Files
METH_Transcendence/docker-compose/requirements/nginx/static/three/build/three.webgpu.js
Kum1ta b5d13ccf6f Docker
- Update three in static file
2024-08-24 20:46:11 +02:00

76072 lines
1.6 MiB
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* @license
* Copyright 2010-2024 Three.js Authors
* SPDX-License-Identifier: MIT
*/
const REVISION = '167';
const MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 };
const TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 };
const CullFaceNone = 0;
const CullFaceBack = 1;
const CullFaceFront = 2;
const CullFaceFrontBack = 3;
const BasicShadowMap$1 = 0;
const PCFShadowMap$1 = 1;
const PCFSoftShadowMap$1 = 2;
const VSMShadowMap = 3;
const FrontSide = 0;
const BackSide = 1;
const DoubleSide = 2;
const NoBlending = 0;
const NormalBlending = 1;
const AdditiveBlending = 2;
const SubtractiveBlending = 3;
const MultiplyBlending = 4;
const CustomBlending = 5;
const AddEquation = 100;
const SubtractEquation = 101;
const ReverseSubtractEquation = 102;
const MinEquation = 103;
const MaxEquation = 104;
const ZeroFactor = 200;
const OneFactor = 201;
const SrcColorFactor = 202;
const OneMinusSrcColorFactor = 203;
const SrcAlphaFactor = 204;
const OneMinusSrcAlphaFactor = 205;
const DstAlphaFactor = 206;
const OneMinusDstAlphaFactor = 207;
const DstColorFactor = 208;
const OneMinusDstColorFactor = 209;
const SrcAlphaSaturateFactor = 210;
const ConstantColorFactor = 211;
const OneMinusConstantColorFactor = 212;
const ConstantAlphaFactor = 213;
const OneMinusConstantAlphaFactor = 214;
const NeverDepth = 0;
const AlwaysDepth = 1;
const LessDepth = 2;
const LessEqualDepth = 3;
const EqualDepth = 4;
const GreaterEqualDepth = 5;
const GreaterDepth = 6;
const NotEqualDepth = 7;
const MultiplyOperation = 0;
const MixOperation = 1;
const AddOperation = 2;
const NoToneMapping = 0;
const LinearToneMapping = 1;
const ReinhardToneMapping = 2;
const CineonToneMapping = 3;
const ACESFilmicToneMapping = 4;
const CustomToneMapping = 5;
const AgXToneMapping = 6;
const NeutralToneMapping = 7;
const AttachedBindMode = 'attached';
const DetachedBindMode = 'detached';
const UVMapping = 300;
const CubeReflectionMapping = 301;
const CubeRefractionMapping = 302;
const EquirectangularReflectionMapping = 303;
const EquirectangularRefractionMapping = 304;
const CubeUVReflectionMapping = 306;
const RepeatWrapping = 1000;
const ClampToEdgeWrapping = 1001;
const MirroredRepeatWrapping = 1002;
const NearestFilter = 1003;
const NearestMipmapNearestFilter = 1004;
const NearestMipMapNearestFilter = 1004;
const NearestMipmapLinearFilter = 1005;
const NearestMipMapLinearFilter = 1005;
const LinearFilter = 1006;
const LinearMipmapNearestFilter = 1007;
const LinearMipMapNearestFilter = 1007;
const LinearMipmapLinearFilter = 1008;
const LinearMipMapLinearFilter = 1008;
const UnsignedByteType = 1009;
const ByteType = 1010;
const ShortType = 1011;
const UnsignedShortType = 1012;
const IntType = 1013;
const UnsignedIntType = 1014;
const FloatType = 1015;
const HalfFloatType = 1016;
const UnsignedShort4444Type = 1017;
const UnsignedShort5551Type = 1018;
const UnsignedInt248Type = 1020;
const UnsignedInt5999Type = 35902;
const AlphaFormat = 1021;
const RGBFormat = 1022;
const RGBAFormat = 1023;
const LuminanceFormat = 1024;
const LuminanceAlphaFormat = 1025;
const DepthFormat = 1026;
const DepthStencilFormat = 1027;
const RedFormat = 1028;
const RedIntegerFormat = 1029;
const RGFormat = 1030;
const RGIntegerFormat = 1031;
const RGBIntegerFormat = 1032;
const RGBAIntegerFormat = 1033;
const RGB_S3TC_DXT1_Format = 33776;
const RGBA_S3TC_DXT1_Format = 33777;
const RGBA_S3TC_DXT3_Format = 33778;
const RGBA_S3TC_DXT5_Format = 33779;
const RGB_PVRTC_4BPPV1_Format = 35840;
const RGB_PVRTC_2BPPV1_Format = 35841;
const RGBA_PVRTC_4BPPV1_Format = 35842;
const RGBA_PVRTC_2BPPV1_Format = 35843;
const RGB_ETC1_Format = 36196;
const RGB_ETC2_Format = 37492;
const RGBA_ETC2_EAC_Format = 37496;
const RGBA_ASTC_4x4_Format = 37808;
const RGBA_ASTC_5x4_Format = 37809;
const RGBA_ASTC_5x5_Format = 37810;
const RGBA_ASTC_6x5_Format = 37811;
const RGBA_ASTC_6x6_Format = 37812;
const RGBA_ASTC_8x5_Format = 37813;
const RGBA_ASTC_8x6_Format = 37814;
const RGBA_ASTC_8x8_Format = 37815;
const RGBA_ASTC_10x5_Format = 37816;
const RGBA_ASTC_10x6_Format = 37817;
const RGBA_ASTC_10x8_Format = 37818;
const RGBA_ASTC_10x10_Format = 37819;
const RGBA_ASTC_12x10_Format = 37820;
const RGBA_ASTC_12x12_Format = 37821;
const RGBA_BPTC_Format = 36492;
const RGB_BPTC_SIGNED_Format = 36494;
const RGB_BPTC_UNSIGNED_Format = 36495;
const RED_RGTC1_Format = 36283;
const SIGNED_RED_RGTC1_Format = 36284;
const RED_GREEN_RGTC2_Format = 36285;
const SIGNED_RED_GREEN_RGTC2_Format = 36286;
const LoopOnce = 2200;
const LoopRepeat = 2201;
const LoopPingPong = 2202;
const InterpolateDiscrete = 2300;
const InterpolateLinear = 2301;
const InterpolateSmooth = 2302;
const ZeroCurvatureEnding = 2400;
const ZeroSlopeEnding = 2401;
const WrapAroundEnding = 2402;
const NormalAnimationBlendMode = 2500;
const AdditiveAnimationBlendMode = 2501;
const TrianglesDrawMode = 0;
const TriangleStripDrawMode = 1;
const TriangleFanDrawMode = 2;
const BasicDepthPacking = 3200;
const RGBADepthPacking = 3201;
const RGBDepthPacking = 3202;
const RGDepthPacking = 3203;
const TangentSpaceNormalMap = 0;
const ObjectSpaceNormalMap = 1;
// Color space string identifiers, matching CSS Color Module Level 4 and WebGPU names where available.
const NoColorSpace = '';
const SRGBColorSpace = 'srgb';
const LinearSRGBColorSpace = 'srgb-linear';
const DisplayP3ColorSpace = 'display-p3';
const LinearDisplayP3ColorSpace = 'display-p3-linear';
const LinearTransfer = 'linear';
const SRGBTransfer = 'srgb';
const Rec709Primaries = 'rec709';
const P3Primaries = 'p3';
const ZeroStencilOp = 0;
const KeepStencilOp = 7680;
const ReplaceStencilOp = 7681;
const IncrementStencilOp = 7682;
const DecrementStencilOp = 7683;
const IncrementWrapStencilOp = 34055;
const DecrementWrapStencilOp = 34056;
const InvertStencilOp = 5386;
const NeverStencilFunc = 512;
const LessStencilFunc = 513;
const EqualStencilFunc = 514;
const LessEqualStencilFunc = 515;
const GreaterStencilFunc = 516;
const NotEqualStencilFunc = 517;
const GreaterEqualStencilFunc = 518;
const AlwaysStencilFunc = 519;
const NeverCompare = 512;
const LessCompare = 513;
const EqualCompare = 514;
const LessEqualCompare = 515;
const GreaterCompare = 516;
const NotEqualCompare = 517;
const GreaterEqualCompare = 518;
const AlwaysCompare = 519;
const StaticDrawUsage = 35044;
const DynamicDrawUsage = 35048;
const StreamDrawUsage = 35040;
const StaticReadUsage = 35045;
const DynamicReadUsage = 35049;
const StreamReadUsage = 35041;
const StaticCopyUsage = 35046;
const DynamicCopyUsage = 35050;
const StreamCopyUsage = 35042;
const GLSL1 = '100';
const GLSL3 = '300 es';
const WebGLCoordinateSystem = 2000;
const WebGPUCoordinateSystem = 2001;
/**
* https://github.com/mrdoob/eventdispatcher.js/
*/
class EventDispatcher {
addEventListener( type, listener ) {
if ( this._listeners === undefined ) this._listeners = {};
const listeners = this._listeners;
if ( listeners[ type ] === undefined ) {
listeners[ type ] = [];
}
if ( listeners[ type ].indexOf( listener ) === - 1 ) {
listeners[ type ].push( listener );
}
}
hasEventListener( type, listener ) {
if ( this._listeners === undefined ) return false;
const listeners = this._listeners;
return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1;
}
removeEventListener( type, listener ) {
if ( this._listeners === undefined ) return;
const listeners = this._listeners;
const listenerArray = listeners[ type ];
if ( listenerArray !== undefined ) {
const index = listenerArray.indexOf( listener );
if ( index !== - 1 ) {
listenerArray.splice( index, 1 );
}
}
}
dispatchEvent( event ) {
if ( this._listeners === undefined ) return;
const listeners = this._listeners;
const listenerArray = listeners[ event.type ];
if ( listenerArray !== undefined ) {
event.target = this;
// Make a copy, in case listeners are removed while iterating.
const array = listenerArray.slice( 0 );
for ( let i = 0, l = array.length; i < l; i ++ ) {
array[ i ].call( this, event );
}
event.target = null;
}
}
}
const _lut = [ '00', '01', '02', '03', '04', '05', '06', '07', '08', '09', '0a', '0b', '0c', '0d', '0e', '0f', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '1a', '1b', '1c', '1d', '1e', '1f', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '2a', '2b', '2c', '2d', '2e', '2f', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '3a', '3b', '3c', '3d', '3e', '3f', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '4a', '4b', '4c', '4d', '4e', '4f', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '5a', '5b', '5c', '5d', '5e', '5f', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '6a', '6b', '6c', '6d', '6e', '6f', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '7a', '7b', '7c', '7d', '7e', '7f', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '8a', '8b', '8c', '8d', '8e', '8f', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '9a', '9b', '9c', '9d', '9e', '9f', 'a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'aa', 'ab', 'ac', 'ad', 'ae', 'af', 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'ba', 'bb', 'bc', 'bd', 'be', 'bf', 'c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9', 'ca', 'cb', 'cc', 'cd', 'ce', 'cf', 'd0', 'd1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8', 'd9', 'da', 'db', 'dc', 'dd', 'de', 'df', 'e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6', 'e7', 'e8', 'e9', 'ea', 'eb', 'ec', 'ed', 'ee', 'ef', 'f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'fa', 'fb', 'fc', 'fd', 'fe', 'ff' ];
let _seed = 1234567;
const DEG2RAD = Math.PI / 180;
const RAD2DEG = 180 / Math.PI;
// http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
function generateUUID() {
const d0 = Math.random() * 0xffffffff | 0;
const d1 = Math.random() * 0xffffffff | 0;
const d2 = Math.random() * 0xffffffff | 0;
const d3 = Math.random() * 0xffffffff | 0;
const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' +
_lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' +
_lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] +
_lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ];
// .toLowerCase() here flattens concatenated strings to save heap memory space.
