+ | Fog beam laser now in objects

This commit is contained in:
TheRedShip
2025-03-08 20:36:10 +01:00
committed by tomoron
parent ecc1f68329
commit 075c2a959a
11 changed files with 172 additions and 51 deletions

View File

@ -205,7 +205,7 @@ bool intersectCylinder(Ray ray, GPUObject obj, out hitInfo hit)
bool intersect(Ray ray, GPUObject obj, out hitInfo hit)
{
if (obj.type == 0)
if (obj.type == 0 || obj.type == 7)
return (intersectSphere(ray, obj, hit));
if (obj.type == 1)
return (intersectPlane(ray, obj, hit));

View File

@ -20,6 +20,8 @@ vec3 GetEnvironmentLight(Ray ray)
return composite;
}
#define FOG_BOUNCE 0
vec3 sampleSphereLight(vec3 position, GPUObject obj, int light_index, GPUMaterial mat, inout uint rng_state)
{
float theta = 2.0 * M_PI * randomValue(rng_state);
@ -37,46 +39,48 @@ vec3 sampleSphereLight(vec3 position, GPUObject obj, int light_index, GPUMateria
Ray shadow_ray = Ray(position + light_dir * 0.001, light_dir, (1.0 / light_dir));
hitInfo shadow_hit = traceRay(shadow_ray);
vec3 dir = normalize(vec3(-0.5, 0.15, 0.));
if (dot(shadow_ray.direction, dir) < 0.995 || shadow_hit.obj_index != light_index)
float beam_cos_angle = obj.vertex1.x;
vec3 dir = obj.normal;
if (shadow_hit.obj_index != light_index || dot(shadow_ray.direction, dir) < beam_cos_angle)
{
float circleRadius = light_dist * tan(acos(0.995));
#if FOG_BOUNCE
float circleRadius = light_dist * tan(acos(beam_cos_angle));
// Uniformly sample a point in a disk.
float r = circleRadius * sqrt(randomValue(rng_state));
float theta = 2.0 * M_PI * randomValue(rng_state);
vec2 diskSample = vec2(r * cos(theta), r * sin(theta));
float r = circleRadius * sqrt(randomValue(rng_state));
float theta = 2.0 * M_PI * randomValue(rng_state);
vec2 diskSample = vec2(r * cos(theta), r * sin(theta));
// Build an orthonormal basis for the plane perpendicular to 'dir'.
vec3 up = abs(dir.y) < 0.99 ? vec3(0, 1, 0) : vec3(1, 0, 0);
vec3 tangent = normalize(cross(up, dir));
vec3 bitangent = cross(dir, tangent);
vec3 up = abs(dir.y) < 0.99 ? vec3(0, 1, 0) : vec3(1, 0, 0);
vec3 tangent = normalize(cross(up, dir));
vec3 bitangent = cross(dir, tangent);
// Determine the center of the projected circle on the wall.
vec3 circleCenter = obj.position + light_dist * dir;
vec3 circleCenter = obj.position + light_dist * dir;
// Compute the final sample point on the projected circle.
vec3 sample_point = circleCenter + diskSample.x * tangent + diskSample.y * bitangent;
vec3 sample_point = circleCenter + diskSample.x * tangent + diskSample.y * bitangent;
Ray light_ray = Ray(sample_point, -dir, (1.0 / -dir));
hitInfo light_ray_hit = traceRay(light_ray);
Ray light_ray = Ray(sample_point, -dir, (1.0 / -dir));
hitInfo light_ray_hit = traceRay(light_ray);
if (light_ray_hit.obj_index == -1)
return (vec3(0.0));
if (light_ray_hit.obj_index == -1)
return (vec3(0.0));
GPUMaterial light_ray_mat = materials[light_ray_hit.mat_index];
if (light_ray_mat.metallic == 0.)
return vec3(0.0);
GPUMaterial light_ray_mat = materials[light_ray_hit.mat_index];
if (light_ray_mat.metallic == 0.)
return vec3(0.0);
Ray reflect_ray = newRay(light_ray_hit, light_ray, rng_state);
reflect_ray.inv_direction = 1.0 / reflect_ray.direction;
Ray reflect_ray = newRay(light_ray_hit, light_ray, rng_state);
reflect_ray.inv_direction = 1.0 / reflect_ray.direction;
vec3 reflect_to_particle = normalize(position - reflect_ray.origin);
if (dot(reflect_ray.direction, reflect_to_particle) < 0.995)
return vec3(0.0);
mat.color *= light_ray_mat.color;
return mat.emission * mat.color * vec3(10.0);
vec3 reflect_to_particle = normalize(position - reflect_ray.origin);
if (dot(reflect_ray.direction, reflect_to_particle) < beam_cos_angle)
return vec3(0.0);
mat.color *= light_ray_mat.color;
#else
return vec3(0.);
#endif
}
float cos_theta = max(0.0, -dot(light_dir, normalize(sample_point - obj.position)));
@ -98,16 +102,28 @@ vec3 sampleQuadLight(vec3 position, GPUObject obj, int light_index, GPUMaterial
if (shadow_hit.obj_index != light_index)
return vec3(0.0);
vec3 dir = normalize(vec3(-0.5, 0., 0.));
if (dot(shadow_ray.direction, dir) < 0.995)
return vec3(0.);
vec3 quad_to_camera = position - obj.position;
float distance_plane = dot(quad_to_camera, obj.normal);
vec3 point_projected = position - distance_plane * obj.normal;
mat2 A = mat2(
dot(obj.vertex1, obj.vertex1), dot(obj.vertex1, obj.vertex2),
dot(obj.vertex1, obj.vertex2), dot(obj.vertex2, obj.vertex2)
);
vec2 b = vec2(
dot(point_projected - obj.position, obj.vertex1),
dot(point_projected - obj.position, obj.vertex2)
);
vec2 alphaBeta = inverse(A) * b;
if (alphaBeta.x < 0.0f || alphaBeta.x > 1.0f || alphaBeta.y < 0.0f || alphaBeta.y > 1.0f)
return vec3(0.0);
vec3 crossQuad = cross(obj.vertex1, obj.vertex2);
float area = length(crossQuad);
float pdf = 1.0 / area;
vec3 normal = normalize(crossQuad);
float cos_theta = max(0.0, dot(normal, -light_dir));
float cos_theta = max(0.0, dot(obj.normal, -light_dir));
return mat.emission * mat.color / (light_dist * light_dist) * pdf;
}
@ -119,10 +135,11 @@ vec3 sampleLights(in vec3 position, inout uint rng_state)
GPUObject light_obj = objects[light_index];
GPUMaterial lightMat = materials[light_obj.mat_index];
if (light_obj.type == 0)
if (light_obj.type == 7)
return float(u_lightsNum) * sampleSphereLight(position, light_obj, light_index, lightMat, rng_state);
else if (light_obj.type == 2)
return float(u_lightsNum) * sampleQuadLight(position, light_obj, light_index, lightMat, rng_state);
return (vec3(0.));
}
vec2 getSphereUV(vec3 surfacePoint)