bool intersectSphere(Ray ray, GPUObject obj, out hitInfo hit) { vec3 oc = ray.origin - obj.position; float b = dot(oc, ray.direction); float c = dot(oc, oc) - obj.radius * obj.radius; float h = b * b - c; float t = -b - sqrt(h); float last_t = -b + sqrt(h); if (t > last_t) { float temp = t; t = last_t; last_t = temp; } hit.t = t; hit.last_t = last_t; hit.position = ray.origin + ray.direction * t; hit.normal = normalize(hit.position - obj.position); return (h >= 0.0 && t > 0.0); } bool intersectPlane(Ray ray, GPUObject obj, out hitInfo hit) { float d = dot(obj.normal, ray.direction); float t = dot(obj.position - ray.origin, obj.normal) / d; bool valid = t >= 0.0 && d != 0.0; if (!valid) return (false); hit.t = t; hit.position = ray.origin + ray.direction * t; hit.normal = d < 0.0 ? obj.normal : -obj.normal; return (valid); } bool intersectQuad(Ray ray, GPUObject obj, out hitInfo hit) { vec3 normal = normalize(cross(obj.vertex1, obj.vertex2)); float d = dot(normal, ray.direction); if (d == 0.0) return (false); float t = dot(obj.position - ray.origin, normal) / d; if (t <= 0.0) return (false); vec3 p = ray.origin + ray.direction * t - obj.position; float e1 = dot(p, obj.vertex1); float e2 = dot(p, obj.vertex2); float l1 = dot(obj.vertex1, obj.vertex1); float l2 = dot(obj.vertex2, obj.vertex2); bool inside = e1 >= 0.0 && e1 <= l1 && e2 >= 0.0 && e2 <= l2; hit.t = t; hit.position = p + obj.position; hit.normal = normal * -sign(d); return (inside); } bool intersectTriangle(Ray ray, GPUObject obj, out hitInfo hit) { vec3 vertex1 = obj.vertex1 - obj.position; vec3 vertex2 = obj.vertex2 - obj.position; vec3 pvec = cross(ray.direction, vertex2); float det = dot(vertex1, pvec); vec3 tvec = ray.origin - obj.position; float invDet = 1.0 / det; float u = dot(tvec, pvec) * invDet; vec3 qvec = cross(tvec, vertex1); float v = dot(ray.direction, qvec) * invDet; float t = dot(vertex2, qvec) * invDet; bool valid = abs(det) > 1e-8 && u >= 0.0 && u <= 1.0 && v >= 0.0 && (u + v) <= 1.0 && t > 0.0; hit.t = t; hit.position = ray.origin + ray.direction * t; hit.normal = obj.normal * sign(-dot(ray.direction, obj.normal)); return (valid); } bool intersectTriangle(Ray ray, GPUTriangle obj, out hitInfo hit) { vec3 vertex1 = obj.vertex1 - obj.position; vec3 vertex2 = obj.vertex2 - obj.position; vec3 pvec = cross(ray.direction, vertex2); float det = dot(vertex1, pvec); vec3 tvec = ray.origin - obj.position; float invDet = 1.0 / det; float u = dot(tvec, pvec) * invDet; vec3 qvec = cross(tvec, vertex1); float v = dot(ray.direction, qvec) * invDet; float t = dot(vertex2, qvec) * invDet; bool valid = abs(det) > 1e-8 && u >= 0.0 && u <= 1.0 && v >= 0.0 && (u + v) <= 1.0 && t > 0.0; hit.t = t; hit.position = ray.origin + ray.direction * t; hit.normal = obj.normal * sign(-dot(ray.direction, obj.normal)); return (valid); } bool intersectCube(Ray ray, GPUObject obj, out hitInfo hit) { vec3 halfSize = obj.vertex1 * 0.5; vec3 rayOriginLocal = ray.origin - obj.position; vec3 invDir = 1.0 / ray.direction; vec3 t1 = (-halfSize - rayOriginLocal) * invDir; vec3 