return uuid.toLowerCase();
}
function clamp$1( value, min, max ) {
return Math.max( min, Math.min( max, value ) );
}
// compute euclidean modulo of m % n
// https://en.wikipedia.org/wiki/Modulo_operation
function euclideanModulo( n, m ) {
return ( ( n % m ) + m ) % m;
}
// Linear mapping from range <a1, a2> to range <b1, b2>
function mapLinear( x, a1, a2, b1, b2 ) {
return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );
}
// https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/
function inverseLerp( x, y, value ) {
if ( x !== y ) {
return ( value - x ) / ( y - x );
} else {
return 0;
}
}
// https://en.wikipedia.org/wiki/Linear_interpolation
function lerp( x, y, t ) {
return ( 1 - t ) * x + t * y;
}
// http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/
function damp( x, y, lambda, dt ) {
return lerp( x, y, 1 - Math.exp( - lambda * dt ) );
}
// https://www.desmos.com/calculator/vcsjnyz7x4
function pingpong( x, length = 1 ) {
return length - Math.abs( euclideanModulo( x, length * 2 ) - length );
}
// http://en.wikipedia.org/wiki/Smoothstep
function smoothstep$1( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * ( 3 - 2 * x );
}
function smootherstep( x, min, max ) {
if ( x <= min ) return 0;
if ( x >= max ) return 1;
x = ( x - min ) / ( max - min );
return x * x * x * ( x * ( x * 6 - 15 ) + 10 );
}
// Random integer from <low, high> interval
function randInt( low, high ) {
return low + Math.floor( Math.random() * ( high - low + 1 ) );
}
// Random float from <low, high> interval
function randFloat( low, high ) {
return low + Math.random() * ( high - low );
}
// Random float from <-range/2, range/2> interval
function randFloatSpread( range ) {
return range * ( 0.5 - Math.random() );
}
// Deterministic pseudo-random float in the interval [ 0, 1 ]
function seededRandom( s ) {
if ( s !== undefined ) _seed = s;
// Mulberry32 generator
let t = _seed += 0x6D2B79F5;
t = Math.imul( t ^ t >>> 15, t | 1 );
t ^= t + Math.imul( t ^ t >>> 7, t | 61 );
return ( ( t ^ t >>> 14 ) >>> 0 ) / 4294967296;
}
function degToRad( degrees ) {
return degrees * DEG2RAD;
}
function radToDeg( radians ) {
return radians * RAD2DEG;
}
function isPowerOfTwo( value ) {
return ( value & ( value - 1 ) ) === 0 && value !== 0;
}
function ceilPowerOfTwo( value ) {
return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) );
}
function floorPowerOfTwo( value ) {
return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) );
}
function setQuaternionFromProperEuler( q, a, b, c, order ) {
// Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles
// rotations are applied to the axes in the order specified by 'order'
// rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c'
// angles are in radians
const cos = Math.cos;
const sin = Math.sin;
const c2 = cos( b / 2 );
const s2 = sin( b / 2 );
const c13 = cos( ( a + c ) / 2 );
const s13 = sin( ( a + c ) / 2 );
const c1_3 = cos( ( a - c ) / 2 );
const s1_3 = sin( ( a - c ) / 2 );
const c3_1 = cos( ( c - a ) / 2 );
const s3_1 = sin( ( c - a ) / 2 );
switch ( order ) {
case 'XYX':
q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 );
break;
case 'YZY':
q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 );
break;
case 'ZXZ':
q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 );
break;
case 'XZX':
q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 );
break;
case 'YXY':
q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 );
break;
case 'ZYZ':
q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 );
break;
default:
console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order );
}
}
function denormalize( value, array ) {
switch ( array.constructor ) {
case Float32Array:
return value;
case Uint32Array:
return value / 4294967295.0;
case Uint16Array:
return value / 65535.0;
case Uint8Array:
return value / 255.0;
case Int32Array:
return Math.max( value / 2147483647.0, - 1.0 );
case Int16Array:
return Math.max( value / 32767.0, - 1.0 );
case Int8Array:
return Math.max( value / 127.0, - 1.0 );
default:
throw new Error( 'Invalid component type.' );
}
}
function normalize$1( value, array ) {
switch ( array.constructor ) {
case Float32Array:
return value;
case Uint32Array:
return Math.round( value * 4294967295.0 );
case Uint16Array:
return Math.round( value * 65535.0 );
case Uint8Array:
return Math.round( value * 255.0 );
case Int32Array:
return Math.round( value * 2147483647.0 );
case Int16Array:
return Math.round( value * 32767.0 );
case Int8Array:
return Math.round( value * 127.0 );
default:
throw new Error( 'Invalid component type.' );
}
}
const MathUtils = {
DEG2RAD: DEG2RAD,
RAD2DEG: RAD2DEG,
generateUUID: generateUUID,
clamp: clamp$1,
euclideanModulo: euclideanModulo,
mapLinear: mapLinear,
inverseLerp: inverseLerp,
lerp: lerp,
damp: damp,
pingpong: pingpong,
smoothstep: smoothstep$1,
smootherstep: smootherstep,
randInt: randInt,
randFloat: randFloat,
randFloatSpread: randFloatSpread,
seededRandom: seededRandom,
degToRad: degToRad,
radToDeg: radToDeg,
isPowerOfTwo: isPowerOfTwo,
ceilPowerOfTwo: ceilPowerOfTwo,
floorPowerOfTwo: floorPowerOfTwo,
setQuaternionFromProperEuler: setQuaternionFromProperEuler,
normalize: normalize$1,
denormalize: denormalize
};
class Vector2 {
constructor( x = 0, y = 0 ) {
Vector2.prototype.isVector2 = true;
this.x = x;
this.y = y;
}
get width() {
return this.x;
}
set width( value ) {
this.x = value;
}
get height() {
return this.y;
}
set height( value ) {
this.y = value;
}
set( x, y ) {
this.x = x;
this.y = y;
return this;
}
setScalar( scalar ) {
this.x = scalar;
this.y = scalar;
return this;
}
setX( x ) {
this.x = x;
return this;
}
setY( y ) {
this.y = y;
return this;
}
setComponent( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
}
getComponent( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
default: throw new Error( 'index is out of range: ' + index );
}
}
clone() {
return new this.constructor( this.x, this.y );
}
copy( v ) {
this.x = v.x;
this.y = v.y;
return this;
}
add( v ) {
this.x += v.x;
this.y += v.y;
return this;
}
addScalar( s ) {
this.x += s;
this.y += s;
return this;
}
addVectors( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
return this;
}
addScaledVector( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
return this;
}
sub( v ) {
this.x -= v.x;
this.y -= v.y;
return this;
}
subScalar( s ) {
this.x -= s;
this.y -= s;
return this;
}
subVectors( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
return this;
}
multiply( v ) {
this.x *= v.x;
this.y *= v.y;
return this;
}
multiplyScalar( scalar ) {
this.x *= scalar;
this.y *= scalar;
return this;
}
divide( v ) {
this.x /= v.x;
this.y /= v.y;
return this;
}
divideScalar( scalar ) {
return this.multiplyScalar( 1 / scalar );
}
applyMatrix3( m ) {
const x = this.x, y = this.y;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ];
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ];
return this;
}
min( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
return this;
}
max( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
return this;
}
clamp( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
return this;
}
clampScalar( minVal, maxVal ) {
this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
return this;
}
clampLength( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
}
floor() {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
return this;
}
ceil() {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
return this;
}
round() {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
return this;
}
roundToZero() {
this.x = Math.trunc( this.x );
this.y = Math.trunc( this.y );
return this;
}
negate() {
this.x = - this.x;
this.y = - this.y;
return this;
}
dot( v ) {
return this.x * v.x + this.y * v.y;
}
cross( v ) {
return this.x * v.y - this.y * v.x;
}
lengthSq() {
return this.x * this.x + this.y * this.y;
}
length() {
return Math.sqrt( this.x * this.x + this.y * this.y );
}
manhattanLength() {
return Math.abs( this.x ) + Math.abs( this.y );
}
normalize() {
return this.divideScalar( this.length() || 1 );
}
angle() {
// computes the angle in radians with respect to the positive x-axis
const angle = Math.atan2( - this.y, - this.x ) + Math.PI;
return angle;
}
angleTo( v ) {
const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() );
if ( denominator === 0 ) return Math.PI / 2;
const theta = this.dot( v ) / denominator;
// clamp, to handle numerical problems
return Math.acos( clamp$1( theta, - 1, 1 ) );
}
distanceTo( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
}
distanceToSquared( v ) {
const dx = this.x - v.x, dy = this.y - v.y;
return dx * dx + dy * dy;
}
manhattanDistanceTo( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );
}
setLength( length ) {
return this.normalize().multiplyScalar( length );
}
lerp( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
return this;
}
lerpVectors( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
return this;
}
equals( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) );
}
fromArray( array, offset = 0 ) {
this.x = array[ offset ];
this.y = array[ offset + 1 ];
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
return array;
}
fromBufferAttribute( attribute, index ) {
this.x = attribute.getX( index );
this.y = attribute.getY( index );
return this;
}
rotateAround( center, angle ) {
const c = Math.cos( angle ), s = Math.sin( angle );
const x = this.x - center.x;
const y = this.y - center.y;
this.x = x * c - y * s + center.x;
this.y = x * s + y * c + center.y;
return this;
}
random() {
this.x = Math.random();
this.y = Math.random();
return this;
}
*[ Symbol.iterator ]() {
yield this.x;
yield this.y;
}
}
class Matrix3 {
constructor( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {
Matrix3.prototype.isMatrix3 = true;
this.elements = [
1, 0, 0,
0, 1, 0,
0, 0, 1
];
if ( n11 !== undefined ) {
this.set( n11, n12, n13, n21, n22, n23, n31, n32, n33 );
}
}
set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {
const te = this.elements;
te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;
return this;
}
identity() {
this.set(
1, 0, 0,
0, 1, 0,
0, 0, 1
);
return this;
}
copy( m ) {
const te = this.elements;
const me = m.elements;
te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ];
te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ];
te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];
return this;
}
extractBasis( xAxis, yAxis, zAxis ) {
xAxis.setFromMatrix3Column( this, 0 );
yAxis.setFromMatrix3Column( this, 1 );
zAxis.setFromMatrix3Column( this, 2 );
return this;
}
setFromMatrix4( m ) {
const me = m.elements;
this.set(
me[ 0 ], me[ 4 ], me[ 8 ],
me[ 1 ], me[ 5 ], me[ 9 ],
me[ 2 ], me[ 6 ], me[ 10 ]
);
return this;
}
multiply( m ) {
return this.multiplyMatrices( this, m );
}
premultiply( m ) {
return this.multiplyMatrices( m, this );
}
multiplyMatrices( a, b ) {
const ae = a.elements;
const be = b.elements;
const te = this.elements;
const a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ];
const a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ];
const a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];
const b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ];
const b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ];
const b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31;
te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32;
te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31;
te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32;
te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31;
te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32;
te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;
return this;
}
multiplyScalar( s ) {
const te = this.elements;
te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;
return this;
}
determinant() {
const te = this.elements;
const a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];
return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
}
invert() {
const te = this.elements,
n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ],
n12 = te[ 3 ], n22 = te[ 4 ], n32 = te[ 5 ],
n13 = te[ 6 ], n23 = te[ 7 ], n33 = te[ 8 ],
t11 = n33 * n22 - n32 * n23,
t12 = n32 * n13 - n33 * n12,
t13 = n23 * n12 - n22 * n13,
det = n11 * t11 + n21 * t12 + n31 * t13;
if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 );
const detInv = 1 / det;
te[ 0 ] = t11 * detInv;
te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv;
te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;
te[ 3 ] = t12 * detInv;
te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv;
te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;
te[ 6 ] = t13 * detInv;
te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv;
te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;
return this;
}
transpose() {
let tmp;
const m = this.elements;
tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;
return this;
}
getNormalMatrix( matrix4 ) {
return this.setFromMatrix4( matrix4 ).invert().transpose();
}
transposeIntoArray( r ) {
const m = this.elements;
r[ 0 ] = m[ 0 ];
r[ 1 ] = m[ 3 ];
r[ 2 ] = m[ 6 ];
r[ 3 ] = m[ 1 ];
r[ 4 ] = m[ 4 ];
r[ 5 ] = m[ 7 ];
r[ 6 ] = m[ 2 ];
r[ 7 ] = m[ 5 ];
r[ 8 ] = m[ 8 ];
return this;
}
setUvTransform( tx, ty, sx, sy, rotation, cx, cy ) {
const c = Math.cos( rotation );
const s = Math.sin( rotation );
this.set(
sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx,
- sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty,
0, 0, 1
);
return this;
}
//
scale( sx, sy ) {
this.premultiply( _m3.makeScale( sx, sy ) );
return this;
}
rotate( theta ) {
this.premultiply( _m3.makeRotation( - theta ) );
return this;
}
translate( tx, ty ) {
this.premultiply( _m3.makeTranslation( tx, ty ) );
return this;
}
// for 2D Transforms
makeTranslation( x, y ) {
if ( x.isVector2 ) {
this.set(
1, 0, x.x,
0, 1, x.y,
0, 0, 1
);
} else {
this.set(
1, 0, x,
0, 1, y,
0, 0, 1
);
}
return this;
}
makeRotation( theta ) {
// counterclockwise
const c = Math.cos( theta );
const s = Math.sin( theta );
this.set(
c, - s, 0,
s, c, 0,
0, 0, 1
);
return this;
}
makeScale( x, y ) {
this.set(
x, 0, 0,
0, y, 0,
0, 0, 1
);
return this;
}
//
equals( matrix ) {
const te = this.elements;
const me = matrix.elements;
for ( let i = 0; i < 9; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
}
fromArray( array, offset = 0 ) {
for ( let i = 0; i < 9; i ++ ) {
this.elements[ i ] = array[ i + offset ];
}
return this;
}
toArray( array = [], offset = 0 ) {
const te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
return array;
}
clone() {
return new this.constructor().fromArray( this.elements );
}
}
const _m3 = /*@__PURE__*/ new Matrix3();
function arrayNeedsUint32$1( array ) {
// assumes larger values usually on last
for ( let i = array.length - 1; i >= 0; -- i ) {
if ( array[ i ] >= 65535 ) return true; // account for PRIMITIVE_RESTART_FIXED_INDEX, #24565
}
return false;
}
const TYPED_ARRAYS = {
Int8Array: Int8Array,
Uint8Array: Uint8Array,
Uint8ClampedArray: Uint8ClampedArray,
Int16Array: Int16Array,
Uint16Array: Uint16Array,
Int32Array: Int32Array,
Uint32Array: Uint32Array,
Float32Array: Float32Array,
Float64Array: Float64Array
};
function getTypedArray( type, buffer ) {
return new TYPED_ARRAYS[ type ]( buffer );
}
function createElementNS( name ) {
return document.createElementNS( 'http://www.w3.org/1999/xhtml', name );
}
function createCanvasElement() {
const canvas = createElementNS( 'canvas' );
canvas.style.display = 'block';
return canvas;
}
const _cache$1 = {};
function warnOnce( message ) {
if ( message in _cache$1 ) return;
_cache$1[ message ] = true;
console.warn( message );
}
/**
* Matrices converting P3 <-> Rec. 709 primaries, without gamut mapping
* or clipping. Based on W3C specifications for sRGB and Display P3,
* and ICC specifications for the D50 connection space. Values in/out
* are _linear_ sRGB and _linear_ Display P3.
*
* Note that both sRGB and Display P3 use the sRGB transfer functions.
*
* Reference:
* - http://www.russellcottrell.com/photo/matrixCalculator.htm
*/
const LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 = /*@__PURE__*/ new Matrix3().set(
0.8224621, 0.177538, 0.0,
0.0331941, 0.9668058, 0.0,
0.0170827, 0.0723974, 0.9105199,
);
const LINEAR_DISPLAY_P3_TO_LINEAR_SRGB = /*@__PURE__*/ new Matrix3().set(
1.2249401, - 0.2249404, 0.0,
- 0.0420569, 1.0420571, 0.0,
- 0.0196376, - 0.0786361, 1.0982735
);
/**
* Defines supported color spaces by transfer function and primaries,
* and provides conversions to/from the Linear-sRGB reference space.
*/
const COLOR_SPACES = {
[ LinearSRGBColorSpace ]: {
transfer: LinearTransfer,
primaries: Rec709Primaries,
luminanceCoefficients: [ 0.2126, 0.7152, 0.0722 ],
toReference: ( color ) => color,
fromReference: ( color ) => color,
},
[ SRGBColorSpace ]: {
transfer: SRGBTransfer,
primaries: Rec709Primaries,
luminanceCoefficients: [ 0.2126, 0.7152, 0.0722 ],
toReference: ( color ) => color.convertSRGBToLinear(),
fromReference: ( color ) => color.convertLinearToSRGB(),
},
[ LinearDisplayP3ColorSpace ]: {
transfer: LinearTransfer,
primaries: P3Primaries,
luminanceCoefficients: [ 0.2289, 0.6917, 0.0793 ],
toReference: ( color ) => color.applyMatrix3( LINEAR_DISPLAY_P3_TO_LINEAR_SRGB ),
fromReference: ( color ) => color.applyMatrix3( LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 ),
},
[ DisplayP3ColorSpace ]: {
transfer: SRGBTransfer,
primaries: P3Primaries,
luminanceCoefficients: [ 0.2289, 0.6917, 0.0793 ],
toReference: ( color ) => color.convertSRGBToLinear().applyMatrix3( LINEAR_DISPLAY_P3_TO_LINEAR_SRGB ),
fromReference: ( color ) => color.applyMatrix3( LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 ).convertLinearToSRGB(),
},
};
const SUPPORTED_WORKING_COLOR_SPACES = new Set( [ LinearSRGBColorSpace, LinearDisplayP3ColorSpace ] );
const ColorManagement = {
enabled: true,
_workingColorSpace: LinearSRGBColorSpace,
get workingColorSpace() {
return this._workingColorSpace;
},
set workingColorSpace( colorSpace ) {
if ( ! SUPPORTED_WORKING_COLOR_SPACES.has( colorSpace ) ) {
throw new Error( `Unsupported working color space, "${ colorSpace }".` );
}
this._workingColorSpace = colorSpace;
},
convert: function ( color, sourceColorSpace, targetColorSpace ) {
if ( this.enabled === false || sourceColorSpace === targetColorSpace || ! sourceColorSpace || ! targetColorSpace ) {
return color;
}
const sourceToReference = COLOR_SPACES[ sourceColorSpace ].toReference;
const targetFromReference = COLOR_SPACES[ targetColorSpace ].fromReference;
return targetFromReference( sourceToReference( color ) );
},
fromWorkingColorSpace: function ( color, targetColorSpace ) {
return this.convert( color, this._workingColorSpace, targetColorSpace );
},
toWorkingColorSpace: function ( color, sourceColorSpace ) {
return this.convert( color, sourceColorSpace, this._workingColorSpace );
},
getPrimaries: function ( colorSpace ) {
return COLOR_SPACES[ colorSpace ].primaries;
},
getTransfer: function ( colorSpace ) {
if ( colorSpace === NoColorSpace ) return LinearTransfer;
return COLOR_SPACES[ colorSpace ].transfer;
},
getLuminanceCoefficients: function ( target, colorSpace = this._workingColorSpace ) {
return target.fromArray( COLOR_SPACES[ colorSpace ].luminanceCoefficients );
},
};
function SRGBToLinear( c ) {
return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 );
}
function LinearToSRGB( c ) {
return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055;
}
let _canvas;
class ImageUtils {
static getDataURL( image ) {
if ( /^data:/i.test( image.src ) ) {
return image.src;
}
if ( typeof HTMLCanvasElement === 'undefined' ) {
