|
||||
void swap(inout float a, inout float b)
|
||||
{
|
||||
float temp = a;
|
||||
a = b;
|
||||
b = temp;
|
||||
}
|
||||
|
||||
float fresnel(vec3 incident, vec3 normal, float eta)
|
||||
{
|
||||
float cosi = clamp(dot(incident, normal), -1.0, 1.0);
|
||||
float etai = 1.0, etat = eta;
|
||||
if (cosi > 0.0) swap(etai, etat);
|
||||
float sint = etai / etat * sqrt(max(0.0, 1.0 - cosi * cosi));
|
||||
if (sint >= 1.0) {
|
||||
return 1.0; // Total internal reflection
|
||||
}
|
||||
float cost = sqrt(max(0.0, 1.0 - sint * sint));
|
||||
cosi = abs(cosi);
|
||||
float Rs = ((etat * cosi) - (etai * cost)) / ((etat * cosi) + (etai * cost));
|
||||
float Rp = ((etai * cosi) - (etat * cost)) / ((etai * cosi) + (etat * cost));
|
||||
return (Rs * Rs + Rp * Rp) * 0.5;
|
||||
}
|
||||
|
||||
Ray transparencyRay(hitInfo hit, Ray ray, GPUMaterial mat, inout uint rng_state)
|
||||
{
|
||||
Ray newRay;
|
||||
|
||||
float eta = mat.refraction;
|
||||
vec3 refractedDir = refract(ray.direction, hit.normal, 1.0 / eta);
|
||||
|
||||
float kr = fresnel(ray.direction, hit.normal, eta);
|
||||
|
||||
float randVal = randomValue(rng_state);
|
||||
if (randVal < mat.metallic || length(refractedDir) == 0.0)
|
||||
{
|
||||
newRay.origin = hit.position + hit.normal * 1e-4;
|
||||
newRay.direction = reflect(ray.direction, hit.normal);
|
||||
}
|
||||
else
|
||||
{
|
||||
newRay.origin = hit.position - hit.normal * 1e-4;
|
||||
newRay.direction = refractedDir;
|
||||
}
|
||||
|
||||
return newRay;
|
||||
}
|
||||
|
||||
|
||||
// Ray transparencyRay(hitInfo hit, Ray ray, GPUMaterial mat, inout uint rng_state)
|
||||
// {
|
||||
// vec3 specular_origin = hit.position + hit.normal * 0.001;
|
||||
// vec3 specular_dir = mix(normalize(reflect(ray.direction, hit.normal)), lambertRay(hit, ray, mat, rng_state).direction, mat.roughness);
|
||||
|
||||
// vec3 transparency_origin = ray.origin + ray.direction * hit.last_t + ray.direction * 0.001;
|
||||
// vec3 transparency_dir = ray.direction;
|
||||
|
||||
// Ray specular_ray = Ray(specular_origin, specular_dir);
|
||||
// Ray transparency_ray = Ray(transparency_origin, transparency_dir);
|
||||
|
||||
// bool is_transparent = (mat.metallic >= randomValue(rng_state));
|
||||
|
||||
// if (is_transparent)
|
||||
// return (transparency_ray);
|
||||
// return (specular_ray);
|
||||
// }
|
||||
|
||||
|
||||
Ray newRay(hitInfo hit, Ray ray, inout uint rng_state)
|
||||
{
|
||||
@ -45,5 +111,7 @@ Ray newRay(hitInfo hit, Ray ray, inout uint rng_state)
|
||||
return (lambertRay(hit, ray, mat, rng_state));
|
||||
else if (mat.type == 1)
|
||||
return (dieletricRay(hit, ray, mat));
|
||||
else if (mat.type == 2)
|
||||
return (transparencyRay(hit, ray, mat, rng_state));
|
||||
return (ray);
|
||||
}
|
||||
|
Reference in New Issue
Block a user