Files
RT_GPU/shaders/compute.glsl
2025-01-07 22:26:44 +01:00

189 lines
3.9 KiB
GLSL

#version 430 core
layout(local_size_x = 16, local_size_y = 16) in;
layout(binding = 0, rgba32f) uniform image2D output_image;
layout(binding = 1, rgba32f) uniform image2D accumulation_image;
struct GPUObject {
mat4 transform;
vec3 position; // 12 + 4
vec3 normal; // 12 + 4
vec3 vertex1; // 12 + 4
vec3 vertex2; // 12 + 4
float radius; // 4
int mat_index; // 4
int type; // 4
};
struct GPUMaterial
{
vec3 color; // 12 + 4
float emission; // 4
float roughness; // 4
float metallic; // 4
int type; // 4
};
layout(std430, binding = 1) buffer ObjectBuffer
{
GPUObject objects[];
};
layout(std430, binding = 2) buffer MaterialBuffer
{
GPUMaterial materials[];
};
uniform int u_objectsNum;
uniform vec2 u_resolution;
uniform vec3 u_cameraPosition;
uniform mat4 u_viewMatrix;
uniform int u_frameCount;
uniform float u_time;
struct Ray
{
vec3 origin;
vec3 direction;
};
struct hitInfo
{
float t;
vec3 normal;
vec3 position;
int obj_index;
};
#include "shaders/random.glsl"
#include "shaders/intersect.glsl"
#include "shaders/scatter.glsl"
Ray portalRay(Ray ray, hitInfo hit)
{
GPUObject portal_1;
GPUObject portal_2;
vec3 relative;
portal_1 = objects[hit.obj_index];
portal_2 = objects[int(portal_1.radius)]; // saving memory radius = portal_index
relative = hit.position - portal_1.position;
mat3 rotation = mat3(portal_2.transform) * transpose(mat3(portal_1.transform));
ray.origin = portal_2.position + rotation * relative;
ray.direction = normalize(rotation * ray.direction);
ray.origin += ray.direction * 0.01f;
return (ray);
}
hitInfo traceRay(Ray ray)
{
hitInfo hit;
for (int p = 0; p < 10; p++) //portals
{
hit.t = 1e30;
hit.obj_index = -1;
for (int i = 0; i < u_objectsNum; i++)
{
GPUObject obj = objects[i];
hitInfo temp_hit;
if (intersect(ray, obj, temp_hit) && temp_hit.t > 0.0f && temp_hit.t < hit.t)
{
hit.t = temp_hit.t;
hit.obj_index = i;
hit.position = temp_hit.position;
hit.normal = temp_hit.normal;
}
}
if (hit.obj_index == -1 || objects[hit.obj_index].type != 5)
break ;
ray = portalRay(ray, hit);
}
return (hit);
}
vec3 pathtrace(Ray ray, inout uint rng_state)
{
vec3 color = vec3(1.0);
vec3 light = vec3(0.0);
float closest_t = 1e30;
for (int i = 0; i < 5; i++)
{
hitInfo hit = traceRay(ray);
if (hit.obj_index == -1)
{
light += vec3(0); //ambient color
break;
}
GPUObject obj = objects[hit.obj_index];
GPUMaterial mat = materials[obj.mat_index];
// RR
float p = max(color.r, max(color.g, color.b));
if (randomValue(rng_state) > p && i > 1)
break;
color /= p;
//
color *= mat.color;
light += mat.emission * mat.color;
if (mat.emission > 0.0)
break;
ray = newRay(hit, ray, rng_state);
}
return (color * light);
}
void main()
{
ivec2 pixel_coords = ivec2(gl_GlobalInvocationID.xy);
if (pixel_coords.x >= int(u_resolution.x) || pixel_coords.y >= int(u_resolution.y))
return;
vec2 uv = (vec2(pixel_coords) / u_resolution) * 2.0 - 1.0;;
uv.x *= u_resolution.x / u_resolution.y;
float fov = 90.0;
float focal_length = 1.0 / tan(radians(fov) / 2.0);
vec3 view_space_ray = normalize(vec3(uv.x, uv.y, -focal_length));
vec3 ray_direction = normalize((inverse(u_viewMatrix) * vec4(view_space_ray, 0.0)).xyz);
Ray ray = Ray(u_cameraPosition, ray_direction);
uint rng_state = uint(u_resolution.x) * uint(pixel_coords.y) + pixel_coords.x;
rng_state = rng_state + u_frameCount * 719393;
vec3 color = pathtrace(ray, rng_state);
float blend = 1.0 / float(u_frameCount + 1);
vec4 accum = imageLoad(accumulation_image, pixel_coords);
accum.rgb = mix(accum.rgb, color, blend);
accum.a = 1.0;
imageStore(accumulation_image, pixel_coords, accum);
vec4 final_color = vec4(sqrt(accum.r), sqrt(accum.g), sqrt(accum.b), accum.a);
imageStore(output_image, pixel_coords, final_color);
}