return image.src;
}
let canvas;
if ( image instanceof HTMLCanvasElement ) {
canvas = image;
} else {
if ( _canvas === undefined ) _canvas = createElementNS( 'canvas' );
_canvas.width = image.width;
_canvas.height = image.height;
const context = _canvas.getContext( '2d' );
if ( image instanceof ImageData ) {
context.putImageData( image, 0, 0 );
} else {
context.drawImage( image, 0, 0, image.width, image.height );
}
canvas = _canvas;
}
if ( canvas.width > 2048 || canvas.height > 2048 ) {
console.warn( 'THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image );
return canvas.toDataURL( 'image/jpeg', 0.6 );
} else {
return canvas.toDataURL( 'image/png' );
}
}
static sRGBToLinear( image ) {
if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) ||
( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) ||
( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) {
const canvas = createElementNS( 'canvas' );
canvas.width = image.width;
canvas.height = image.height;
const context = canvas.getContext( '2d' );
context.drawImage( image, 0, 0, image.width, image.height );
const imageData = context.getImageData( 0, 0, image.width, image.height );
const data = imageData.data;
for ( let i = 0; i < data.length; i ++ ) {
data[ i ] = SRGBToLinear( data[ i ] / 255 ) * 255;
}
context.putImageData( imageData, 0, 0 );
return canvas;
} else if ( image.data ) {
const data = image.data.slice( 0 );
for ( let i = 0; i < data.length; i ++ ) {
if ( data instanceof Uint8Array || data instanceof Uint8ClampedArray ) {
data[ i ] = Math.floor( SRGBToLinear( data[ i ] / 255 ) * 255 );
} else {
// assuming float
data[ i ] = SRGBToLinear( data[ i ] );
}
}
return {
data: data,
width: image.width,
height: image.height
};
} else {
console.warn( 'THREE.ImageUtils.sRGBToLinear(): Unsupported image type. No color space conversion applied.' );
return image;
}
}
}
let _sourceId = 0;
class Source {
constructor( data = null ) {
this.isSource = true;
Object.defineProperty( this, 'id', { value: _sourceId ++ } );
this.uuid = generateUUID();
this.data = data;
this.dataReady = true;
this.version = 0;
}
set needsUpdate( value ) {
if ( value === true ) this.version ++;
}
toJSON( meta ) {
const isRootObject = ( meta === undefined || typeof meta === 'string' );
if ( ! isRootObject && meta.images[ this.uuid ] !== undefined ) {
return meta.images[ this.uuid ];
}
const output = {
uuid: this.uuid,
url: ''
};
const data = this.data;
if ( data !== null ) {
let url;
if ( Array.isArray( data ) ) {
// cube texture
url = [];
for ( let i = 0, l = data.length; i < l; i ++ ) {
if ( data[ i ].isDataTexture ) {
url.push( serializeImage( data[ i ].image ) );
} else {
url.push( serializeImage( data[ i ] ) );
}
}
} else {
// texture
url = serializeImage( data );
}
output.url = url;
}
if ( ! isRootObject ) {
meta.images[ this.uuid ] = output;
}
return output;
}
}
function serializeImage( image ) {
if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) ||
( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) ||
( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) {
// default images
return ImageUtils.getDataURL( image );
} else {
if ( image.data ) {
// images of DataTexture
return {
data: Array.from( image.data ),
width: image.width,
height: image.height,
type: image.data.constructor.name
};
} else {
console.warn( 'THREE.Texture: Unable to serialize Texture.' );
return {};
}
}
}
let _textureId = 0;
class Texture extends EventDispatcher {
constructor( image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = Texture.DEFAULT_ANISOTROPY, colorSpace = NoColorSpace ) {
super();
this.isTexture = true;
Object.defineProperty( this, 'id', { value: _textureId ++ } );
this.uuid = generateUUID();
this.name = '';
this.source = new Source( image );
this.mipmaps = [];
this.mapping = mapping;
this.channel = 0;
this.wrapS = wrapS;
this.wrapT = wrapT;
this.magFilter = magFilter;
this.minFilter = minFilter;
this.anisotropy = anisotropy;
this.format = format;
this.internalFormat = null;
this.type = type;
this.offset = new Vector2( 0, 0 );
this.repeat = new Vector2( 1, 1 );
this.center = new Vector2( 0, 0 );
this.rotation = 0;
this.matrixAutoUpdate = true;
this.matrix = new Matrix3();
this.generateMipmaps = true;
this.premultiplyAlpha = false;
this.flipY = true;
this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
this.colorSpace = colorSpace;
this.userData = {};
this.version = 0;
this.onUpdate = null;
this.isRenderTargetTexture = false; // indicates whether a texture belongs to a render target or not
this.pmremVersion = 0; // indicates whether this texture should be processed by PMREMGenerator or not (only relevant for render target textures)
}
get image() {
return this.source.data;
}
set image( value = null ) {
this.source.data = value;
}
updateMatrix() {
this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y );
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
this.name = source.name;
this.source = source.source;
this.mipmaps = source.mipmaps.slice( 0 );
this.mapping = source.mapping;
this.channel = source.channel;
this.wrapS = source.wrapS;
this.wrapT = source.wrapT;
this.magFilter = source.magFilter;
this.minFilter = source.minFilter;
this.anisotropy = source.anisotropy;
this.format = source.format;
this.internalFormat = source.internalFormat;
this.type = source.type;
this.offset.copy( source.offset );
this.repeat.copy( source.repeat );
this.center.copy( source.center );
this.rotation = source.rotation;
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrix.copy( source.matrix );
this.generateMipmaps = source.generateMipmaps;
this.premultiplyAlpha = source.premultiplyAlpha;
this.flipY = source.flipY;
this.unpackAlignment = source.unpackAlignment;
this.colorSpace = source.colorSpace;
this.userData = JSON.parse( JSON.stringify( source.userData ) );
this.needsUpdate = true;
return this;
}
toJSON( meta ) {
const isRootObject = ( meta === undefined || typeof meta === 'string' );
if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) {
return meta.textures[ this.uuid ];
}
const output = {
metadata: {
version: 4.6,
type: 'Texture',
generator: 'Texture.toJSON'
},
uuid: this.uuid,
name: this.name,
image: this.source.toJSON( meta ).uuid,
mapping: this.mapping,
channel: this.channel,
repeat: [ this.repeat.x, this.repeat.y ],
offset: [ this.offset.x, this.offset.y ],
center: [ this.center.x, this.center.y ],
rotation: this.rotation,
wrap: [ this.wrapS, this.wrapT ],
format: this.format,
internalFormat: this.internalFormat,
type: this.type,
colorSpace: this.colorSpace,
minFilter: this.minFilter,
magFilter: this.magFilter,
anisotropy: this.anisotropy,
flipY: this.flipY,
generateMipmaps: this.generateMipmaps,
premultiplyAlpha: this.premultiplyAlpha,
unpackAlignment: this.unpackAlignment
};
if ( Object.keys( this.userData ).length > 0 ) output.userData = this.userData;
if ( ! isRootObject ) {
meta.textures[ this.uuid ] = output;
}
return output;
}
dispose() {
this.dispatchEvent( { type: 'dispose' } );
}
transformUv( uv ) {
if ( this.mapping !== UVMapping ) return uv;
uv.applyMatrix3( this.matrix );
if ( uv.x < 0 || uv.x > 1 ) {
switch ( this.wrapS ) {
case RepeatWrapping:
uv.x = uv.x - Math.floor( uv.x );
break;
case ClampToEdgeWrapping:
uv.x = uv.x < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {
uv.x = Math.ceil( uv.x ) - uv.x;
} else {
uv.x = uv.x - Math.floor( uv.x );
}
break;
}
}
if ( uv.y < 0 || uv.y > 1 ) {
switch ( this.wrapT ) {
case RepeatWrapping:
uv.y = uv.y - Math.floor( uv.y );
break;
case ClampToEdgeWrapping:
uv.y = uv.y < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {
uv.y = Math.ceil( uv.y ) - uv.y;
} else {
uv.y = uv.y - Math.floor( uv.y );
}
break;
}
}
if ( this.flipY ) {
uv.y = 1 - uv.y;
}
return uv;
}
set needsUpdate( value ) {
if ( value === true ) {
this.version ++;
this.source.needsUpdate = true;
}
}
set needsPMREMUpdate( value ) {
if ( value === true ) {
this.pmremVersion ++;
}
}
}
Texture.DEFAULT_IMAGE = null;
Texture.DEFAULT_MAPPING = UVMapping;
Texture.DEFAULT_ANISOTROPY = 1;
class Vector4 {
constructor( x = 0, y = 0, z = 0, w = 1 ) {
Vector4.prototype.isVector4 = true;
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
get width() {
return this.z;
}
set width( value ) {
this.z = value;
}
get height() {
return this.w;
}
set height( value ) {
this.w = value;
}
set( x, y, z, w ) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
}
setScalar( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
this.w = scalar;
return this;
}
setX( x ) {
this.x = x;
return this;
}
setY( y ) {
this.y = y;
return this;
}
setZ( z ) {
this.z = z;
return this;
}
setW( w ) {
this.w = w;
return this;
}
setComponent( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
case 3: this.w = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
}
getComponent( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
case 3: return this.w;
default: throw new Error( 'index is out of range: ' + index );
}
}
clone() {
return new this.constructor( this.x, this.y, this.z, this.w );
}
copy( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
this.w = ( v.w !== undefined ) ? v.w : 1;
return this;
}
add( v ) {
this.x += v.x;
this.y += v.y;
this.z += v.z;
this.w += v.w;
return this;
}
addScalar( s ) {
this.x += s;
this.y += s;
this.z += s;
this.w += s;
return this;
}
addVectors( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
this.w = a.w + b.w;
return this;
}
addScaledVector( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
this.w += v.w * s;
return this;
}
sub( v ) {
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
this.w -= v.w;
return this;
}
subScalar( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
this.w -= s;
return this;
}
subVectors( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
this.w = a.w - b.w;
return this;
}
multiply( v ) {
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
this.w *= v.w;
return this;
}
multiplyScalar( scalar ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
this.w *= scalar;
return this;
}
applyMatrix4( m ) {
const x = this.x, y = this.y, z = this.z, w = this.w;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;
return this;
}
divideScalar( scalar ) {
return this.multiplyScalar( 1 / scalar );
}
setAxisAngleFromQuaternion( q ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
// q is assumed to be normalized
this.w = 2 * Math.acos( q.w );
const s = Math.sqrt( 1 - q.w * q.w );
if ( s < 0.0001 ) {
this.x = 1;
this.y = 0;
this.z = 0;
} else {
this.x = q.x / s;
this.y = q.y / s;
this.z = q.z / s;
}
return this;
}
setAxisAngleFromRotationMatrix( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
let angle, x, y, z; // variables for result
const epsilon = 0.01, // margin to allow for rounding errors
epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees
te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
( Math.abs( m13 - m31 ) < epsilon ) &&
( Math.abs( m23 - m32 ) < epsilon ) ) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonal and zero in other terms
if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
( Math.abs( m13 + m31 ) < epsilon2 ) &&
( Math.abs( m23 + m32 ) < epsilon2 ) &&
( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
// this singularity is identity matrix so angle = 0
this.set( 1, 0, 0, 0 );
return this; // zero angle, arbitrary axis
}
// otherwise this singularity is angle = 180
angle = Math.PI;
const xx = ( m11 + 1 ) / 2;
const yy = ( m22 + 1 ) / 2;
const zz = ( m33 + 1 ) / 2;
const xy = ( m12 + m21 ) / 4;
const xz = ( m13 + m31 ) / 4;
const yz = ( m23 + m32 ) / 4;
if ( ( xx > yy ) && ( xx > zz ) ) {
// m11 is the largest diagonal term
if ( xx < epsilon ) {
x = 0;
y = 0.707106781;
z = 0.707106781;
} else {
x = Math.sqrt( xx );
y = xy / x;
z = xz / x;
}
} else if ( yy > zz ) {
// m22 is the largest diagonal term
if ( yy < epsilon ) {
x = 0.707106781;
y = 0;
z = 0.707106781;
} else {
y = Math.sqrt( yy );
x = xy / y;
z = yz / y;
}
} else {
// m33 is the largest diagonal term so base result on this
if ( zz < epsilon ) {
x = 0.707106781;
y = 0.707106781;
z = 0;
} else {
z = Math.sqrt( zz );
x = xz / z;
y = yz / z;
}
}
this.set( x, y, z, angle );
return this; // return 180 deg rotation
}
// as we have reached here there are no singularities so we can handle normally
let s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
( m13 - m31 ) * ( m13 - m31 ) +
( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
if ( Math.abs( s ) < 0.001 ) s = 1;
// prevent divide by zero, should not happen if matrix is orthogonal and should be
// caught by singularity test above, but I've left it in just in case
this.x = ( m32 - m23 ) / s;
this.y = ( m13 - m31 ) / s;
this.z = ( m21 - m12 ) / s;
this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
return this;
}
setFromMatrixPosition( m ) {
const e = m.elements;
this.x = e[ 12 ];
this.y = e[ 13 ];
this.z = e[ 14 ];
this.w = e[ 15 ];
return this;
}
min( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
this.w = Math.min( this.w, v.w );
return this;
}
max( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
this.w = Math.max( this.w, v.w );
return this;
}
clamp( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
this.w = Math.max( min.w, Math.min( max.w, this.w ) );
return this;
}
clampScalar( minVal, maxVal ) {
this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
this.w = Math.max( minVal, Math.min( maxVal, this.w ) );
return this;
}
clampLength( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
}
floor() {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
this.w = Math.floor( this.w );
return this;
}
ceil() {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
this.w = Math.ceil( this.w );
return this;
}
round() {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
this.w = Math.round( this.w );
return this;
}
roundToZero() {
this.x = Math.trunc( this.x );
this.y = Math.trunc( this.y );
this.z = Math.trunc( this.z );
this.w = Math.trunc( this.w );
return this;
}
negate() {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
this.w = - this.w;
return this;
}
dot( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
}
lengthSq() {
return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
}
length() {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
}
manhattanLength() {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
}
normalize() {
return this.divideScalar( this.length() || 1 );
}
setLength( length ) {
return this.normalize().multiplyScalar( length );
}
lerp( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
this.w += ( v.w - this.w ) * alpha;
return this;
}
lerpVectors( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
this.z = v1.z + ( v2.z - v1.z ) * alpha;
this.w = v1.w + ( v2.w - v1.w ) * alpha;
return this;
}
equals( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );
}
fromArray( array, offset = 0 ) {
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
this.w = array[ offset + 3 ];
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
array[ offset + 3 ] = this.w;
return array;
}
fromBufferAttribute( attribute, index ) {
this.x = attribute.getX( index );
this.y = attribute.getY( index );
this.z = attribute.getZ( index );
this.w = attribute.getW( index );
return this;
}
random() {
this.x = Math.random();
this.y = Math.random();
this.z = Math.random();
this.w = Math.random();
return this;
}
*[ Symbol.iterator ]() {
yield this.x;
yield this.y;
yield this.z;
yield this.w;
}
}
/*
In options, we can specify:
* Texture parameters for an auto-generated target texture
* depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
*/
class RenderTarget extends EventDispatcher {
constructor( width = 1, height = 1, options = {} ) {
super();
this.isRenderTarget = true;
this.width = width;
this.height = height;
this.depth = 1;
this.scissor = new Vector4( 0, 0, width, height );
this.scissorTest = false;
this.viewport = new Vector4( 0, 0, width, height );
const image = { width: width, height: height, depth: 1 };
options = Object.assign( {
generateMipmaps: false,
internalFormat: null,
minFilter: LinearFilter,
depthBuffer: true,
stencilBuffer: false,
resolveDepthBuffer: true,
resolveStencilBuffer: true,
depthTexture: null,
samples: 0,
count: 1
}, options );
const texture = new Texture( image, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.colorSpace );
texture.flipY = false;
texture.generateMipmaps = options.generateMipmaps;
texture.internalFormat = options.internalFormat;
this.textures = [];
const count = options.count;
for ( let i = 0; i < count; i ++ ) {
this.textures[ i ] = texture.clone();
this.textures[ i ].isRenderTargetTexture = true;
}
this.depthBuffer = options.depthBuffer;
this.stencilBuffer = options.stencilBuffer;
this.resolveDepthBuffer = options.resolveDepthBuffer;
this.resolveStencilBuffer = options.resolveStencilBuffer;
this.depthTexture = options.depthTexture;
this.samples = options.samples;
}
get texture() {
return this.textures[ 0 ];
}
set texture( value ) {
this.textures[ 0 ] = value;
}
setSize( width, height, depth = 1 ) {
if ( this.width !== width || this.height !== height || this.depth !== depth ) {
this.width = width;
this.height = height;
this.depth = depth;
for ( let i = 0, il = this.textures.length; i < il; i ++ ) {
this.textures[ i ].image.width = width;
this.textures[ i ].image.height = height;
this.textures[ i ].image.depth = depth;
}
this.dispose();
}
this.viewport.set( 0, 0, width, height );
this.scissor.set( 0, 0, width, height );
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
this.width = source.width;
this.height = source.height;
this.depth = source.depth;
this.scissor.copy( source.scissor );
this.scissorTest = source.scissorTest;
this.viewport.copy( source.viewport );
this.textures.length = 0;
for ( let i = 0, il = source.textures.length; i < il; i ++ ) {
this.textures[ i ] = source.textures[ i ].clone();
this.textures[ i ].isRenderTargetTexture = true;
}
// ensure image object is not shared, see #20328
const image = Object.assign( {}, source.texture.image );
this.texture.source = new Source( image );
this.depthBuffer = source.depthBuffer;
this.stencilBuffer = source.stencilBuffer;
this.resolveDepthBuffer = source.resolveDepthBuffer;
this.resolveStencilBuffer = source.resolveStencilBuffer;
if ( source.depthTexture !== null ) this.depthTexture = source.depthTexture.clone();
this.samples = source.samples;
return this;
}
dispose() {
this.dispatchEvent( { type: 'dispose' } );
}
}
class WebGLRenderTarget extends RenderTarget {
constructor( width = 1, height = 1, options = {} ) {
super( width, height, options );
this.isWebGLRenderTarget = true;
}
}
class DataArrayTexture extends Texture {
constructor( data = null, width = 1, height = 1, depth = 1 ) {
super( null );
this.isDataArrayTexture = true;
this.image = { data, width, height, depth };
this.magFilter = NearestFilter;
this.minFilter = NearestFilter;
this.wrapR = ClampToEdgeWrapping;
this.generateMipmaps = false;
this.flipY = false;
this.unpackAlignment = 1;
this.layerUpdates = new Set();
}
addLayerUpdate( layerIndex ) {
this.layerUpdates.add( layerIndex );
}
clearLayerUpdates() {
this.layerUpdates.clear();
}
}
class WebGLArrayRenderTarget extends WebGLRenderTarget {
constructor( width = 1, height = 1, depth = 1, options = {} ) {
super( width, height, options );
this.isWebGLArrayRenderTarget = true;
this.depth = depth;
this.texture = new DataArrayTexture( null, width, height, depth );
this.texture.isRenderTargetTexture = true;
}
}
class Data3DTexture extends Texture {
constructor( data = null, width = 1, height = 1, depth = 1 ) {
// We're going to add .setXXX() methods for setting properties later.