t2 = (halfSize - rayOriginLocal) * invDir; vec3 tMinVec = min(t1, t2); vec3 tMaxVec = max(t1, t2); float tMin = max(tMinVec.x, max(tMinVec.y, tMinVec.z)); float tMax = min(tMaxVec.x, min(tMaxVec.y, tMaxVec.z)); bool hit_success = (tMax >= tMin) && (tMax > 0.0); if (!hit_success) return false; hit.t = tMin > 0.0 ? tMin : tMax; vec3 hitPointLocal = rayOriginLocal + hit.t * ray.direction; hit.position = hitPointLocal + obj.position; vec3 distances = abs(hitPointLocal) - halfSize; const float epsilon = 1e-4; vec3 signs = sign(hitPointLocal); vec3 masks = step(abs(distances), vec3(epsilon)); hit.normal = normalize(masks * signs); bool inside = all(lessThan(abs(rayOriginLocal), halfSize + vec3(epsilon))); hit.normal *= (inside ? -1.0 : 1.0); return true; } bool intersectCylinder(Ray ray, GPUObject obj, out hitInfo hit) { float radius = obj.normal.x; float height = obj.normal.y; vec3 rayOrigin = mat3(obj.rotation) * (ray.origin - obj.position); vec3 rayDir = mat3(obj.rotation) * ray.direction; float halfHeight = height * 0.5; float radius2 = radius * radius; vec2 oc_xz = rayOrigin.xz; vec2 rd_xz = rayDir.xz; float a = dot(rd_xz, rd_xz); float b = dot(oc_xz, rd_xz); float c = dot(oc_xz, oc_xz) - radius2; float h = b * b - a * c; if (h < 0.0) return (false); float t_cyl = (-b - sqrt(h)) / a; float y = rayOrigin.y + t_cyl * rayDir.y; t_cyl = mix((-b + sqrt(h)) / a, t_cyl, float(abs(y) <= halfHeight && t_cyl > 0.0)); y = rayOrigin.y + t_cyl * rayDir.y; float invRayDirY = 1.0 / rayDir.y; float t_cap = (-sign(rayDir.y) * halfHeight - rayOrigin.y) * invRayDirY; vec2 cap_xz = rayOrigin.xz + t_cap * rayDir.xz; bool cap_valid = (dot(cap_xz, cap_xz) <= radius2) && (t_cap > 0.0); bool cyl_valid = abs(y) <= halfHeight && t_cyl > 0.0; float t = mix(t_cap, t_cyl, float(cyl_valid && (t_cyl < t_cap || !cap_valid))); if (!cyl_valid && !cap_valid) return (false); vec3 p = rayOrigin + t * rayDir; vec3 n_side = normalize(vec3(p.x, 0.0, p.z)); vec3 n_cap = vec3(0.0, -sign(rayDir.y), 0.0); vec3 normal = mix(n_cap, n_side, float(cyl_valid && (t_cyl < t_cap || !cap_valid))); hit.t = t; hit.position = ray.origin + ray.direction * t; hit.normal = normalize(transpose(mat3(obj.rotation)) * normal); return (true); } bool intersect(Ray ray, GPUObject obj, out hitInfo hit) { if (obj.type == 0) return (intersectSphere(ray, obj, hit)); if (obj.type == 1) return (intersectPlane(ray, obj, hit)); if (obj.type == 2 || obj.type == 5) return (intersectQuad(ray, obj, hit)); if (obj.type == 3) return (intersectTriangle(ray, obj, hit)); if (obj.type == 4) return (intersectCube(ray, obj, hit)); if (obj.type == 6) return (intersectCylinder(ray, obj, hit)); return (false); } bool intersectRayBVH(Ray ray, GPUBvh node, inout hitInfo hit) { vec3 invDir = 1.0 / ray.direction; vec3 t1 = (node.min - ray.origin) * invDir; vec3 t2 = (node.max - ray.origin) * invDir; vec3 tMin = min(t1, t2); vec3 tMax = max(t1, t2); hit.t = max(max(tMin.x, tMin.y), tMin.z); hit.last_t = min(min(tMax.x, tMax.y), tMax.z); return hit.t <= hit.last_t && hit.last_t >= 0.0; }