bool intersectSphere(Ray ray, GPUObject obj, out hitInfo hit) { vec3 oc = ray.origin - obj.position; float b = dot(oc, ray.direction); float c = dot(oc, oc) - obj.radius * obj.radius; float discriminant = b * b - c; float sqrtD = sqrt(max(0.0, discriminant)); float t0 = -b - sqrtD; float t1 = -b + sqrtD; float temp = min(t0, t1); t1 = max(t0, t1); t0 = temp; bool isInside = c < 0.0; t0 = isInside ? t1 : t0; hit.t = t0; hit.last_t = t1; hit.position = ray.origin + ray.direction * t0; hit.normal = normalize(hit.position - obj.position); hit.normal *= (isInside ? -1.0 : 1.0); return (discriminant >= 0.0) && (t0 > 0.0); } bool intersectPlane(Ray ray, GPUObject obj, out hitInfo hit) { float d = dot(obj.normal, ray.direction); float t = dot(obj.position - ray.origin, obj.normal) / d; bool valid = t >= 0.0 && d != 0.0; // if (!valid) return (false); hit.t = t; hit.position = ray.origin + ray.direction * t; hit.normal = d < 0.0 ? obj.normal : -obj.normal; vec3 U = normalize((abs(obj.normal.x) > abs(obj.normal.z)) ? vec3(-obj.normal.y, obj.normal.x, 0.0) : vec3(0.0, -obj.normal.z, obj.normal.y)); vec3 V = normalize(cross(obj.normal, U)); vec3 localPos = hit.position - obj.position; hit.u = dot(localPos, U) * 1.0; hit.v = dot(localPos, V) * 1.0; return (valid); } bool intersectQuad(Ray ray, GPUObject obj, out hitInfo hit) { float d = dot(obj.normal, ray.direction); if (d == 0.0 || (obj.radius != 0.0 && d <= 0)) return (false); // double sided or not float t = dot(obj.position - ray.origin, obj.normal) / d; if (t <= 0.0) return (false); vec3 p = ray.origin + ray.direction * t - obj.position; float e1 = dot(p, obj.vertex1); float e2 = dot(p, obj.vertex2); float l1 = dot(obj.vertex1, obj.vertex1); float l2 = dot(obj.vertex2, obj.vertex2); bool inside = e1 >= 0.0 && e1 <= l1 && e2 >= 0.0 && e2 <= l2; hit.t = t; hit.position = p + obj.position; hit.normal = obj.normal * -sign(d); // hit.normal = normal; hit.u = e1 / l1; hit.v = e2 / l2; return (inside); } bool intersectTriangle(Ray ray, GPUTriangle obj, out hitInfo hit) { vec3 vertex1 = obj.vertex1 - obj.position; vec3 vertex2 = obj.vertex2 - obj.position; vec3 pvec = cross(ray.direction, vertex2); float det = dot(vertex1, pvec); if (abs(det) < 1e-10) return (false); vec3 tvec = ray.origin - obj.position; float invDet = 1.0 / det; hit.u = dot(tvec, pvec) * invDet; vec3 qvec = cross(tvec, vertex1); hit.v = dot(ray.direction, qvec) * invDet; hit.t = dot(vertex2, qvec) * invDet; bool valid = hit.u >= 0.0 && hit.u <= 1.0 && hit.v >= 0.0 && (hit.u + hit.v) <= 1.0 && hit.t > 0.0; // hit.position = ray.origin + ray.direction * t; // hit.normal = obj.normal * sign(-dot(ray.direction, obj.normal)); // hit.normal = vec3(u, v, 1 - (u + v)); //texture mapping return (valid); } bool intersectTriangle(Ray ray, GPUObject obj, out hitInfo hit) { GPUTriangle tri; tri.position = obj.position; tri.normal = obj.normal; tri.vertex1 = obj.vertex1; tri.vertex2 = obj.vertex2; return (intersectTriangle(ray, tri, hit)); } bool intersectCube(Ray ray, GPUObject obj, out hitInfo hit) { vec3 halfSize = obj.vertex1 * 0.5; vec3 rayOriginLocal = ray.origin - obj.position; vec3 invDir = 