Files
RT_GPU/shaders/scatter.glsl
2025-01-16 00:12:31 +01:00

118 lines
3.3 KiB
GLSL

Ray lambertRay(hitInfo hit, Ray ray, GPUMaterial mat, inout uint rng_state)
{
vec3 diffuse_dir = normalize(hit.normal + randomDirection(rng_state));
vec3 specular_dir = reflect(ray.direction, hit.normal);
bool is_specular = (mat.metallic >= randomValue(rng_state));
ray.origin = hit.position + hit.normal * 0.001;
ray.direction = normalize(mix(diffuse_dir, specular_dir, mat.roughness * float(is_specular)));
return (ray);
}
Ray dieletricRay(hitInfo hit, Ray ray, GPUMaterial mat)
{
float refraction_ratio;
vec3 unit_direction;
refraction_ratio = 1.0f / mat.refraction;
if (dot(ray.direction, hit.normal) > 0.0f)
{
hit.normal = -hit.normal;
refraction_ratio = mat.refraction;
}
unit_direction = normalize(ray.direction);
ray.origin = hit.position + hit.normal * -0.0001f;
ray.direction = refract(unit_direction, hit.normal, refraction_ratio);
return (ray);
}
void swap(inout float a, inout float b)
{
float temp = a;
a = b;
b = temp;
}
float fresnel(vec3 incident, vec3 normal, float eta)
{
float cosi = clamp(dot(incident, normal), -1.0, 1.0);
float etai = 1.0, etat = eta;
if (cosi > 0.0) swap(etai, etat);
float sint = etai / etat * sqrt(max(0.0, 1.0 - cosi * cosi));
if (sint >= 1.0) {
return 1.0; // Total internal reflection
}
float cost = sqrt(max(0.0, 1.0 - sint * sint));
cosi = abs(cosi);
float Rs = ((etat * cosi) - (etai * cost)) / ((etat * cosi) + (etai * cost));
float Rp = ((etai * cosi) - (etat * cost)) / ((etai * cosi) + (etat * cost));
return (Rs * Rs + Rp * Rp) * 0.5;
}
Ray transparencyRay(hitInfo hit, Ray ray, GPUMaterial mat, inout uint rng_state)
{
Ray newRay;
float eta = mat.refraction;
vec3 refractedDir = refract(ray.direction, hit.normal, 1.0 / eta);
float kr = fresnel(ray.direction, hit.normal, eta);
float randVal = randomValue(rng_state);
if (randVal < mat.metallic || length(refractedDir) == 0.0)
{
newRay.origin = hit.position + hit.normal * 1e-4;
newRay.direction = reflect(ray.direction, hit.normal);
}
else
{
newRay.origin = hit.position - hit.normal * 1e-4;
newRay.direction = refractedDir;
}
return newRay;
}
// Ray transparencyRay(hitInfo hit, Ray ray, GPUMaterial mat, inout uint rng_state)
// {
// vec3 specular_origin = hit.position + hit.normal * 0.001;
// vec3 specular_dir = mix(normalize(reflect(ray.direction, hit.normal)), lambertRay(hit, ray, mat, rng_state).direction, mat.roughness);
// vec3 transparency_origin = ray.origin + ray.direction * hit.last_t + ray.direction * 0.001;
// vec3 transparency_dir = ray.direction;
// Ray specular_ray = Ray(specular_origin, specular_dir);
// Ray transparency_ray = Ray(transparency_origin, transparency_dir);
// bool is_transparent = (mat.metallic >= randomValue(rng_state));
// if (is_transparent)
// return (transparency_ray);
// return (specular_ray);
// }
Ray newRay(hitInfo hit, Ray ray, inout uint rng_state)
{
GPUObject obj;
GPUMaterial mat;
obj = objects[hit.obj_index];
mat = materials[obj.mat_index];
if (mat.type == 0)
return (lambertRay(hit, ray, mat, rng_state));
else if (mat.type == 1)
return (dieletricRay(hit, ray, mat));
else if (mat.type == 2)
return (transparencyRay(hit, ray, mat, rng_state));
return (ray);
}