// Users can still set in DataTexture3D directly.
//
// const texture = new THREE.DataTexture3D( data, width, height, depth );
// texture.anisotropy = 16;
//
// See #14839
super( null );
this.isData3DTexture = true;
this.image = { data, width, height, depth };
this.magFilter = NearestFilter;
this.minFilter = NearestFilter;
this.wrapR = ClampToEdgeWrapping;
this.generateMipmaps = false;
this.flipY = false;
this.unpackAlignment = 1;
}
}
class WebGL3DRenderTarget extends WebGLRenderTarget {
constructor( width = 1, height = 1, depth = 1, options = {} ) {
super( width, height, options );
this.isWebGL3DRenderTarget = true;
this.depth = depth;
this.texture = new Data3DTexture( null, width, height, depth );
this.texture.isRenderTargetTexture = true;
}
}
class Quaternion {
constructor( x = 0, y = 0, z = 0, w = 1 ) {
this.isQuaternion = true;
this._x = x;
this._y = y;
this._z = z;
this._w = w;
}
static slerpFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {
// fuzz-free, array-based Quaternion SLERP operation
let x0 = src0[ srcOffset0 + 0 ],
y0 = src0[ srcOffset0 + 1 ],
z0 = src0[ srcOffset0 + 2 ],
w0 = src0[ srcOffset0 + 3 ];
const x1 = src1[ srcOffset1 + 0 ],
y1 = src1[ srcOffset1 + 1 ],
z1 = src1[ srcOffset1 + 2 ],
w1 = src1[ srcOffset1 + 3 ];
if ( t === 0 ) {
dst[ dstOffset + 0 ] = x0;
dst[ dstOffset + 1 ] = y0;
dst[ dstOffset + 2 ] = z0;
dst[ dstOffset + 3 ] = w0;
return;
}
if ( t === 1 ) {
dst[ dstOffset + 0 ] = x1;
dst[ dstOffset + 1 ] = y1;
dst[ dstOffset + 2 ] = z1;
dst[ dstOffset + 3 ] = w1;
return;
}
if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {
let s = 1 - t;
const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
dir = ( cos >= 0 ? 1 : - 1 ),
sqrSin = 1 - cos * cos;
// Skip the Slerp for tiny steps to avoid numeric problems:
if ( sqrSin > Number.EPSILON ) {
const sin = Math.sqrt( sqrSin ),
len = Math.atan2( sin, cos * dir );
s = Math.sin( s * len ) / sin;
t = Math.sin( t * len ) / sin;
}
const tDir = t * dir;
x0 = x0 * s + x1 * tDir;
y0 = y0 * s + y1 * tDir;
z0 = z0 * s + z1 * tDir;
w0 = w0 * s + w1 * tDir;
// Normalize in case we just did a lerp:
if ( s === 1 - t ) {
const f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );
x0 *= f;
y0 *= f;
z0 *= f;
w0 *= f;
}
}
dst[ dstOffset ] = x0;
dst[ dstOffset + 1 ] = y0;
dst[ dstOffset + 2 ] = z0;
dst[ dstOffset + 3 ] = w0;
}
static multiplyQuaternionsFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) {
const x0 = src0[ srcOffset0 ];
const y0 = src0[ srcOffset0 + 1 ];
const z0 = src0[ srcOffset0 + 2 ];
const w0 = src0[ srcOffset0 + 3 ];
const x1 = src1[ srcOffset1 ];
const y1 = src1[ srcOffset1 + 1 ];
const z1 = src1[ srcOffset1 + 2 ];
const w1 = src1[ srcOffset1 + 3 ];
dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
return dst;
}
get x() {
return this._x;
}
set x( value ) {
this._x = value;
this._onChangeCallback();
}
get y() {
return this._y;
}
set y( value ) {
this._y = value;
this._onChangeCallback();
}
get z() {
return this._z;
}
set z( value ) {
this._z = value;
this._onChangeCallback();
}
get w() {
return this._w;
}
set w( value ) {
this._w = value;
this._onChangeCallback();
}
set( x, y, z, w ) {
this._x = x;
this._y = y;
this._z = z;
this._w = w;
this._onChangeCallback();
return this;
}
clone() {
return new this.constructor( this._x, this._y, this._z, this._w );
}
copy( quaternion ) {
this._x = quaternion.x;
this._y = quaternion.y;
this._z = quaternion.z;
this._w = quaternion.w;
this._onChangeCallback();
return this;
}
setFromEuler( euler, update = true ) {
const x = euler._x, y = euler._y, z = euler._z, order = euler._order;
// http://www.mathworks.com/matlabcentral/fileexchange/
// 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
// content/SpinCalc.m
const cos = Math.cos;
const sin = Math.sin;
const c1 = cos( x / 2 );
const c2 = cos( y / 2 );
const c3 = cos( z / 2 );
const s1 = sin( x / 2 );
const s2 = sin( y / 2 );
const s3 = sin( z / 2 );
switch ( order ) {
case 'XYZ':
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case 'YXZ':
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
case 'ZXY':
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case 'ZYX':
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
case 'YZX':
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case 'XZY':
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
default:
console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order );
}
if ( update === true ) this._onChangeCallback();
return this;
}
setFromAxisAngle( axis, angle ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
// assumes axis is normalized
const halfAngle = angle / 2, s = Math.sin( halfAngle );
this._x = axis.x * s;
this._y = axis.y * s;
this._z = axis.z * s;
this._w = Math.cos( halfAngle );
this._onChangeCallback();
return this;
}
setFromRotationMatrix( m ) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
const te = m.elements,
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],
trace = m11 + m22 + m33;
if ( trace > 0 ) {
const s = 0.5 / Math.sqrt( trace + 1.0 );
this._w = 0.25 / s;
this._x = ( m32 - m23 ) * s;
this._y = ( m13 - m31 ) * s;
this._z = ( m21 - m12 ) * s;
} else if ( m11 > m22 && m11 > m33 ) {
const s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );
this._w = ( m32 - m23 ) / s;
this._x = 0.25 * s;
this._y = ( m12 + m21 ) / s;
this._z = ( m13 + m31 ) / s;
} else if ( m22 > m33 ) {
const s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );
this._w = ( m13 - m31 ) / s;
this._x = ( m12 + m21 ) / s;
this._y = 0.25 * s;
this._z = ( m23 + m32 ) / s;
} else {
const s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );
this._w = ( m21 - m12 ) / s;
this._x = ( m13 + m31 ) / s;
this._y = ( m23 + m32 ) / s;
this._z = 0.25 * s;
}
this._onChangeCallback();
return this;
}
setFromUnitVectors( vFrom, vTo ) {
// assumes direction vectors vFrom and vTo are normalized
let r = vFrom.dot( vTo ) + 1;
if ( r < Number.EPSILON ) {
// vFrom and vTo point in opposite directions
r = 0;
if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {
this._x = - vFrom.y;
this._y = vFrom.x;
this._z = 0;
this._w = r;
} else {
this._x = 0;
this._y = - vFrom.z;
this._z = vFrom.y;
this._w = r;
}
} else {
// crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
this._w = r;
}
return this.normalize();
}
angleTo( q ) {
return 2 * Math.acos( Math.abs( clamp$1( this.dot( q ), - 1, 1 ) ) );
}
rotateTowards( q, step ) {
const angle = this.angleTo( q );
if ( angle === 0 ) return this;
const t = Math.min( 1, step / angle );
this.slerp( q, t );
return this;
}
identity() {
return this.set( 0, 0, 0, 1 );
}
invert() {
// quaternion is assumed to have unit length
return this.conjugate();
}
conjugate() {
this._x *= - 1;
this._y *= - 1;
this._z *= - 1;
this._onChangeCallback();
return this;
}
dot( v ) {
return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
}
lengthSq() {
return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
}
length() {
return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );
}
normalize() {
let l = this.length();
if ( l === 0 ) {
this._x = 0;
this._y = 0;
this._z = 0;
this._w = 1;
} else {
l = 1 / l;
this._x = this._x * l;
this._y = this._y * l;
this._z = this._z * l;
this._w = this._w * l;
}
this._onChangeCallback();
return this;
}
multiply( q ) {
return this.multiplyQuaternions( this, q );
}
premultiply( q ) {
return this.multiplyQuaternions( q, this );
}
multiplyQuaternions( a, b ) {
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
this._onChangeCallback();
return this;
}
slerp( qb, t ) {
if ( t === 0 ) return this;
if ( t === 1 ) return this.copy( qb );
const x = this._x, y = this._y, z = this._z, w = this._w;
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
if ( cosHalfTheta < 0 ) {
this._w = - qb._w;
this._x = - qb._x;
this._y = - qb._y;
this._z = - qb._z;
cosHalfTheta = - cosHalfTheta;
} else {
this.copy( qb );
}
if ( cosHalfTheta >= 1.0 ) {
this._w = w;
this._x = x;
this._y = y;
this._z = z;
return this;
}
const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
if ( sqrSinHalfTheta <= Number.EPSILON ) {
const s = 1 - t;
this._w = s * w + t * this._w;
this._x = s * x + t * this._x;
this._y = s * y + t * this._y;
this._z = s * z + t * this._z;
this.normalize(); // normalize calls _onChangeCallback()
return this;
}
const sinHalfTheta = Math.sqrt( sqrSinHalfTheta );
const halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
const ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
this._w = ( w * ratioA + this._w * ratioB );
this._x = ( x * ratioA + this._x * ratioB );
this._y = ( y * ratioA + this._y * ratioB );
this._z = ( z * ratioA + this._z * ratioB );
this._onChangeCallback();
return this;
}
slerpQuaternions( qa, qb, t ) {
return this.copy( qa ).slerp( qb, t );
}
random() {
// sets this quaternion to a uniform random unit quaternnion
// Ken Shoemake
// Uniform random rotations
// D. Kirk, editor, Graphics Gems III, pages 124-132. Academic Press, New York, 1992.
const theta1 = 2 * Math.PI * Math.random();
const theta2 = 2 * Math.PI * Math.random();
const x0 = Math.random();
const r1 = Math.sqrt( 1 - x0 );
const r2 = Math.sqrt( x0 );
return this.set(
r1 * Math.sin( theta1 ),
r1 * Math.cos( theta1 ),
r2 * Math.sin( theta2 ),
r2 * Math.cos( theta2 ),
);
}
equals( quaternion ) {
return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );
}
fromArray( array, offset = 0 ) {
this._x = array[ offset ];
this._y = array[ offset + 1 ];
this._z = array[ offset + 2 ];
this._w = array[ offset + 3 ];
this._onChangeCallback();
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._w;
return array;
}
fromBufferAttribute( attribute, index ) {
this._x = attribute.getX( index );
this._y = attribute.getY( index );
this._z = attribute.getZ( index );
this._w = attribute.getW( index );
this._onChangeCallback();
return this;
}
toJSON() {
return this.toArray();
}
_onChange( callback ) {
this._onChangeCallback = callback;
return this;
}
_onChangeCallback() {}
*[ Symbol.iterator ]() {
yield this._x;
yield this._y;
yield this._z;
yield this._w;
}
}
class Vector3 {
constructor( x = 0, y = 0, z = 0 ) {
Vector3.prototype.isVector3 = true;
this.x = x;
this.y = y;
this.z = z;
}
set( x, y, z ) {
if ( z === undefined ) z = this.z; // sprite.scale.set(x,y)
this.x = x;
this.y = y;
this.z = z;
return this;
}
setScalar( scalar ) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
return this;
}
setX( x ) {
this.x = x;
return this;
}
setY( y ) {
this.y = y;
return this;
}
setZ( z ) {
this.z = z;
return this;
}
setComponent( index, value ) {
switch ( index ) {
case 0: this.x = value; break;
case 1: this.y = value; break;
case 2: this.z = value; break;
default: throw new Error( 'index is out of range: ' + index );
}
return this;
}
getComponent( index ) {
switch ( index ) {
case 0: return this.x;
case 1: return this.y;
case 2: return this.z;
default: throw new Error( 'index is out of range: ' + index );
}
}
clone() {
return new this.constructor( this.x, this.y, this.z );
}
copy( v ) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
return this;
}
add( v ) {
this.x += v.x;
this.y += v.y;
this.z += v.z;
return this;
}
addScalar( s ) {
this.x += s;
this.y += s;
this.z += s;
return this;
}
addVectors( a, b ) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
return this;
}
addScaledVector( v, s ) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
return this;
}
sub( v ) {
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
return this;
}
subScalar( s ) {
this.x -= s;
this.y -= s;
this.z -= s;
return this;
}
subVectors( a, b ) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
return this;
}
multiply( v ) {
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
return this;
}
multiplyScalar( scalar ) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
return this;
}
multiplyVectors( a, b ) {
this.x = a.x * b.x;
this.y = a.y * b.y;
this.z = a.z * b.z;
return this;
}
applyEuler( euler ) {
return this.applyQuaternion( _quaternion$4.setFromEuler( euler ) );
}
applyAxisAngle( axis, angle ) {
return this.applyQuaternion( _quaternion$4.setFromAxisAngle( axis, angle ) );
}
applyMatrix3( m ) {
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;
return this;
}
applyNormalMatrix( m ) {
return this.applyMatrix3( m ).normalize();
}
applyMatrix4( m ) {
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
const w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );
this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w;
this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w;
this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;
return this;
}
applyQuaternion( q ) {
// quaternion q is assumed to have unit length
const vx = this.x, vy = this.y, vz = this.z;
const qx = q.x, qy = q.y, qz = q.z, qw = q.w;
// t = 2 * cross( q.xyz, v );
const tx = 2 * ( qy * vz - qz * vy );
const ty = 2 * ( qz * vx - qx * vz );
const tz = 2 * ( qx * vy - qy * vx );
// v + q.w * t + cross( q.xyz, t );
this.x = vx + qw * tx + qy * tz - qz * ty;
this.y = vy + qw * ty + qz * tx - qx * tz;
this.z = vz + qw * tz + qx * ty - qy * tx;
return this;
}
project( camera ) {
return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix );
}
unproject( camera ) {
return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld );
}
transformDirection( m ) {
// input: THREE.Matrix4 affine matrix
// vector interpreted as a direction
const x = this.x, y = this.y, z = this.z;
const e = m.elements;
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
return this.normalize();
}
divide( v ) {
this.x /= v.x;
this.y /= v.y;
this.z /= v.z;
return this;
}
divideScalar( scalar ) {
return this.multiplyScalar( 1 / scalar );
}
min( v ) {
this.x = Math.min( this.x, v.x );
this.y = Math.min( this.y, v.y );
this.z = Math.min( this.z, v.z );
return this;
}
max( v ) {
this.x = Math.max( this.x, v.x );
this.y = Math.max( this.y, v.y );
this.z = Math.max( this.z, v.z );
return this;
}
clamp( min, max ) {
// assumes min < max, componentwise
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
return this;
}
clampScalar( minVal, maxVal ) {
this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
return this;
}
clampLength( min, max ) {
const length = this.length();
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
}
floor() {
this.x = Math.floor( this.x );
this.y = Math.floor( this.y );
this.z = Math.floor( this.z );
return this;
}
ceil() {
this.x = Math.ceil( this.x );
this.y = Math.ceil( this.y );
this.z = Math.ceil( this.z );
return this;
}
round() {
this.x = Math.round( this.x );
this.y = Math.round( this.y );
this.z = Math.round( this.z );
return this;
}
roundToZero() {
this.x = Math.trunc( this.x );
this.y = Math.trunc( this.y );
this.z = Math.trunc( this.z );
return this;
}
negate() {
this.x = - this.x;
this.y = - this.y;
this.z = - this.z;
return this;
}
dot( v ) {
return this.x * v.x + this.y * v.y + this.z * v.z;
}
// TODO lengthSquared?
