mirror of
https://github.com/TheRedShip/RT_GPU.git
synced 2025-09-27 18:48:36 +02:00
+ | Fog imGUI
This commit is contained in:
@ -32,14 +32,23 @@ struct GPUMaterial
|
||||
|
||||
struct GPUCamera
|
||||
{
|
||||
mat4 view_matrix;
|
||||
vec3 position;
|
||||
mat4 view_matrix;
|
||||
vec3 position;
|
||||
|
||||
float aperture_size;
|
||||
float focus_distance;
|
||||
float fov;
|
||||
|
||||
float aperture_size;
|
||||
float focus_distance;
|
||||
float fov;
|
||||
int bounce;
|
||||
};
|
||||
|
||||
int bounce;
|
||||
struct GPUVolume
|
||||
{
|
||||
vec3 sigma_a; // absorption coefficient
|
||||
vec3 sigma_s; // scattering coefficient
|
||||
vec3 sigma_t; // extinction coefficient
|
||||
float g; // phase function parameter
|
||||
bool enabled;
|
||||
};
|
||||
|
||||
layout(std430, binding = 1) buffer ObjectBuffer
|
||||
@ -52,11 +61,16 @@ layout(std430, binding = 2) buffer MaterialBuffer
|
||||
GPUMaterial materials[];
|
||||
};
|
||||
|
||||
layout(std140) uniform CameraData
|
||||
layout(std140, binding = 0) uniform CameraData
|
||||
{
|
||||
GPUCamera camera;
|
||||
};
|
||||
|
||||
layout(std140, binding = 1) uniform VolumeData
|
||||
{
|
||||
GPUVolume volume;
|
||||
};
|
||||
|
||||
uniform int u_objectsNum;
|
||||
uniform vec2 u_resolution;
|
||||
uniform int u_pixelisation;
|
||||
@ -148,31 +162,25 @@ vec3 pathtrace(Ray ray, inout uint rng_state)
|
||||
|
||||
vec3 transmittance = vec3(1.0);
|
||||
|
||||
VolumeProperties volume;
|
||||
volume.sigma_a = vec3(0.0001);
|
||||
volume.sigma_s = vec3(0.0800);
|
||||
volume.sigma_t = volume.sigma_a + volume.sigma_s;
|
||||
volume.g = 1.;
|
||||
|
||||
for (int i = 0; i < camera.bounce; i++)
|
||||
{
|
||||
hitInfo hit = traceRay(ray);
|
||||
|
||||
float t_scatter = 0.0;
|
||||
if (atmosScatter(volume, hit, t_scatter, rng_state))
|
||||
if (volume.enabled && atmosScatter(hit, t_scatter, rng_state))
|
||||
{
|
||||
calculateVolumetricLight(t_scatter, volume, ray, color, light, transmittance, rng_state);
|
||||
calculateVolumetricLight(t_scatter, ray, color, light, transmittance, rng_state);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (hit.obj_index == -1)
|
||||
{
|
||||
light += transmittance * GetEnvironmentLight(ray);
|
||||
// light += vec3(135 / 255.0f, 206 / 255.0f, 235 / 255.0f); //ambient color
|
||||
break;
|
||||
}
|
||||
|
||||
transmittance *= exp(-volume.sigma_t * hit.t);
|
||||
if (volume.enabled)
|
||||
transmittance *= exp(-volume.sigma_t * hit.t);
|
||||
|
||||
GPUObject obj = objects[hit.obj_index];
|
||||
GPUMaterial mat = materials[obj.mat_index];
|
||||
|
@ -1,9 +1,9 @@
|
||||
|
||||
vec3 GetEnvironmentLight(Ray ray)
|
||||
{
|
||||
vec3 sun_pos = vec3(-1., 1.0, 0.);
|
||||
vec3 sun_pos = vec3(-0.5, 0.5, 0.5);
|
||||
float SunFocus = 1.5;
|
||||
float SunIntensity = 0.5;
|
||||
float SunIntensity = 1.;
|
||||
|
||||
vec3 GroundColour = vec3(0.5, 0.5, 0.5);
|
||||
vec3 SkyColourHorizon = vec3(135 / 255.0f, 206 / 255.0f, 235 / 255.0f);
|
||||
@ -29,7 +29,7 @@ vec3 sampleLights(vec3 position)
|
||||
GPUObject obj = objects[i];
|
||||
GPUMaterial mat = materials[obj.mat_index];
|
||||
|
||||
if (obj.type == 0 && mat.emission > 0.0)
|
||||
if (mat.emission > 0.0)
|
||||
{
|
||||
vec3 light_dir = normalize(obj.position - position);
|
||||
float light_dist = length(obj.position - position);
|
||||
|
@ -1,11 +1,4 @@
|
||||
|
||||
struct VolumeProperties {
|
||||
vec3 sigma_a; // absorption coefficient
|
||||
vec3 sigma_s; // scattering coefficient
|
||||
vec3 sigma_t; // extinction coefficient
|
||||
float g; // phase function parameter
|
||||
};
|
||||
|
||||
float sampleHG(float g, inout uint rng_state)
|
||||
{
|
||||
if (abs(g) < 0.001)
|
||||
@ -36,17 +29,18 @@ vec3 sampleDirection(vec3 forward, float cos_theta, inout uint rng_state)
|
||||
);
|
||||
}
|
||||
|
||||
bool atmosScatter(VolumeProperties volume, hitInfo hit, inout float t_scatter, inout uint rng_state)
|
||||
bool atmosScatter(hitInfo hit, inout float t_scatter, inout uint rng_state)
|
||||
{
|
||||
t_scatter = -log(randomValue(rng_state)) / volume.sigma_t.x;
|
||||
float density = volume.sigma_t.x;
|
||||
t_scatter = -log(randomValue(rng_state)) / density;
|
||||
|
||||
return (t_scatter < hit.t && volume.sigma_t.x > 0.0);
|
||||
return (t_scatter < hit.t && density > 0.0);
|
||||
}
|
||||
|
||||
void calculateVolumetricLight(float t_scatter, VolumeProperties volume, inout Ray ray, inout vec3 color, inout vec3 light, inout vec3 transmittance, inout uint rng_state)
|
||||
void calculateVolumetricLight(float t_scatter, inout Ray ray, inout vec3 color, inout vec3 light, inout vec3 transmittance, inout uint rng_state)
|
||||
{
|
||||
vec3 scatter_pos = ray.origin + ray.direction * t_scatter;
|
||||
|
||||
|
||||
transmittance *= exp(-volume.sigma_t * t_scatter);
|
||||
color *= volume.sigma_s / volume.sigma_t;
|
||||
|
||||
|
Reference in New Issue
Block a user