hitInfo traceRay(inout Ray ray); vec3 GetEnvironmentLight(Ray ray) { // return vec3(0.); vec3 sun_pos = vec3(-0.5, 0.5, 0.5); float SunFocus = 1.5; float SunIntensity = 1.; vec3 GroundColour = vec3(0.5, 0.5, 0.5); vec3 SkyColourHorizon = vec3(135 / 255.0f, 206 / 255.0f, 235 / 255.0f); vec3 SkyColourZenith = SkyColourHorizon / 2.0; float skyGradientT = pow(smoothstep(0.0, 0.4, ray.direction.y), 0.35); float groundToSkyT = smoothstep(-0.01, 0.0, ray.direction.y); vec3 skyGradient = mix(SkyColourHorizon, SkyColourZenith, skyGradientT); float sun = pow(max(0, dot(ray.direction, sun_pos.xyz)), SunFocus) * SunIntensity; // Combine ground, sky, and sun vec3 composite = mix(GroundColour, skyGradient, groundToSkyT) + sun * int(groundToSkyT >= 1); return composite; } vec3 sampleSphereLight(vec3 position, GPUObject obj, int light_index, GPUMaterial mat, inout uint rng_state) { float theta = 2.0 * M_PI * randomValue(rng_state); float phi = acos(2.0 * randomValue(rng_state) - 1.0); vec3 sample_point = obj.position + obj.radius * vec3( sin(phi) * cos(theta), sin(phi) * sin(theta), cos(phi) ); vec3 light_dir = normalize(sample_point - position); float light_dist = length(sample_point - position); Ray shadow_ray = Ray(position + light_dir * 0.001, light_dir, (1.0 / light_dir)); hitInfo shadow_hit = traceRay(shadow_ray); if (shadow_hit.obj_index != light_index) return vec3(0.0); float cos_theta = max(0.0, -dot(light_dir, normalize(sample_point - obj.position))); return mat.emission * mat.color / (light_dist * light_dist) * cos_theta / (4.0 * M_PI * (obj.radius / 2.0) * (obj.radius / 2.0)); } vec3 sampleQuadLight(vec3 position, GPUObject obj, int light_index, GPUMaterial mat, inout uint rng_state) { float u = randomValue(rng_state); float v = randomValue(rng_state); vec3 sample_point = obj.position + u * obj.vertex1 + v * obj.vertex2; vec3 light_dir = normalize(sample_point - position); float light_dist = length(sample_point - position); Ray shadow_ray = Ray(position + light_dir * 0.001, light_dir, (1.0 / light_dir)); hitInfo shadow_hit = traceRay(shadow_ray); if (shadow_hit.obj_index != light_index) return vec3(0.0); vec3 crossQuad = cross(obj.vertex1, obj.vertex2); float area = length(crossQuad); float pdf = 1.0 / area; vec3 normal = normalize(crossQuad); float cos_theta = max(0.0, dot(normal, -light_dir)); return mat.emission * mat.color / (light_dist * light_dist) * pdf; } vec3 sampleLights(vec3 position, inout uint rng_state) { vec3 light = vec3(0.0); for (int i = 0; i < u_lightsNum; i++) { int light_index = lightsIndex[i]; GPUObject obj = objects[light_index]; GPUMaterial mat = materials[obj.mat_index]; if (obj.type == 0) light += sampleSphereLight(position, obj, light_index, mat, rng_state); else if (obj.type == 2) light += sampleQuadLight(position, obj, light_index, mat, rng_state); } return (light); } vec2 getSphereUV(vec3 surfacePoint) { float phi = atan(surfacePoint.z, surfacePoint.x); float theta = acos(surfacePoint.y); float u = (phi + M_PI) / (2.0 * M_PI); float v = theta / M_PI; return vec2(u, v); } uniform sampler2D textures[64]; uniform sampler2D emissive_textures[64]; vec2 getTextureColor(hitInfo hit) { vec2 uv = vec2(0.0); if (hit.obj_type == 0) uv = getSphereUV(hit.normal); else if (hit.obj_type == 3) { GPUTriangle tri = triangles[hit.obj_index]; uv = hit.u * tri.texture_vertex2 + hit.v * tri.texture_vertex3 + (1 - (hit.u + hit.v)) * tri.texture_vertex1; } return (vec2(uv.x, 1 - uv.y)); } void calculateLightColor(GPUMaterial mat, hitInfo hit, inout vec3 color, inout vec3 light, inout uint rng_state) { if (mat.texture_index != -1) { vec2 uv = getTextureColor(hit); color *= texture(textures[mat.texture_index], uv).rgb; } if (mat.emission_texture_index != -1) { vec2 uv = getTextureColor(hit); vec3 emission = mat.emission * texture(emissive_textures[mat.emission_texture_index], uv).rgb; light += mat.emission * emission; } else { color *= mat.color; light += mat.emission * mat.color; // light += sampleLights(hit.position, rng_state); } }