lengthSq() {
return this.x * this.x + this.y * this.y + this.z * this.z;
}
length() {
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );
}
manhattanLength() {
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );
}
normalize() {
return this.divideScalar( this.length() || 1 );
}
setLength( length ) {
return this.normalize().multiplyScalar( length );
}
lerp( v, alpha ) {
this.x += ( v.x - this.x ) * alpha;
this.y += ( v.y - this.y ) * alpha;
this.z += ( v.z - this.z ) * alpha;
return this;
}
lerpVectors( v1, v2, alpha ) {
this.x = v1.x + ( v2.x - v1.x ) * alpha;
this.y = v1.y + ( v2.y - v1.y ) * alpha;
this.z = v1.z + ( v2.z - v1.z ) * alpha;
return this;
}
cross( v ) {
return this.crossVectors( this, v );
}
crossVectors( a, b ) {
const ax = a.x, ay = a.y, az = a.z;
const bx = b.x, by = b.y, bz = b.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
}
projectOnVector( v ) {
const denominator = v.lengthSq();
if ( denominator === 0 ) return this.set( 0, 0, 0 );
const scalar = v.dot( this ) / denominator;
return this.copy( v ).multiplyScalar( scalar );
}
projectOnPlane( planeNormal ) {
_vector$c.copy( this ).projectOnVector( planeNormal );
return this.sub( _vector$c );
}
reflect( normal ) {
// reflect incident vector off plane orthogonal to normal
// normal is assumed to have unit length
return this.sub( _vector$c.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );
}
angleTo( v ) {
const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() );
if ( denominator === 0 ) return Math.PI / 2;
const theta = this.dot( v ) / denominator;
// clamp, to handle numerical problems
return Math.acos( clamp$1( theta, - 1, 1 ) );
}
distanceTo( v ) {
return Math.sqrt( this.distanceToSquared( v ) );
}
distanceToSquared( v ) {
const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;
return dx * dx + dy * dy + dz * dz;
}
manhattanDistanceTo( v ) {
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );
}
setFromSpherical( s ) {
return this.setFromSphericalCoords( s.radius, s.phi, s.theta );
}
setFromSphericalCoords( radius, phi, theta ) {
const sinPhiRadius = Math.sin( phi ) * radius;
this.x = sinPhiRadius * Math.sin( theta );
this.y = Math.cos( phi ) * radius;
this.z = sinPhiRadius * Math.cos( theta );
return this;
}
setFromCylindrical( c ) {
return this.setFromCylindricalCoords( c.radius, c.theta, c.y );
}
setFromCylindricalCoords( radius, theta, y ) {
this.x = radius * Math.sin( theta );
this.y = y;
this.z = radius * Math.cos( theta );
return this;
}
setFromMatrixPosition( m ) {
const e = m.elements;
this.x = e[ 12 ];
this.y = e[ 13 ];
this.z = e[ 14 ];
return this;
}
setFromMatrixScale( m ) {
const sx = this.setFromMatrixColumn( m, 0 ).length();
const sy = this.setFromMatrixColumn( m, 1 ).length();
const sz = this.setFromMatrixColumn( m, 2 ).length();
this.x = sx;
this.y = sy;
this.z = sz;
return this;
}
setFromMatrixColumn( m, index ) {
return this.fromArray( m.elements, index * 4 );
}
setFromMatrix3Column( m, index ) {
return this.fromArray( m.elements, index * 3 );
}
setFromEuler( e ) {
this.x = e._x;
this.y = e._y;
this.z = e._z;
return this;
}
setFromColor( c ) {
this.x = c.r;
this.y = c.g;
this.z = c.b;
return this;
}
equals( v ) {
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );
}
fromArray( array, offset = 0 ) {
this.x = array[ offset ];
this.y = array[ offset + 1 ];
this.z = array[ offset + 2 ];
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this.x;
array[ offset + 1 ] = this.y;
array[ offset + 2 ] = this.z;
return array;
}
fromBufferAttribute( attribute, index ) {
this.x = attribute.getX( index );
this.y = attribute.getY( index );
this.z = attribute.getZ( index );
return this;
}
random() {
this.x = Math.random();
this.y = Math.random();
this.z = Math.random();
return this;
}
randomDirection() {
// https://mathworld.wolfram.com/SpherePointPicking.html
const theta = Math.random() * Math.PI * 2;
const u = Math.random() * 2 - 1;
const c = Math.sqrt( 1 - u * u );
this.x = c * Math.cos( theta );
this.y = u;
this.z = c * Math.sin( theta );
return this;
}
*[ Symbol.iterator ]() {
yield this.x;
yield this.y;
yield this.z;
}
}
const _vector$c = /*@__PURE__*/ new Vector3();
const _quaternion$4 = /*@__PURE__*/ new Quaternion();
class Box3 {
constructor( min = new Vector3( + Infinity, + Infinity, + Infinity ), max = new Vector3( - Infinity, - Infinity, - Infinity ) ) {
this.isBox3 = true;
this.min = min;
this.max = max;
}
set( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
}
setFromArray( array ) {
this.makeEmpty();
for ( let i = 0, il = array.length; i < il; i += 3 ) {
this.expandByPoint( _vector$b.fromArray( array, i ) );
}
return this;
}
setFromBufferAttribute( attribute ) {
this.makeEmpty();
for ( let i = 0, il = attribute.count; i < il; i ++ ) {
this.expandByPoint( _vector$b.fromBufferAttribute( attribute, i ) );
}
return this;
}
setFromPoints( points ) {
this.makeEmpty();
for ( let i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
}
setFromCenterAndSize( center, size ) {
const halfSize = _vector$b.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
}
setFromObject( object, precise = false ) {
this.makeEmpty();
return this.expandByObject( object, precise );
}
clone() {
return new this.constructor().copy( this );
}
copy( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
}
makeEmpty() {
this.min.x = this.min.y = this.min.z = + Infinity;
this.max.x = this.max.y = this.max.z = - Infinity;
return this;
}
isEmpty() {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );
}
getCenter( target ) {
return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
}
getSize( target ) {
return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min );
}
expandByPoint( point ) {
this.min.min( point );
this.max.max( point );
return this;
}
expandByVector( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
}
expandByScalar( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
}
expandByObject( object, precise = false ) {
// Computes the world-axis-aligned bounding box of an object (including its children),
// accounting for both the object's, and children's, world transforms
object.updateWorldMatrix( false, false );
const geometry = object.geometry;
if ( geometry !== undefined ) {
const positionAttribute = geometry.getAttribute( 'position' );
// precise AABB computation based on vertex data requires at least a position attribute.
// instancing isn't supported so far and uses the normal (conservative) code path.
if ( precise === true && positionAttribute !== undefined && object.isInstancedMesh !== true ) {
for ( let i = 0, l = positionAttribute.count; i < l; i ++ ) {
if ( object.isMesh === true ) {
object.getVertexPosition( i, _vector$b );
} else {
_vector$b.fromBufferAttribute( positionAttribute, i );
}
_vector$b.applyMatrix4( object.matrixWorld );
this.expandByPoint( _vector$b );
}
} else {
if ( object.boundingBox !== undefined ) {
// object-level bounding box
if ( object.boundingBox === null ) {
object.computeBoundingBox();
}
_box$4.copy( object.boundingBox );
} else {
// geometry-level bounding box
if ( geometry.boundingBox === null ) {
geometry.computeBoundingBox();
}
_box$4.copy( geometry.boundingBox );
}
_box$4.applyMatrix4( object.matrixWorld );
this.union( _box$4 );
}
}
const children = object.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
this.expandByObject( children[ i ], precise );
}
return this;
}
containsPoint( point ) {
return point.x >= this.min.x && point.x <= this.max.x &&
point.y >= this.min.y && point.y <= this.max.y &&
point.z >= this.min.z && point.z <= this.max.z;
}
containsBox( box ) {
return this.min.x <= box.min.x && box.max.x <= this.max.x &&
this.min.y <= box.min.y && box.max.y <= this.max.y &&
this.min.z <= box.min.z && box.max.z <= this.max.z;
}
getParameter( point, target ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
return target.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y ),
( point.z - this.min.z ) / ( this.max.z - this.min.z )
);
}
intersectsBox( box ) {
// using 6 splitting planes to rule out intersections.
return box.max.x >= this.min.x && box.min.x <= this.max.x &&
box.max.y >= this.min.y && box.min.y <= this.max.y &&
box.max.z >= this.min.z && box.min.z <= this.max.z;
}
intersectsSphere( sphere ) {
// Find the point on the AABB closest to the sphere center.
this.clampPoint( sphere.center, _vector$b );
// If that point is inside the sphere, the AABB and sphere intersect.
return _vector$b.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );
}
intersectsPlane( plane ) {
// We compute the minimum and maximum dot product values. If those values
// are on the same side (back or front) of the plane, then there is no intersection.
let min, max;
if ( plane.normal.x > 0 ) {
min = plane.normal.x * this.min.x;
max = plane.normal.x * this.max.x;
} else {
min = plane.normal.x * this.max.x;
max = plane.normal.x * this.min.x;
}
if ( plane.normal.y > 0 ) {
min += plane.normal.y * this.min.y;
max += plane.normal.y * this.max.y;
} else {
min += plane.normal.y * this.max.y;
max += plane.normal.y * this.min.y;
}
if ( plane.normal.z > 0 ) {
min += plane.normal.z * this.min.z;
max += plane.normal.z * this.max.z;
} else {
min += plane.normal.z * this.max.z;
max += plane.normal.z * this.min.z;
}
return ( min <= - plane.constant && max >= - plane.constant );
}
intersectsTriangle( triangle ) {
if ( this.isEmpty() ) {
return false;
}
// compute box center and extents
this.getCenter( _center );
_extents.subVectors( this.max, _center );
// translate triangle to aabb origin
_v0$2.subVectors( triangle.a, _center );
_v1$7.subVectors( triangle.b, _center );
_v2$4.subVectors( triangle.c, _center );
// compute edge vectors for triangle
_f0.subVectors( _v1$7, _v0$2 );
_f1.subVectors( _v2$4, _v1$7 );
_f2.subVectors( _v0$2, _v2$4 );
// test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
// make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
// axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
let axes = [
0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y,
_f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x,
- _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0
];
if ( ! satForAxes( axes, _v0$2, _v1$7, _v2$4, _extents ) ) {
return false;
}
// test 3 face normals from the aabb
axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ];
if ( ! satForAxes( axes, _v0$2, _v1$7, _v2$4, _extents ) ) {
return false;
}
// finally testing the face normal of the triangle
// use already existing triangle edge vectors here
_triangleNormal.crossVectors( _f0, _f1 );
axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ];
return satForAxes( axes, _v0$2, _v1$7, _v2$4, _extents );
}
clampPoint( point, target ) {
return target.copy( point ).clamp( this.min, this.max );
}
distanceToPoint( point ) {
return this.clampPoint( point, _vector$b ).distanceTo( point );
}
getBoundingSphere( target ) {
if ( this.isEmpty() ) {
target.makeEmpty();
} else {
this.getCenter( target.center );
target.radius = this.getSize( _vector$b ).length() * 0.5;
}
return target;
}
intersect( box ) {
this.min.max( box.min );
this.max.min( box.max );
// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
if ( this.isEmpty() ) this.makeEmpty();
return this;
}
union( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
}
applyMatrix4( matrix ) {
// transform of empty box is an empty box.
if ( this.isEmpty() ) return this;
// NOTE: I am using a binary pattern to specify all 2^3 combinations below
_points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000
_points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001
_points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010
_points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011
_points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100
_points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101
_points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110
_points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111
this.setFromPoints( _points );
return this;
}
translate( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
}
equals( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
}
const _points = [
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3(),
/*@__PURE__*/ new Vector3()
];
const _vector$b = /*@__PURE__*/ new Vector3();
const _box$4 = /*@__PURE__*/ new Box3();
// triangle centered vertices
const _v0$2 = /*@__PURE__*/ new Vector3();
const _v1$7 = /*@__PURE__*/ new Vector3();
const _v2$4 = /*@__PURE__*/ new Vector3();
// triangle edge vectors
const _f0 = /*@__PURE__*/ new Vector3();
const _f1 = /*@__PURE__*/ new Vector3();
const _f2 = /*@__PURE__*/ new Vector3();
const _center = /*@__PURE__*/ new Vector3();
const _extents = /*@__PURE__*/ new Vector3();
const _triangleNormal = /*@__PURE__*/ new Vector3();
const _testAxis = /*@__PURE__*/ new Vector3();
function satForAxes( axes, v0, v1, v2, extents ) {
for ( let i = 0, j = axes.length - 3; i <= j; i += 3 ) {
_testAxis.fromArray( axes, i );
// project the aabb onto the separating axis
const r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z );
// project all 3 vertices of the triangle onto the separating axis
const p0 = v0.dot( _testAxis );
const p1 = v1.dot( _testAxis );
const p2 = v2.dot( _testAxis );
// actual test, basically see if either of the most extreme of the triangle points intersects r
if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) {
// points of the projected triangle are outside the projected half-length of the aabb
// the axis is separating and we can exit
return false;
}
}
return true;
}
const _box$3 = /*@__PURE__*/ new Box3();
const _v1$6 = /*@__PURE__*/ new Vector3();
const _v2$3 = /*@__PURE__*/ new Vector3();
class Sphere {
constructor( center = new Vector3(), radius = - 1 ) {
this.isSphere = true;
this.center = center;
this.radius = radius;
}
set( center, radius ) {
this.center.copy( center );
this.radius = radius;
return this;
}
setFromPoints( points, optionalCenter ) {
const center = this.center;
if ( optionalCenter !== undefined ) {
center.copy( optionalCenter );
} else {
_box$3.setFromPoints( points ).getCenter( center );
}
let maxRadiusSq = 0;
for ( let i = 0, il = points.length; i < il; i ++ ) {
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );
}
this.radius = Math.sqrt( maxRadiusSq );
return this;
}
copy( sphere ) {
this.center.copy( sphere.center );
this.radius = sphere.radius;
return this;
}
isEmpty() {
return ( this.radius < 0 );
}
makeEmpty() {
this.center.set( 0, 0, 0 );
this.radius = - 1;
return this;
}
containsPoint( point ) {
return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );
}
distanceToPoint( point ) {
return ( point.distanceTo( this.center ) - this.radius );
}
intersectsSphere( sphere ) {
const radiusSum = this.radius + sphere.radius;
return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );
}
intersectsBox( box ) {
return box.intersectsSphere( this );
}
intersectsPlane( plane ) {
return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius;
}
clampPoint( point, target ) {
const deltaLengthSq = this.center.distanceToSquared( point );
target.copy( point );
if ( deltaLengthSq > ( this.radius * this.radius ) ) {
target.sub( this.center ).normalize();
target.multiplyScalar( this.radius ).add( this.center );
}
return target;
}
getBoundingBox( target ) {
if ( this.isEmpty() ) {
// Empty sphere produces empty bounding box
target.makeEmpty();
return target;
}
target.set( this.center, this.center );
target.expandByScalar( this.radius );
return target;
}
applyMatrix4( matrix ) {
this.center.applyMatrix4( matrix );
this.radius = this.radius * matrix.getMaxScaleOnAxis();
return this;
}
translate( offset ) {
this.center.add( offset );
return this;
}
expandByPoint( point ) {
if ( this.isEmpty() ) {
this.center.copy( point );
this.radius = 0;
return this;
}
_v1$6.subVectors( point, this.center );
const lengthSq = _v1$6.lengthSq();
if ( lengthSq > ( this.radius * this.radius ) ) {
// calculate the minimal sphere
const length = Math.sqrt( lengthSq );
const delta = ( length - this.radius ) * 0.5;
this.center.addScaledVector( _v1$6, delta / length );
this.radius += delta;
}
return this;
}
union( sphere ) {
if ( sphere.isEmpty() ) {
return this;
}
if ( this.isEmpty() ) {
this.copy( sphere );
return this;
}
if ( this.center.equals( sphere.center ) === true ) {
this.radius = Math.max( this.radius, sphere.radius );
} else {
_v2$3.subVectors( sphere.center, this.center ).setLength( sphere.radius );
this.expandByPoint( _v1$6.copy( sphere.center ).add( _v2$3 ) );
this.expandByPoint( _v1$6.copy( sphere.center ).sub( _v2$3 ) );
}
return this;
}
equals( sphere ) {
return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );
}
clone() {
return new this.constructor().copy( this );
}
}
const _vector$a = /*@__PURE__*/ new Vector3();
const _segCenter = /*@__PURE__*/ new Vector3();
const _segDir = /*@__PURE__*/ new Vector3();
const _diff = /*@__PURE__*/ new Vector3();
const _edge1 = /*@__PURE__*/ new Vector3();
const _edge2 = /*@__PURE__*/ new Vector3();
const _normal$2 = /*@__PURE__*/ new Vector3();
class Ray {
constructor( origin = new Vector3(), direction = new Vector3( 0, 0, - 1 ) ) {
this.origin = origin;
this.direction = direction;
}
set( origin, direction ) {
this.origin.copy( origin );
this.direction.copy( direction );
return this;
}
copy( ray ) {
this.origin.copy( ray.origin );
this.direction.copy( ray.direction );
return this;
}
at( t, target ) {
return target.copy( this.origin ).addScaledVector( this.direction, t );
}
lookAt( v ) {
this.direction.copy( v ).sub( this.origin ).normalize();
return this;
}
recast( t ) {
this.origin.copy( this.at( t, _vector$a ) );
return this;
}
closestPointToPoint( point, target ) {
target.subVectors( point, this.origin );
const directionDistance = target.dot( this.direction );
if ( directionDistance < 0 ) {
return target.copy( this.origin );
}
return target.copy( this.origin ).addScaledVector( this.direction, directionDistance );
}
distanceToPoint( point ) {
return Math.sqrt( this.distanceSqToPoint( point ) );
}
distanceSqToPoint( point ) {
const directionDistance = _vector$a.subVectors( point, this.origin ).dot( this.direction );
// point behind the ray
if ( directionDistance < 0 ) {
return this.origin.distanceToSquared( point );
}
_vector$a.copy( this.origin ).addScaledVector( this.direction, directionDistance );
return _vector$a.distanceToSquared( point );
}
distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {
// from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteDistRaySegment.h
// It returns the min distance between the ray and the segment
// defined by v0 and v1
// It can also set two optional targets :
// - The closest point on the ray
// - The closest point on the segment
_segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
_segDir.copy( v1 ).sub( v0 ).normalize();
_diff.copy( this.origin ).sub( _segCenter );
const segExtent = v0.distanceTo( v1 ) * 0.5;
const a01 = - this.direction.dot( _segDir );
const b0 = _diff.dot( this.direction );
const b1 = - _diff.dot( _segDir );
const c = _diff.lengthSq();
const det = Math.abs( 1 - a01 * a01 );
let s0, s1, sqrDist, extDet;
if ( det > 0 ) {
// The ray and segment are not parallel.
