hitInfo traceRay(Ray ray); vec3 GetEnvironmentLight(Ray ray) { return vec3(0.); vec3 sun_pos = vec3(-0.5, 0.5, 0.5); float SunFocus = 1.5; float SunIntensity = 1.; vec3 GroundColour = vec3(0.5, 0.5, 0.5); vec3 SkyColourHorizon = vec3(135 / 255.0f, 206 / 255.0f, 235 / 255.0f); vec3 SkyColourZenith = SkyColourHorizon / 2.0; float skyGradientT = pow(smoothstep(0.0, 0.4, ray.direction.y), 0.35); float groundToSkyT = smoothstep(-0.01, 0.0, ray.direction.y); vec3 skyGradient = mix(SkyColourHorizon, SkyColourZenith, skyGradientT); float sun = pow(max(0, dot(ray.direction, sun_pos.xyz)), SunFocus) * SunIntensity; // Combine ground, sky, and sun vec3 composite = mix(GroundColour, skyGradient, groundToSkyT) + sun * int(groundToSkyT >= 1); return composite; } vec3 sampleSphereLight(vec3 position, GPUObject obj, GPUMaterial mat, inout uint rng_state) { float theta = 2.0 * M_PI * randomValue(rng_state); float phi = acos(2.0 * randomValue(rng_state) - 1.0); vec3 sample_point = obj.position + obj.radius * vec3( sin(phi) * cos(theta), sin(phi) * sin(theta), cos(phi) ); vec3 light_dir = normalize(sample_point - position); float light_dist = length(sample_point - position); Ray shadow_ray = Ray(position + light_dir * 0.001, light_dir); hitInfo shadow_hit = traceRay(shadow_ray); if (shadow_hit.obj_index != -1 && shadow_hit.t < light_dist) return vec3(0.0); float cos_theta = max(0.0, -dot(light_dir, normalize(sample_point - obj.position))); return mat.emission * mat.color / (light_dist); } vec3 sampleQuadLight(vec3 position, GPUObject obj, GPUMaterial mat, inout uint rng_state) { float u = randomValue(rng_state); float v = randomValue(rng_state); vec3 sample_point = obj.position + u * obj.vertex1 + v * obj.vertex2; vec3 light_dir = normalize(sample_point - position); float light_dist = length(sample_point - position); Ray shadow_ray = Ray(position + light_dir * 0.001, light_dir); hitInfo shadow_hit = traceRay(shadow_ray); if (shadow_hit.obj_index != -1 && shadow_hit.t < light_dist) return vec3(0.0); vec3 crossQuad = cross(obj.vertex1, obj.vertex2); float area = length(crossQuad); float pdf = 1.0 / area; vec3 normal = normalize(crossQuad); float cos_theta = max(0.0, dot(normal, -light_dir)); return mat.emission * mat.color * cos_theta / (pdf * light_dist * light_dist); } vec3 sampleLights(vec3 position, inout uint rng_state) { vec3 light = vec3(0.0); for (int i = 0; i < u_objectsNum; i++) { GPUObject obj = objects[i]; GPUMaterial mat = materials[obj.mat_index]; if (mat.emission > 0.0) { vec3 light_dir = normalize(obj.position - position); float light_dist = length(obj.position - position); Ray shadow_ray = Ray(position + light_dir * 0.01, light_dir); hitInfo shadow_hit = traceRay(shadow_ray); if (shadow_hit.obj_index == i) light += mat.emission * mat.color / (light_dist); } } return (light); } // vec3 sampleLights(vec3 position, inout uint rng_state) // { // vec3 light = vec3(0.0); // int emissive_count = 0; // for (int i = 0; i < u_objectsNum; i++) // if (materials[objects[i].mat_index].emission > 0.0) // emissive_count++; // if (emissive_count == 0) // return (vec3(0.)); // int target_light = int(floor(randomValue(rng_state) * float(emissive_count))); // GPUObject obj = objects[target_light]; // GPUMaterial mat = materials[obj.mat_index]; // if (obj.type == 0) // light = sampleSphereLight(position, obj, mat, rng_state); // else if (obj.type == 2) // light = sampleQuadLight(position, obj, mat, rng_state); // return (light); // } void calculateLightColor(GPUMaterial mat, hitInfo hit, inout vec3 color, inout vec3 light, inout uint rng_state) { color *= mat.color; light += mat.emission * mat.color; // light += sampleLights(hit.position, rng_state); }