Files
RT_GPU/shaders/compute.glsl
2025-01-02 14:47:10 +01:00

157 lines
3.5 KiB
GLSL

#version 430 core
#include "shaders/random.glsl"
layout(local_size_x = 16, local_size_y = 16) in;
layout(binding = 0, rgba32f) uniform image2D outputImage;
layout(binding = 1, rgba32f) uniform image2D accumulationImage;
struct GPUObject {
vec3 position; // 12 + 4
vec3 color; // 12 + 4
float emission; // 4
float roughness; // 4
float specular; // 4
float radius; // 4
int type; // 4 + 12
};
layout(std430, binding = 1) buffer ObjectBuffer
{
GPUObject objects[];
};
uniform int u_objectsNum;
uniform vec2 u_resolution;
uniform vec3 u_cameraPosition;
uniform mat4 u_viewMatrix;
uniform int u_frameCount;
uniform float u_time;
vec3 lightPos = vec3(5.0, 5.0, 5.0);
vec3 lightColor = vec3(1.0, 1.0, 1.0);
struct Ray
{
vec3 origin;
vec3 direction;
};
struct hitInfo
{
float t;
vec3 normal;
vec3 position;
int obj_index;
};
bool intersectSphere(Ray ray, GPUObject obj, out hitInfo hit)
{
vec3 oc = ray.origin - obj.position;
float a = dot(ray.direction, ray.direction);
float b = 2.0 * dot(oc, ray.direction);
float c = dot(oc, oc) - obj.radius * obj.radius;
float discriminant = b * b - 4.0 * a * c;
if (discriminant < 0.0)
return false;
float t = (-b - sqrt(discriminant)) / (2.0 * a);
if (t < 0.0)
t = (-b + sqrt(discriminant)) / (2.0 * a);
hit.t = t;
hit.position = ray.origin + ray.direction * t;
hit.normal = normalize(hit.position - obj.position);
return (true);
}
hitInfo trace_ray(Ray ray)
{
hitInfo hit;
hit.t = 1e30;
hit.obj_index = -1;
for (int i = 0; i < u_objectsNum; i++)
{
GPUObject obj = objects[i];
hitInfo tempHit;
if (intersectSphere(ray, obj, tempHit))
{
if (tempHit.t > 0.0f && tempHit.t < hit.t)
{
hit.t = tempHit.t;
hit.obj_index = i;
hit.position = tempHit.position;
hit.normal = tempHit.normal;
}
}
}
return (hit);
}
vec3 pathtrace(Ray ray, vec2 random)
{
vec3 color = vec3(1.0);
vec3 light = vec3(0.0);
float closest_t = 1e30;
for (int i = 0; i < 10; i++)
{
hitInfo hit = trace_ray(ray);
if (hit.obj_index == -1)
{
light += vec3(0); //ambient color
break;
}
GPUObject obj = objects[hit.obj_index];
color *= obj.color;
if (obj.emission > 0.0)
{
light += obj.emission * obj.color;
break;
}
ray.origin = hit.position + hit.normal * 0.001;
//cosine weighted importance sampling
vec3 unit_sphere = normalize(randomVec3(random, u_time));
if (dot(unit_sphere, hit.normal) < 0.0)
unit_sphere = -unit_sphere;
ray.direction = normalize(hit.normal + unit_sphere);
}
return (color * light);
}
void main() {
ivec2 pixelCoords = ivec2(gl_GlobalInvocationID.xy);
if (pixelCoords.x >= int(u_resolution.x) || pixelCoords.y >= int(u_resolution.y))
return;
vec2 uv = vec2(pixelCoords) / u_resolution;
uv = uv * 2.0 - 1.0;
uv.x *= u_resolution.x / u_resolution.y;
float fov = 90.0;
float focal_length = 1.0 / tan(radians(fov) / 2.0);
vec3 viewSpaceRay = normalize(vec3(uv.x, uv.y, -focal_length));
vec3 rayDirection = (inverse(u_viewMatrix) * vec4(viewSpaceRay, 0.0)).xyz;
rayDirection = normalize(rayDirection);
Ray ray = Ray(u_cameraPosition, rayDirection);
vec3 color = pathtrace(ray, uv);
vec4 accum = imageLoad(accumulationImage, pixelCoords);
accum.rgb = accum.rgb * float(u_frameCount) / float(u_frameCount + 1) + color / float(u_frameCount + 1);
accum.a = 1.0;
imageStore(accumulationImage, pixelCoords, accum);
imageStore(outputImage, pixelCoords, accum);
}