s0 = a01 * b1 - b0;
s1 = a01 * b0 - b1;
extDet = segExtent * det;
if ( s0 >= 0 ) {
if ( s1 >= - extDet ) {
if ( s1 <= extDet ) {
// region 0
// Minimum at interior points of ray and segment.
const invDet = 1 / det;
s0 *= invDet;
s1 *= invDet;
sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;
} else {
// region 1
s1 = segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
// region 5
s1 = - segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
} else {
if ( s1 <= - extDet ) {
// region 4
s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
} else if ( s1 <= extDet ) {
// region 3
s0 = 0;
s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = s1 * ( s1 + 2 * b1 ) + c;
} else {
// region 2
s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
}
} else {
// Ray and segment are parallel.
s1 = ( a01 > 0 ) ? - segExtent : segExtent;
s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;
}
if ( optionalPointOnRay ) {
optionalPointOnRay.copy( this.origin ).addScaledVector( this.direction, s0 );
}
if ( optionalPointOnSegment ) {
optionalPointOnSegment.copy( _segCenter ).addScaledVector( _segDir, s1 );
}
return sqrDist;
}
intersectSphere( sphere, target ) {
_vector$a.subVectors( sphere.center, this.origin );
const tca = _vector$a.dot( this.direction );
const d2 = _vector$a.dot( _vector$a ) - tca * tca;
const radius2 = sphere.radius * sphere.radius;
if ( d2 > radius2 ) return null;
const thc = Math.sqrt( radius2 - d2 );
// t0 = first intersect point - entrance on front of sphere
const t0 = tca - thc;
// t1 = second intersect point - exit point on back of sphere
const t1 = tca + thc;
// test to see if t1 is behind the ray - if so, return null
if ( t1 < 0 ) return null;
// test to see if t0 is behind the ray:
// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
// in order to always return an intersect point that is in front of the ray.
if ( t0 < 0 ) return this.at( t1, target );
// else t0 is in front of the ray, so return the first collision point scaled by t0
return this.at( t0, target );
}
intersectsSphere( sphere ) {
return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius );
}
distanceToPlane( plane ) {
const denominator = plane.normal.dot( this.direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( plane.distanceToPoint( this.origin ) === 0 ) {
return 0;
}
// Null is preferable to undefined since undefined means.... it is undefined
return null;
}
const t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;
// Return if the ray never intersects the plane
return t >= 0 ? t : null;
}
intersectPlane( plane, target ) {
const t = this.distanceToPlane( plane );
if ( t === null ) {
return null;
}
return this.at( t, target );
}
intersectsPlane( plane ) {
// check if the ray lies on the plane first
const distToPoint = plane.distanceToPoint( this.origin );
if ( distToPoint === 0 ) {
return true;
}
const denominator = plane.normal.dot( this.direction );
if ( denominator * distToPoint < 0 ) {
return true;
}
// ray origin is behind the plane (and is pointing behind it)
return false;
}
intersectBox( box, target ) {
let tmin, tmax, tymin, tymax, tzmin, tzmax;
const invdirx = 1 / this.direction.x,
invdiry = 1 / this.direction.y,
invdirz = 1 / this.direction.z;
const origin = this.origin;
if ( invdirx >= 0 ) {
tmin = ( box.min.x - origin.x ) * invdirx;
tmax = ( box.max.x - origin.x ) * invdirx;
} else {
tmin = ( box.max.x - origin.x ) * invdirx;
tmax = ( box.min.x - origin.x ) * invdirx;
}
if ( invdiry >= 0 ) {
tymin = ( box.min.y - origin.y ) * invdiry;
tymax = ( box.max.y - origin.y ) * invdiry;
} else {
tymin = ( box.max.y - origin.y ) * invdiry;
tymax = ( box.min.y - origin.y ) * invdiry;
}
if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null;
if ( tymin > tmin || isNaN( tmin ) ) tmin = tymin;
if ( tymax < tmax || isNaN( tmax ) ) tmax = tymax;
if ( invdirz >= 0 ) {
tzmin = ( box.min.z - origin.z ) * invdirz;
tzmax = ( box.max.z - origin.z ) * invdirz;
} else {
tzmin = ( box.max.z - origin.z ) * invdirz;
tzmax = ( box.min.z - origin.z ) * invdirz;
}
if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null;
if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin;
if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax;
//return point closest to the ray (positive side)
if ( tmax < 0 ) return null;
return this.at( tmin >= 0 ? tmin : tmax, target );
}
intersectsBox( box ) {
return this.intersectBox( box, _vector$a ) !== null;
}
intersectTriangle( a, b, c, backfaceCulling, target ) {
// Compute the offset origin, edges, and normal.
// from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
_edge1.subVectors( b, a );
_edge2.subVectors( c, a );
_normal$2.crossVectors( _edge1, _edge2 );
// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
let DdN = this.direction.dot( _normal$2 );
let sign;
if ( DdN > 0 ) {
if ( backfaceCulling ) return null;
sign = 1;
} else if ( DdN < 0 ) {
sign = - 1;
DdN = - DdN;
} else {
return null;
}
_diff.subVectors( this.origin, a );
const DdQxE2 = sign * this.direction.dot( _edge2.crossVectors( _diff, _edge2 ) );
// b1 < 0, no intersection
if ( DdQxE2 < 0 ) {
return null;
}
const DdE1xQ = sign * this.direction.dot( _edge1.cross( _diff ) );
// b2 < 0, no intersection
if ( DdE1xQ < 0 ) {
return null;
}
// b1+b2 > 1, no intersection
if ( DdQxE2 + DdE1xQ > DdN ) {
return null;
}
// Line intersects triangle, check if ray does.
const QdN = - sign * _diff.dot( _normal$2 );
// t < 0, no intersection
if ( QdN < 0 ) {
return null;
}
// Ray intersects triangle.
return this.at( QdN / DdN, target );
}
applyMatrix4( matrix4 ) {
this.origin.applyMatrix4( matrix4 );
this.direction.transformDirection( matrix4 );
return this;
}
equals( ray ) {
return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );
}
clone() {
return new this.constructor().copy( this );
}
}
class Matrix4 {
constructor( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
Matrix4.prototype.isMatrix4 = true;
this.elements = [
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
];
if ( n11 !== undefined ) {
this.set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 );
}
}
set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
const te = this.elements;
te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;
return this;
}
identity() {
this.set(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
}
clone() {
return new Matrix4().fromArray( this.elements );
}
copy( m ) {
const te = this.elements;
const me = m.elements;
te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];
te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];
te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];
te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];
return this;
}
copyPosition( m ) {
const te = this.elements, me = m.elements;
te[ 12 ] = me[ 12 ];
te[ 13 ] = me[ 13 ];
te[ 14 ] = me[ 14 ];
return this;
}
setFromMatrix3( m ) {
const me = m.elements;
this.set(
me[ 0 ], me[ 3 ], me[ 6 ], 0,
me[ 1 ], me[ 4 ], me[ 7 ], 0,
me[ 2 ], me[ 5 ], me[ 8 ], 0,
0, 0, 0, 1
);
return this;
}
extractBasis( xAxis, yAxis, zAxis ) {
xAxis.setFromMatrixColumn( this, 0 );
yAxis.setFromMatrixColumn( this, 1 );
zAxis.setFromMatrixColumn( this, 2 );
return this;
}
makeBasis( xAxis, yAxis, zAxis ) {
this.set(
xAxis.x, yAxis.x, zAxis.x, 0,
xAxis.y, yAxis.y, zAxis.y, 0,
xAxis.z, yAxis.z, zAxis.z, 0,
0, 0, 0, 1
);
return this;
}
extractRotation( m ) {
// this method does not support reflection matrices
const te = this.elements;
const me = m.elements;
const scaleX = 1 / _v1$5.setFromMatrixColumn( m, 0 ).length();
const scaleY = 1 / _v1$5.setFromMatrixColumn( m, 1 ).length();
const scaleZ = 1 / _v1$5.setFromMatrixColumn( m, 2 ).length();
te[ 0 ] = me[ 0 ] * scaleX;
te[ 1 ] = me[ 1 ] * scaleX;
te[ 2 ] = me[ 2 ] * scaleX;
te[ 3 ] = 0;
te[ 4 ] = me[ 4 ] * scaleY;
te[ 5 ] = me[ 5 ] * scaleY;
te[ 6 ] = me[ 6 ] * scaleY;
te[ 7 ] = 0;
te[ 8 ] = me[ 8 ] * scaleZ;
te[ 9 ] = me[ 9 ] * scaleZ;
te[ 10 ] = me[ 10 ] * scaleZ;
te[ 11 ] = 0;
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
}
makeRotationFromEuler( euler ) {
const te = this.elements;
const x = euler.x, y = euler.y, z = euler.z;
const a = Math.cos( x ), b = Math.sin( x );
const c = Math.cos( y ), d = Math.sin( y );
const e = Math.cos( z ), f = Math.sin( z );
if ( euler.order === 'XYZ' ) {
const ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = - c * f;
te[ 8 ] = d;
te[ 1 ] = af + be * d;
te[ 5 ] = ae - bf * d;
te[ 9 ] = - b * c;
te[ 2 ] = bf - ae * d;
te[ 6 ] = be + af * d;
te[ 10 ] = a * c;
} else if ( euler.order === 'YXZ' ) {
const ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce + df * b;
te[ 4 ] = de * b - cf;
te[ 8 ] = a * d;
te[ 1 ] = a * f;
te[ 5 ] = a * e;
te[ 9 ] = - b;
te[ 2 ] = cf * b - de;
te[ 6 ] = df + ce * b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZXY' ) {
const ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce - df * b;
te[ 4 ] = - a * f;
te[ 8 ] = de + cf * b;
te[ 1 ] = cf + de * b;
te[ 5 ] = a * e;
te[ 9 ] = df - ce * b;
te[ 2 ] = - a * d;
te[ 6 ] = b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZYX' ) {
const ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = be * d - af;
te[ 8 ] = ae * d + bf;
te[ 1 ] = c * f;
te[ 5 ] = bf * d + ae;
te[ 9 ] = af * d - be;
te[ 2 ] = - d;
te[ 6 ] = b * c;
te[ 10 ] = a * c;
} else if ( euler.order === 'YZX' ) {
const ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = bd - ac * f;
te[ 8 ] = bc * f + ad;
te[ 1 ] = f;
te[ 5 ] = a * e;
te[ 9 ] = - b * e;
te[ 2 ] = - d * e;
te[ 6 ] = ad * f + bc;
te[ 10 ] = ac - bd * f;
} else if ( euler.order === 'XZY' ) {
const ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = - f;
te[ 8 ] = d * e;
te[ 1 ] = ac * f + bd;
te[ 5 ] = a * e;
te[ 9 ] = ad * f - bc;
te[ 2 ] = bc * f - ad;
te[ 6 ] = b * e;
te[ 10 ] = bd * f + ac;
}
// bottom row
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0;
// last column
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
}
makeRotationFromQuaternion( q ) {
return this.compose( _zero, q, _one );
}
lookAt( eye, target, up ) {
const te = this.elements;
_z.subVectors( eye, target );
if ( _z.lengthSq() === 0 ) {
// eye and target are in the same position
_z.z = 1;
}
_z.normalize();
_x.crossVectors( up, _z );
if ( _x.lengthSq() === 0 ) {
// up and z are parallel
if ( Math.abs( up.z ) === 1 ) {
_z.x += 0.0001;
} else {
_z.z += 0.0001;
}
_z.normalize();
_x.crossVectors( up, _z );
}
_x.normalize();
_y.crossVectors( _z, _x );
te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x;
te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y;
te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z;
return this;
}
multiply( m ) {
return this.multiplyMatrices( this, m );
}
premultiply( m ) {
return this.multiplyMatrices( m, this );
}
multiplyMatrices( a, b ) {
const ae = a.elements;
const be = b.elements;
const te = this.elements;
const a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
const a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
const a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
const a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];
const b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
const b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
const b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
const b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
return this;
}
multiplyScalar( s ) {
const te = this.elements;
te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;
return this;
}
determinant() {
const te = this.elements;
const n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
const n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
const n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
const n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];
//TODO: make this more efficient
//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
return (
n41 * (
+ n14 * n23 * n32
- n13 * n24 * n32
- n14 * n22 * n33
+ n12 * n24 * n33
+ n13 * n22 * n34
- n12 * n23 * n34
) +
n42 * (
+ n11 * n23 * n34
- n11 * n24 * n33
+ n14 * n21 * n33
- n13 * n21 * n34
+ n13 * n24 * n31
- n14 * n23 * n31
) +
n43 * (
+ n11 * n24 * n32
- n11 * n22 * n34
- n14 * n21 * n32
+ n12 * n21 * n34
+ n14 * n22 * n31
- n12 * n24 * n31
) +
n44 * (
- n13 * n22 * n31
- n11 * n23 * n32
+ n11 * n22 * n33
+ n13 * n21 * n32
- n12 * n21 * n33
+ n12 * n23 * n31
)
);
}
transpose() {
const te = this.elements;
let tmp;
tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;
tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;
return this;
}
setPosition( x, y, z ) {
const te = this.elements;
if ( x.isVector3 ) {
te[ 12 ] = x.x;
te[ 13 ] = x.y;
te[ 14 ] = x.z;
} else {
te[ 12 ] = x;
te[ 13 ] = y;
te[ 14 ] = z;
}
return this;
}
invert() {
// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
const te = this.elements,
n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n41 = te[ 3 ],
n12 = te[ 4 ], n22 = te[ 5 ], n32 = te[ 6 ], n42 = te[ 7 ],
n13 = te[ 8 ], n23 = te[ 9 ], n33 = te[ 10 ], n43 = te[ 11 ],
n14 = te[ 12 ], n24 = te[ 13 ], n34 = te[ 14 ], n44 = te[ 15 ],
t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 );
const detInv = 1 / det;
te[ 0 ] = t11 * detInv;
te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;
te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;
te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;
te[ 4 ] = t12 * detInv;
te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;
te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;
te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;
te[ 8 ] = t13 * detInv;
te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;
te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;
te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;
te[ 12 ] = t14 * detInv;
te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;
te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;
te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;
return this;
}
scale( v ) {
const te = this.elements;
const x = v.x, y = v.y, z = v.z;
te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;
return this;
}
getMaxScaleOnAxis() {
const te = this.elements;
const scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
const scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
const scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];
return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );
}
makeTranslation( x, y, z ) {
if ( x.isVector3 ) {
this.set(
1, 0, 0, x.x,
0, 1, 0, x.y,
0, 0, 1, x.z,
0, 0, 0, 1
);
} else {
this.set(
1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1
);
}
return this;
}
makeRotationX( theta ) {
const c = Math.cos( theta ), s = Math.sin( theta );
this.set(
1, 0, 0, 0,
0, c, - s, 0,
0, s, c, 0,
0, 0, 0, 1
);
return this;
}
makeRotationY( theta ) {
