Files
RT_GPU/shaders/light.glsl
2025-01-27 16:59:06 +01:00

117 lines
3.8 KiB
GLSL

hitInfo traceRay(Ray ray);
vec3 GetEnvironmentLight(Ray ray)
{
// return vec3(0.);
vec3 sun_pos = vec3(-0.5, 0.5, 0.5);
float SunFocus = 1.5;
float SunIntensity = 1.;
vec3 GroundColour = vec3(0.5, 0.5, 0.5);
vec3 SkyColourHorizon = vec3(135 / 255.0f, 206 / 255.0f, 235 / 255.0f);
vec3 SkyColourZenith = SkyColourHorizon / 2.0;
float skyGradientT = pow(smoothstep(0.0, 0.4, ray.direction.y), 0.35);
float groundToSkyT = smoothstep(-0.01, 0.0, ray.direction.y);
vec3 skyGradient = mix(SkyColourHorizon, SkyColourZenith, skyGradientT);
float sun = pow(max(0, dot(ray.direction, sun_pos.xyz)), SunFocus) * SunIntensity;
// Combine ground, sky, and sun
vec3 composite = mix(GroundColour, skyGradient, groundToSkyT) + sun * int(groundToSkyT >= 1);
return composite;
}
vec3 sampleSphereLight(vec3 position, GPUObject obj, int light_index, GPUMaterial mat, inout uint rng_state)
{
float theta = 2.0 * M_PI * randomValue(rng_state);
float phi = acos(2.0 * randomValue(rng_state) - 1.0);
vec3 sample_point = obj.position + obj.radius * vec3(
sin(phi) * cos(theta),
sin(phi) * sin(theta),
cos(phi)
);
vec3 light_dir = normalize(sample_point - position);
float light_dist = length(sample_point - position);
Ray shadow_ray = Ray(position + light_dir * 0.001, light_dir, (1.0 / light_dir));
hitInfo shadow_hit = traceRay(shadow_ray);
if (shadow_hit.obj_index != light_index)
return vec3(0.0);
float cos_theta = max(0.0, -dot(light_dir, normalize(sample_point - obj.position)));
return mat.emission * mat.color / (light_dist * light_dist) * cos_theta / (4.0 * M_PI * (obj.radius / 2.0) * (obj.radius / 2.0));
}
vec3 sampleQuadLight(vec3 position, GPUObject obj, int light_index, GPUMaterial mat, inout uint rng_state)
{
float u = randomValue(rng_state);
float v = randomValue(rng_state);
vec3 sample_point = obj.position + u * obj.vertex1 + v * obj.vertex2;
vec3 light_dir = normalize(sample_point - position);
float light_dist = length(sample_point - position);
Ray shadow_ray = Ray(position + light_dir * 0.001, light_dir, (1.0 / light_dir));
hitInfo shadow_hit = traceRay(shadow_ray);
if (shadow_hit.obj_index != light_index)
return vec3(0.0);
vec3 crossQuad = cross(obj.vertex1, obj.vertex2);
float area = length(crossQuad);
float pdf = 1.0 / area;
vec3 normal = normalize(crossQuad);
float cos_theta = max(0.0, dot(normal, -light_dir));
return mat.emission * mat.color / (light_dist * light_dist) * cos_theta / pdf;
}
vec3 sampleLights(vec3 position, inout uint rng_state)
{
vec3 light = vec3(0.0);
for (int i = 0; i < u_lightsNum; i++)
{
int light_index = lightsIndex[i];
GPUObject obj = objects[light_index];
GPUMaterial mat = materials[obj.mat_index];
if (obj.type == 0)
light += sampleSphereLight(position, obj, light_index, mat, rng_state);
else if (obj.type == 2)
light += sampleQuadLight(position, obj, light_index, mat, rng_state);
}
return (light);
}
vec2 getSphereUV(vec3 surfacePoint)
{
// Convert 3D point to spherical coordinates
float phi = atan(surfacePoint.z, surfacePoint.x);
float theta = acos(surfacePoint.y);
// Map to [0, 1] UV space
float u = (phi + M_PI) / (2.0 * M_PI);
float v = theta / M_PI;
return vec2(u, v);
}
uniform sampler2D sphereTexture;
void calculateLightColor(GPUMaterial mat, hitInfo hit, inout vec3 color, inout vec3 light, inout uint rng_state)
{
if (objects[hit.obj_index].type == 0)
{
vec2 uv = getSphereUV(hit.normal);
color *= texture(sphereTexture, uv).rgb;
}
else
color *= mat.color;
light += mat.emission * mat.color;
// light += sampleLights(hit.position, rng_state);
}