float sampleHG(float g, inout uint rng_state) { if (abs(g) < 0.001) return 2.0 * randomValue(rng_state) - 1.0; float sqr_term = (1.0 - g * g) / (1.0 + g - 2.0 * g * randomValue(rng_state)); return (1.0 + g * g - sqr_term * sqr_term) / (2.0 * g); } vec3 sampleDirection(vec3 forward, float cos_theta, inout uint rng_state) { float phi = 2.0 * M_PI * randomValue(rng_state); float sin_theta = sqrt(max(0.0, 1.0 - cos_theta * cos_theta)); vec3 dir; dir.x = sin_theta * cos(phi); dir.y = sin_theta * sin(phi); dir.z = cos_theta; vec3 up = abs(forward.z) < 0.999 ? vec3(0, 0, 1) : vec3(1, 0, 0); vec3 right = normalize(cross(up, forward)); up = cross(forward, right); return normalize( dir.x * right + dir.y * up + dir.z * forward ); } bool atmosScatter(hitInfo hit, inout float t_scatter, inout uint rng_state) { float density = volume.sigma_t.x; t_scatter = -log(randomValue(rng_state)) / density; return (t_scatter < hit.t && density > 0.0); } void calculateVolumetricLight(float t_scatter, inout Ray ray, inout vec3 color, inout vec3 light, inout vec3 transmittance, inout uint rng_state) { vec3 scatter_pos = ray.origin + ray.direction * t_scatter; transmittance *= exp(-volume.sigma_t * t_scatter); color *= volume.sigma_s / volume.sigma_t; light += transmittance * color * sampleLights(scatter_pos); float cos_theta = sampleHG(volume.g, rng_state); vec3 new_dir = sampleDirection(ray.direction, cos_theta, rng_state); ray.origin = scatter_pos; ray.direction = new_dir; }