const c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, 0, s, 0,
0, 1, 0, 0,
- s, 0, c, 0,
0, 0, 0, 1
);
return this;
}
makeRotationZ( theta ) {
const c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, - s, 0, 0,
s, c, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
}
makeRotationAxis( axis, angle ) {
// Based on http://www.gamedev.net/reference/articles/article1199.asp
const c = Math.cos( angle );
const s = Math.sin( angle );
const t = 1 - c;
const x = axis.x, y = axis.y, z = axis.z;
const tx = t * x, ty = t * y;
this.set(
tx * x + c, tx * y - s * z, tx * z + s * y, 0,
tx * y + s * z, ty * y + c, ty * z - s * x, 0,
tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
0, 0, 0, 1
);
return this;
}
makeScale( x, y, z ) {
this.set(
x, 0, 0, 0,
0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1
);
return this;
}
makeShear( xy, xz, yx, yz, zx, zy ) {
this.set(
1, yx, zx, 0,
xy, 1, zy, 0,
xz, yz, 1, 0,
0, 0, 0, 1
);
return this;
}
compose( position, quaternion, scale ) {
const te = this.elements;
const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w;
const x2 = x + x, y2 = y + y, z2 = z + z;
const xx = x * x2, xy = x * y2, xz = x * z2;
const yy = y * y2, yz = y * z2, zz = z * z2;
const wx = w * x2, wy = w * y2, wz = w * z2;
const sx = scale.x, sy = scale.y, sz = scale.z;
te[ 0 ] = ( 1 - ( yy + zz ) ) * sx;
te[ 1 ] = ( xy + wz ) * sx;
te[ 2 ] = ( xz - wy ) * sx;
te[ 3 ] = 0;
te[ 4 ] = ( xy - wz ) * sy;
te[ 5 ] = ( 1 - ( xx + zz ) ) * sy;
te[ 6 ] = ( yz + wx ) * sy;
te[ 7 ] = 0;
te[ 8 ] = ( xz + wy ) * sz;
te[ 9 ] = ( yz - wx ) * sz;
te[ 10 ] = ( 1 - ( xx + yy ) ) * sz;
te[ 11 ] = 0;
te[ 12 ] = position.x;
te[ 13 ] = position.y;
te[ 14 ] = position.z;
te[ 15 ] = 1;
return this;
}
decompose( position, quaternion, scale ) {
const te = this.elements;
let sx = _v1$5.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
const sy = _v1$5.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
const sz = _v1$5.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();
// if determine is negative, we need to invert one scale
const det = this.determinant();
if ( det < 0 ) sx = - sx;
position.x = te[ 12 ];
position.y = te[ 13 ];
position.z = te[ 14 ];
// scale the rotation part
_m1$2.copy( this );
const invSX = 1 / sx;
const invSY = 1 / sy;
const invSZ = 1 / sz;
_m1$2.elements[ 0 ] *= invSX;
_m1$2.elements[ 1 ] *= invSX;
_m1$2.elements[ 2 ] *= invSX;
_m1$2.elements[ 4 ] *= invSY;
_m1$2.elements[ 5 ] *= invSY;
_m1$2.elements[ 6 ] *= invSY;
_m1$2.elements[ 8 ] *= invSZ;
_m1$2.elements[ 9 ] *= invSZ;
_m1$2.elements[ 10 ] *= invSZ;
quaternion.setFromRotationMatrix( _m1$2 );
scale.x = sx;
scale.y = sy;
scale.z = sz;
return this;
}
makePerspective( left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem ) {
const te = this.elements;
const x = 2 * near / ( right - left );
const y = 2 * near / ( top - bottom );
const a = ( right + left ) / ( right - left );
const b = ( top + bottom ) / ( top - bottom );
let c, d;
if ( coordinateSystem === WebGLCoordinateSystem ) {
c = - ( far + near ) / ( far - near );
d = ( - 2 * far * near ) / ( far - near );
} else if ( coordinateSystem === WebGPUCoordinateSystem ) {
c = - far / ( far - near );
d = ( - far * near ) / ( far - near );
} else {
throw new Error( 'THREE.Matrix4.makePerspective(): Invalid coordinate system: ' + coordinateSystem );
}
te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0;
te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0;
return this;
}
makeOrthographic( left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem ) {
const te = this.elements;
const w = 1.0 / ( right - left );
const h = 1.0 / ( top - bottom );
const p = 1.0 / ( far - near );
const x = ( right + left ) * w;
const y = ( top + bottom ) * h;
let z, zInv;
if ( coordinateSystem === WebGLCoordinateSystem ) {
z = ( far + near ) * p;
zInv = - 2 * p;
} else if ( coordinateSystem === WebGPUCoordinateSystem ) {
z = near * p;
zInv = - 1 * p;
} else {
throw new Error( 'THREE.Matrix4.makeOrthographic(): Invalid coordinate system: ' + coordinateSystem );
}
te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x;
te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = zInv; te[ 14 ] = - z;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1;
return this;
}
equals( matrix ) {
const te = this.elements;
const me = matrix.elements;
for ( let i = 0; i < 16; i ++ ) {
if ( te[ i ] !== me[ i ] ) return false;
}
return true;
}
fromArray( array, offset = 0 ) {
for ( let i = 0; i < 16; i ++ ) {
this.elements[ i ] = array[ i + offset ];
}
return this;
}
toArray( array = [], offset = 0 ) {
const te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
array[ offset + 9 ] = te[ 9 ];
array[ offset + 10 ] = te[ 10 ];
array[ offset + 11 ] = te[ 11 ];
array[ offset + 12 ] = te[ 12 ];
array[ offset + 13 ] = te[ 13 ];
array[ offset + 14 ] = te[ 14 ];
array[ offset + 15 ] = te[ 15 ];
return array;
}
}
const _v1$5 = /*@__PURE__*/ new Vector3();
const _m1$2 = /*@__PURE__*/ new Matrix4();
const _zero = /*@__PURE__*/ new Vector3( 0, 0, 0 );
const _one = /*@__PURE__*/ new Vector3( 1, 1, 1 );
const _x = /*@__PURE__*/ new Vector3();
const _y = /*@__PURE__*/ new Vector3();
const _z = /*@__PURE__*/ new Vector3();
const _matrix$2 = /*@__PURE__*/ new Matrix4();
const _quaternion$3 = /*@__PURE__*/ new Quaternion();
class Euler {
constructor( x = 0, y = 0, z = 0, order = Euler.DEFAULT_ORDER ) {
this.isEuler = true;
this._x = x;
this._y = y;
this._z = z;
this._order = order;
}
get x() {
return this._x;
}
set x( value ) {
this._x = value;
this._onChangeCallback();
}
get y() {
return this._y;
}
set y( value ) {
this._y = value;
this._onChangeCallback();
}
get z() {
return this._z;
}
set z( value ) {
this._z = value;
this._onChangeCallback();
}
get order() {
return this._order;
}
set order( value ) {
this._order = value;
this._onChangeCallback();
}
set( x, y, z, order = this._order ) {
this._x = x;
this._y = y;
this._z = z;
this._order = order;
this._onChangeCallback();
return this;
}
clone() {
return new this.constructor( this._x, this._y, this._z, this._order );
}
copy( euler ) {
this._x = euler._x;
this._y = euler._y;
this._z = euler._z;
this._order = euler._order;
this._onChangeCallback();
return this;
}
setFromRotationMatrix( m, order = this._order, update = true ) {
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
const te = m.elements;
const m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ];
const m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ];
const m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
switch ( order ) {
case 'XYZ':
this._y = Math.asin( clamp$1( m13, - 1, 1 ) );
if ( Math.abs( m13 ) < 0.9999999 ) {
this._x = Math.atan2( - m23, m33 );
this._z = Math.atan2( - m12, m11 );
} else {
this._x = Math.atan2( m32, m22 );
this._z = 0;
}
break;
case 'YXZ':
this._x = Math.asin( - clamp$1( m23, - 1, 1 ) );
if ( Math.abs( m23 ) < 0.9999999 ) {
this._y = Math.atan2( m13, m33 );
this._z = Math.atan2( m21, m22 );
} else {
this._y = Math.atan2( - m31, m11 );
this._z = 0;
}
break;
case 'ZXY':
this._x = Math.asin( clamp$1( m32, - 1, 1 ) );
if ( Math.abs( m32 ) < 0.9999999 ) {
this._y = Math.atan2( - m31, m33 );
this._z = Math.atan2( - m12, m22 );
} else {
this._y = 0;
this._z = Math.atan2( m21, m11 );
}
break;
case 'ZYX':
this._y = Math.asin( - clamp$1( m31, - 1, 1 ) );
if ( Math.abs( m31 ) < 0.9999999 ) {
this._x = Math.atan2( m32, m33 );
this._z = Math.atan2( m21, m11 );
} else {
this._x = 0;
this._z = Math.atan2( - m12, m22 );
}
break;
case 'YZX':
this._z = Math.asin( clamp$1( m21, - 1, 1 ) );
if ( Math.abs( m21 ) < 0.9999999 ) {
this._x = Math.atan2( - m23, m22 );
this._y = Math.atan2( - m31, m11 );
} else {
this._x = 0;
this._y = Math.atan2( m13, m33 );
}
break;
case 'XZY':
this._z = Math.asin( - clamp$1( m12, - 1, 1 ) );
if ( Math.abs( m12 ) < 0.9999999 ) {
this._x = Math.atan2( m32, m22 );
this._y = Math.atan2( m13, m11 );
} else {
this._x = Math.atan2( - m23, m33 );
this._y = 0;
}
break;
default:
console.warn( 'THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order );
}
this._order = order;
if ( update === true ) this._onChangeCallback();
return this;
}
setFromQuaternion( q, order, update ) {
_matrix$2.makeRotationFromQuaternion( q );
return this.setFromRotationMatrix( _matrix$2, order, update );
}
setFromVector3( v, order = this._order ) {
return this.set( v.x, v.y, v.z, order );
}
reorder( newOrder ) {
// WARNING: this discards revolution information -bhouston
_quaternion$3.setFromEuler( this );
return this.setFromQuaternion( _quaternion$3, newOrder );
}
equals( euler ) {
return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );
}
fromArray( array ) {
this._x = array[ 0 ];
this._y = array[ 1 ];
this._z = array[ 2 ];
if ( array[ 3 ] !== undefined ) this._order = array[ 3 ];
this._onChangeCallback();
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this._x;
array[ offset + 1 ] = this._y;
array[ offset + 2 ] = this._z;
array[ offset + 3 ] = this._order;
return array;
}
_onChange( callback ) {
this._onChangeCallback = callback;
return this;
}
_onChangeCallback() {}
*[ Symbol.iterator ]() {
yield this._x;
yield this._y;
yield this._z;
yield this._order;
}
}
Euler.DEFAULT_ORDER = 'XYZ';
class Layers {
constructor() {
this.mask = 1 | 0;
}
set( channel ) {
this.mask = ( 1 << channel | 0 ) >>> 0;
}
enable( channel ) {
this.mask |= 1 << channel | 0;
}
enableAll() {
this.mask = 0xffffffff | 0;
}
toggle( channel ) {
this.mask ^= 1 << channel | 0;
}
disable( channel ) {
this.mask &= ~ ( 1 << channel | 0 );
}
disableAll() {
this.mask = 0;
}
test( layers ) {
return ( this.mask & layers.mask ) !== 0;
}
isEnabled( channel ) {
return ( this.mask & ( 1 << channel | 0 ) ) !== 0;
}
}
let _object3DId = 0;
const _v1$4 = /*@__PURE__*/ new Vector3();
const _q1 = /*@__PURE__*/ new Quaternion();
const _m1$1 = /*@__PURE__*/ new Matrix4();
const _target$1 = /*@__PURE__*/ new Vector3();
const _position$3 = /*@__PURE__*/ new Vector3();
const _scale$2 = /*@__PURE__*/ new Vector3();
const _quaternion$2 = /*@__PURE__*/ new Quaternion();
const _xAxis = /*@__PURE__*/ new Vector3( 1, 0, 0 );
const _yAxis = /*@__PURE__*/ new Vector3( 0, 1, 0 );
const _zAxis = /*@__PURE__*/ new Vector3( 0, 0, 1 );
const _addedEvent = { type: 'added' };
const _removedEvent = { type: 'removed' };
const _childaddedEvent = { type: 'childadded', child: null };
const _childremovedEvent = { type: 'childremoved', child: null };
class Object3D extends EventDispatcher {
constructor() {
super();
this.isObject3D = true;
Object.defineProperty( this, 'id', { value: _object3DId ++ } );
this.uuid = generateUUID();
this.name = '';
this.type = 'Object3D';
this.parent = null;
this.children = [];
this.up = Object3D.DEFAULT_UP.clone();
const position = new Vector3();
const rotation = new Euler();
const quaternion = new Quaternion();
const scale = new Vector3( 1, 1, 1 );
function onRotationChange() {
quaternion.setFromEuler( rotation, false );
}
function onQuaternionChange() {
rotation.setFromQuaternion( quaternion, undefined, false );
}
rotation._onChange( onRotationChange );
quaternion._onChange( onQuaternionChange );
Object.defineProperties( this, {
position: {
configurable: true,
enumerable: true,
value: position
},
rotation: {
configurable: true,
enumerable: true,
value: rotation
},
quaternion: {
configurable: true,
enumerable: true,
value: quaternion
},
scale: {
configurable: true,
enumerable: true,
value: scale
},
modelViewMatrix: {
value: new Matrix4()
},
normalMatrix: {
value: new Matrix3()
}
} );
this.matrix = new Matrix4();
this.matrixWorld = new Matrix4();
this.matrixAutoUpdate = Object3D.DEFAULT_MATRIX_AUTO_UPDATE;
this.matrixWorldAutoUpdate = Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE; // checked by the renderer
this.matrixWorldNeedsUpdate = false;
this.layers = new Layers();
this.visible = true;
this.castShadow = false;
this.receiveShadow = false;
this.frustumCulled = true;
this.renderOrder = 0;
this.animations = [];
this.userData = {};
}
onBeforeShadow( /* renderer, object, camera, shadowCamera, geometry, depthMaterial, group */ ) {}
onAfterShadow( /* renderer, object, camera, shadowCamera, geometry, depthMaterial, group */ ) {}
onBeforeRender( /* renderer, scene, camera, geometry, material, group */ ) {}
onAfterRender( /* renderer, scene, camera, geometry, material, group */ ) {}
applyMatrix4( matrix ) {
if ( this.matrixAutoUpdate ) this.updateMatrix();
this.matrix.premultiply( matrix );
this.matrix.decompose( this.position, this.quaternion, this.scale );
}
applyQuaternion( q ) {
this.quaternion.premultiply( q );
return this;
}
setRotationFromAxisAngle( axis, angle ) {
// assumes axis is normalized
this.quaternion.setFromAxisAngle( axis, angle );
}
setRotationFromEuler( euler ) {
this.quaternion.setFromEuler( euler, true );
}
setRotationFromMatrix( m ) {
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
this.quaternion.setFromRotationMatrix( m );
}
setRotationFromQuaternion( q ) {
// assumes q is normalized
this.quaternion.copy( q );
}
rotateOnAxis( axis, angle ) {
// rotate object on axis in object space
// axis is assumed to be normalized
_q1.setFromAxisAngle( axis, angle );
this.quaternion.multiply( _q1 );
return this;
}
rotateOnWorldAxis( axis, angle ) {
// rotate object on axis in world space
// axis is assumed to be normalized
// method assumes no rotated parent
_q1.setFromAxisAngle( axis, angle );
this.quaternion.premultiply( _q1 );
return this;
}
rotateX( angle ) {
return this.rotateOnAxis( _xAxis, angle );
}
rotateY( angle ) {
return this.rotateOnAxis( _yAxis, angle );
}
rotateZ( angle ) {
return this.rotateOnAxis( _zAxis, angle );
}
translateOnAxis( axis, distance ) {
// translate object by distance along axis in object space
// axis is assumed to be normalized
_v1$4.copy( axis ).applyQuaternion( this.quaternion );
this.position.add( _v1$4.multiplyScalar( distance ) );
return this;
}
translateX( distance ) {
return this.translateOnAxis( _xAxis, distance );
}
translateY( distance ) {
return this.translateOnAxis( _yAxis, distance );
}
translateZ( distance ) {
return this.translateOnAxis( _zAxis, distance );
}
localToWorld( vector ) {
this.updateWorldMatrix( true, false );
return vector.applyMatrix4( this.matrixWorld );
}
worldToLocal( vector ) {
this.updateWorldMatrix( true, false );
return vector.applyMatrix4( _m1$1.copy( this.matrixWorld ).invert() );
}
lookAt( x, y, z ) {
// This method does not support objects having non-uniformly-scaled parent(s)
if ( x.isVector3 ) {
_target$1.copy( x );
} else {
_target$1.set( x, y, z );
}
const parent = this.parent;
this.updateWorldMatrix( true, false );
_position$3.setFromMatrixPosition( this.matrixWorld );
if ( this.isCamera || this.isLight ) {
_m1$1.lookAt( _position$3, _target$1, this.up );
} else {