1.0 / ray.direction; vec3 t1 = (-halfSize - rayOriginLocal) * invDir; vec3 t2 = (halfSize - rayOriginLocal) * invDir; vec3 tMinVec = min(t1, t2); vec3 tMaxVec = max(t1, t2); float tMin = max(tMinVec.x, max(tMinVec.y, tMinVec.z)); float tMax = min(tMaxVec.x, min(tMaxVec.y, tMaxVec.z)); bool hit_success = (tMax >= tMin) && (tMax > 0.0); if (!hit_success) return false; hit.t = tMin > 0.0 ? tMin : tMax; vec3 hitPointLocal = rayOriginLocal + hit.t * ray.direction; hit.position = hitPointLocal + obj.position; vec3 distances = abs(hitPointLocal) - halfSize; const float epsilon = 1e-4; vec3 signs = sign(hitPointLocal); vec3 masks = step(abs(distances), vec3(epsilon)); hit.normal = normalize(masks * signs); bool inside = all(lessThan(abs(rayOriginLocal), halfSize + vec3(epsilon))); hit.normal *= (inside ? -1.0 : 1.0); return true; } bool intersectCylinder(Ray ray, GPUObject obj, out hitInfo hit) { float radius = obj.normal.x; float height = obj.normal.y; vec3 rayOrigin = mat3(obj.rotation) * (ray.origin - obj.position); vec3 rayDir = mat3(obj.rotation) * ray.direction; float halfHeight = height * 0.5; float radius2 = radius * radius; vec2 oc_xz = rayOrigin.xz; vec2 rd_xz = rayDir.xz; float a = dot(rd_xz, rd_xz); float b = dot(oc_xz, rd_xz); float c = dot(oc_xz, oc_xz) - radius2; float h = b * b - a * c; if (h < 0.0) return (false); float t_cyl = (-b - sqrt(h)) / a; float y = rayOrigin.y + t_cyl * rayDir.y; t_cyl = mix((-b + sqrt(h)) / a, t_cyl, float(abs(y) <= halfHeight && t_cyl > 0.0)); y = rayOrigin.y + t_cyl * rayDir.y; float invRayDirY = 1.0 / rayDir.y; float t_cap = (-sign(rayDir.y) * halfHeight - rayOrigin.y) * invRayDirY; vec2 cap_xz = rayOrigin.xz + t_cap * rayDir.xz; bool cap_valid = (dot(cap_xz, cap_xz) <= radius2) && (t_cap > 0.0); bool cyl_valid = abs(y) <= halfHeight && t_cyl > 0.0; float t = mix(t_cap, t_cyl, float(cyl_valid && (t_cyl < t_cap || !cap_valid))); if (!cyl_valid && !cap_valid) return (false); vec3 p = rayOrigin + t * rayDir; vec3 n_side = normalize(vec3(p.x, 0.0, p.z)); vec3 n_cap = vec3(0.0, -sign(rayDir.y), 0.0); vec3 normal = mix(n_cap, n_side, float(cyl_valid && (t_cyl < t_cap || !cap_valid))); hit.t = t; hit.position = ray.origin + ray.direction * t; hit.normal = normalize(transpose(mat3(obj.rotation)) * normal); return (true); } bool intersect(Ray ray, GPUObject obj, out hitInfo hit) { if (obj.type == 0) return (intersectSphere(ray, obj, hit)); if (obj.type == 1) return (intersectPlane(ray, obj, hit)); if (obj.type == 2 || obj.type == 5) return (intersectQuad(ray, obj, hit)); if (obj.type == 3) return (intersectTriangle(ray, obj, hit)); if (obj.type == 4) return (intersectCube(ray, obj, hit)); if (obj.type == 6) return (intersectCylinder(ray, obj, hit)); return (false); } bool intersectRayBVH(Ray ray, GPUBvh node, inout hitInfo hit) { // vec3 inv_direction = 1.0 / ray.direction; vec3 t1 = (node.min - ray.origin) * ray.inv_direction; vec3 t2 = (node.max - ray.origin) * ray.inv_direction; vec3 tMin = min(t1, t2); vec3 tMax = max(t1, t2); hit.t = max(max(tMin.x, tMin.y), tMin.z); float last_t = min(min(tMax.x, tMax.y), tMax.z); return (hit.t <= last_t && last_t >= 0.0); }