_m1$1.lookAt( _target$1, _position$3, this.up );
}
this.quaternion.setFromRotationMatrix( _m1$1 );
if ( parent ) {
_m1$1.extractRotation( parent.matrixWorld );
_q1.setFromRotationMatrix( _m1$1 );
this.quaternion.premultiply( _q1.invert() );
}
}
add( object ) {
if ( arguments.length > 1 ) {
for ( let i = 0; i < arguments.length; i ++ ) {
this.add( arguments[ i ] );
}
return this;
}
if ( object === this ) {
console.error( 'THREE.Object3D.add: object can\'t be added as a child of itself.', object );
return this;
}
if ( object && object.isObject3D ) {
object.removeFromParent();
object.parent = this;
this.children.push( object );
object.dispatchEvent( _addedEvent );
_childaddedEvent.child = object;
this.dispatchEvent( _childaddedEvent );
_childaddedEvent.child = null;
} else {
console.error( 'THREE.Object3D.add: object not an instance of THREE.Object3D.', object );
}
return this;
}
remove( object ) {
if ( arguments.length > 1 ) {
for ( let i = 0; i < arguments.length; i ++ ) {
this.remove( arguments[ i ] );
}
return this;
}
const index = this.children.indexOf( object );
if ( index !== - 1 ) {
object.parent = null;
this.children.splice( index, 1 );
object.dispatchEvent( _removedEvent );
_childremovedEvent.child = object;
this.dispatchEvent( _childremovedEvent );
_childremovedEvent.child = null;
}
return this;
}
removeFromParent() {
const parent = this.parent;
if ( parent !== null ) {
parent.remove( this );
}
return this;
}
clear() {
return this.remove( ... this.children );
}
attach( object ) {
// adds object as a child of this, while maintaining the object's world transform
// Note: This method does not support scene graphs having non-uniformly-scaled nodes(s)
this.updateWorldMatrix( true, false );
_m1$1.copy( this.matrixWorld ).invert();
if ( object.parent !== null ) {
object.parent.updateWorldMatrix( true, false );
_m1$1.multiply( object.parent.matrixWorld );
}
object.applyMatrix4( _m1$1 );
object.removeFromParent();
object.parent = this;
this.children.push( object );
object.updateWorldMatrix( false, true );
object.dispatchEvent( _addedEvent );
_childaddedEvent.child = object;
this.dispatchEvent( _childaddedEvent );
_childaddedEvent.child = null;
return this;
}
getObjectById( id ) {
return this.getObjectByProperty( 'id', id );
}
getObjectByName( name ) {
return this.getObjectByProperty( 'name', name );
}
getObjectByProperty( name, value ) {
if ( this[ name ] === value ) return this;
for ( let i = 0, l = this.children.length; i < l; i ++ ) {
const child = this.children[ i ];
const object = child.getObjectByProperty( name, value );
if ( object !== undefined ) {
return object;
}
}
return undefined;
}
getObjectsByProperty( name, value, result = [] ) {
if ( this[ name ] === value ) result.push( this );
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
children[ i ].getObjectsByProperty( name, value, result );
}
return result;
}
getWorldPosition( target ) {
this.updateWorldMatrix( true, false );
return target.setFromMatrixPosition( this.matrixWorld );
}
getWorldQuaternion( target ) {
this.updateWorldMatrix( true, false );
this.matrixWorld.decompose( _position$3, target, _scale$2 );
return target;
}
getWorldScale( target ) {
this.updateWorldMatrix( true, false );
this.matrixWorld.decompose( _position$3, _quaternion$2, target );
return target;
}
getWorldDirection( target ) {
this.updateWorldMatrix( true, false );
const e = this.matrixWorld.elements;
return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize();
}
raycast( /* raycaster, intersects */ ) {}
traverse( callback ) {
callback( this );
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverse( callback );
}
}
traverseVisible( callback ) {
if ( this.visible === false ) return;
callback( this );
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
children[ i ].traverseVisible( callback );
}
}
traverseAncestors( callback ) {
const parent = this.parent;
if ( parent !== null ) {
callback( parent );
parent.traverseAncestors( callback );
}
}
updateMatrix() {
this.matrix.compose( this.position, this.quaternion, this.scale );
this.matrixWorldNeedsUpdate = true;
}
updateMatrixWorld( force ) {
if ( this.matrixAutoUpdate ) this.updateMatrix();
if ( this.matrixWorldNeedsUpdate || force ) {
if ( this.matrixWorldAutoUpdate === true ) {
if ( this.parent === null ) {
this.matrixWorld.copy( this.matrix );
} else {
this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
}
}
this.matrixWorldNeedsUpdate = false;
force = true;
}
// make sure descendants are updated if required
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
const child = children[ i ];
child.updateMatrixWorld( force );
}
}
updateWorldMatrix( updateParents, updateChildren ) {
const parent = this.parent;
if ( updateParents === true && parent !== null ) {
parent.updateWorldMatrix( true, false );
}
if ( this.matrixAutoUpdate ) this.updateMatrix();
if ( this.matrixWorldAutoUpdate === true ) {
if ( this.parent === null ) {
this.matrixWorld.copy( this.matrix );
} else {
this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );
}
}
// make sure descendants are updated
if ( updateChildren === true ) {
const children = this.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
const child = children[ i ];
child.updateWorldMatrix( false, true );
}
}
}
toJSON( meta ) {
// meta is a string when called from JSON.stringify
const isRootObject = ( meta === undefined || typeof meta === 'string' );
const output = {};
// meta is a hash used to collect geometries, materials.
// not providing it implies that this is the root object
// being serialized.
if ( isRootObject ) {
// initialize meta obj
meta = {
geometries: {},
materials: {},
textures: {},
images: {},
shapes: {},
skeletons: {},
animations: {},
nodes: {}
};
output.metadata = {
version: 4.6,
type: 'Object',
generator: 'Object3D.toJSON'
};
}
// standard Object3D serialization
const object = {};
object.uuid = this.uuid;
object.type = this.type;
if ( this.name !== '' ) object.name = this.name;
if ( this.castShadow === true ) object.castShadow = true;
if ( this.receiveShadow === true ) object.receiveShadow = true;
if ( this.visible === false ) object.visible = false;
if ( this.frustumCulled === false ) object.frustumCulled = false;
if ( this.renderOrder !== 0 ) object.renderOrder = this.renderOrder;
if ( Object.keys( this.userData ).length > 0 ) object.userData = this.userData;
object.layers = this.layers.mask;
object.matrix = this.matrix.toArray();
object.up = this.up.toArray();
if ( this.matrixAutoUpdate === false ) object.matrixAutoUpdate = false;
// object specific properties
if ( this.isInstancedMesh ) {
object.type = 'InstancedMesh';
object.count = this.count;
object.instanceMatrix = this.instanceMatrix.toJSON();
if ( this.instanceColor !== null ) object.instanceColor = this.instanceColor.toJSON();
}
if ( this.isBatchedMesh ) {
object.type = 'BatchedMesh';
object.perObjectFrustumCulled = this.perObjectFrustumCulled;
object.sortObjects = this.sortObjects;
object.drawRanges = this._drawRanges;
object.reservedRanges = this._reservedRanges;
object.visibility = this._visibility;
object.active = this._active;
object.bounds = this._bounds.map( bound => ( {
boxInitialized: bound.boxInitialized,
boxMin: bound.box.min.toArray(),
boxMax: bound.box.max.toArray(),
sphereInitialized: bound.sphereInitialized,
sphereRadius: bound.sphere.radius,
sphereCenter: bound.sphere.center.toArray()
} ) );
object.maxInstanceCount = this._maxInstanceCount;
object.maxVertexCount = this._maxVertexCount;
object.maxIndexCount = this._maxIndexCount;
object.geometryInitialized = this._geometryInitialized;
object.geometryCount = this._geometryCount;
object.matricesTexture = this._matricesTexture.toJSON( meta );
if ( this._colorsTexture !== null ) object.colorsTexture = this._colorsTexture.toJSON( meta );
if ( this.boundingSphere !== null ) {
object.boundingSphere = {
center: object.boundingSphere.center.toArray(),
radius: object.boundingSphere.radius
};
}
if ( this.boundingBox !== null ) {
object.boundingBox = {
min: object.boundingBox.min.toArray(),
max: object.boundingBox.max.toArray()
};
}
}
//
function serialize( library, element ) {
if ( library[ element.uuid ] === undefined ) {
library[ element.uuid ] = element.toJSON( meta );
}
return element.uuid;
}
if ( this.isScene ) {
if ( this.background ) {
if ( this.background.isColor ) {
object.background = this.background.toJSON();
} else if ( this.background.isTexture ) {
object.background = this.background.toJSON( meta ).uuid;
}
}
if ( this.environment && this.environment.isTexture && this.environment.isRenderTargetTexture !== true ) {
object.environment = this.environment.toJSON( meta ).uuid;
}
} else if ( this.isMesh || this.isLine || this.isPoints ) {
object.geometry = serialize( meta.geometries, this.geometry );
const parameters = this.geometry.parameters;
if ( parameters !== undefined && parameters.shapes !== undefined ) {
const shapes = parameters.shapes;
if ( Array.isArray( shapes ) ) {
for ( let i = 0, l = shapes.length; i < l; i ++ ) {
const shape = shapes[ i ];
serialize( meta.shapes, shape );
}
} else {
serialize( meta.shapes, shapes );
}
}
}
if ( this.isSkinnedMesh ) {
object.bindMode = this.bindMode;
object.bindMatrix = this.bindMatrix.toArray();
if ( this.skeleton !== undefined ) {
serialize( meta.skeletons, this.skeleton );
object.skeleton = this.skeleton.uuid;
}
}
if ( this.material !== undefined ) {
if ( Array.isArray( this.material ) ) {
const uuids = [];
for ( let i = 0, l = this.material.length; i < l; i ++ ) {
uuids.push( serialize( meta.materials, this.material[ i ] ) );
}
object.material = uuids;
} else {
object.material = serialize( meta.materials, this.material );
}
}
//
if ( this.children.length > 0 ) {
object.children = [];
for ( let i = 0; i < this.children.length; i ++ ) {
object.children.push( this.children[ i ].toJSON( meta ).object );
}
}
//
if ( this.animations.length > 0 ) {
object.animations = [];
for ( let i = 0; i < this.animations.length; i ++ ) {
const animation = this.animations[ i ];
object.animations.push( serialize( meta.animations, animation ) );
}
}
if ( isRootObject ) {
const geometries = extractFromCache( meta.geometries );
const materials = extractFromCache( meta.materials );
const textures = extractFromCache( meta.textures );
const images = extractFromCache( meta.images );
const shapes = extractFromCache( meta.shapes );
const skeletons = extractFromCache( meta.skeletons );
const animations = extractFromCache( meta.animations );
const nodes = extractFromCache( meta.nodes );
if ( geometries.length > 0 ) output.geometries = geometries;
if ( materials.length > 0 ) output.materials = materials;
if ( textures.length > 0 ) output.textures = textures;
if ( images.length > 0 ) output.images = images;
if ( shapes.length > 0 ) output.shapes = shapes;
if ( skeletons.length > 0 ) output.skeletons = skeletons;
if ( animations.length > 0 ) output.animations = animations;
if ( nodes.length > 0 ) output.nodes = nodes;
}
output.object = object;
return output;
// extract data from the cache hash
// remove metadata on each item
// and return as array
function extractFromCache( cache ) {
const values = [];
for ( const key in cache ) {
const data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
}
clone( recursive ) {
return new this.constructor().copy( this, recursive );
}
copy( source, recursive = true ) {
this.name = source.name;
this.up.copy( source.up );
this.position.copy( source.position );
this.rotation.order = source.rotation.order;
this.quaternion.copy( source.quaternion );
this.scale.copy( source.scale );
this.matrix.copy( source.matrix );
this.matrixWorld.copy( source.matrixWorld );
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrixWorldAutoUpdate = source.matrixWorldAutoUpdate;
this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
this.layers.mask = source.layers.mask;
this.visible = source.visible;
this.castShadow = source.castShadow;
this.receiveShadow = source.receiveShadow;
this.frustumCulled = source.frustumCulled;
this.renderOrder = source.renderOrder;
this.animations = source.animations.slice();
this.userData = JSON.parse( JSON.stringify( source.userData ) );
if ( recursive === true ) {
for ( let i = 0; i < source.children.length; i ++ ) {
const child = source.children[ i ];
this.add( child.clone() );
}
}
return this;
}
}
Object3D.DEFAULT_UP = /*@__PURE__*/ new Vector3( 0, 1, 0 );
Object3D.DEFAULT_MATRIX_AUTO_UPDATE = true;
Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE = true;
const _v0$1 = /*@__PURE__*/ new Vector3();
const _v1$3 = /*@__PURE__*/ new Vector3();
const _v2$2 = /*@__PURE__*/ new Vector3();
const _v3$2 = /*@__PURE__*/ new Vector3();
const _vab = /*@__PURE__*/ new Vector3();
const _vac = /*@__PURE__*/ new Vector3();
const _vbc = /*@__PURE__*/ new Vector3();
const _vap = /*@__PURE__*/ new Vector3();
const _vbp = /*@__PURE__*/ new Vector3();
const _vcp = /*@__PURE__*/ new Vector3();
class Triangle {
constructor( a = new Vector3(), b = new Vector3(), c = new Vector3() ) {
this.a = a;
this.b = b;
this.c = c;
}
static getNormal( a, b, c, target ) {
target.subVectors( c, b );
_v0$1.subVectors( a, b );
target.cross( _v0$1 );
const targetLengthSq = target.lengthSq();
if ( targetLengthSq > 0 ) {
return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) );
}
return target.set( 0, 0, 0 );
}
// static/instance method to calculate barycentric coordinates
// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
static getBarycoord( point, a, b, c, target ) {
_v0$1.subVectors( c, a );
_v1$3.subVectors( b, a );
_v2$2.subVectors( point, a );
const dot00 = _v0$1.dot( _v0$1 );
const dot01 = _v0$1.dot( _v1$3 );
const dot02 = _v0$1.dot( _v2$2 );
const dot11 = _v1$3.dot( _v1$3 );
const dot12 = _v1$3.dot( _v2$2 );
const denom = ( dot00 * dot11 - dot01 * dot01 );
// collinear or singular triangle
if ( denom === 0 ) {
target.set( 0, 0, 0 );
return null;
}
const invDenom = 1 / denom;
const u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
const v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;
// barycentric coordinates must always sum to 1
return target.set( 1 - u - v, v, u );
}
static containsPoint( point, a, b, c ) {
// if the triangle is degenerate then we can't contain a point
if ( this.getBarycoord( point, a, b, c, _v3$2 ) === null ) {
return false;
}
return ( _v3$2.x >= 0 ) && ( _v3$2.y >= 0 ) && ( ( _v3$2.x + _v3$2.y ) <= 1 );
}
static getInterpolation( point, p1, p2, p3, v1, v2, v3, target ) {
if ( this.getBarycoord( point, p1, p2, p3, _v3$2 ) === null ) {
target.x = 0;
target.y = 0;
if ( 'z' in target ) target.z = 0;
if ( 'w' in target ) target.w = 0;
return null;
}
target.setScalar( 0 );
target.addScaledVector( v1, _v3$2.x );
target.addScaledVector( v2, _v3$2.y );
target.addScaledVector( v3, _v3$2.z );
return target;
}
static isFrontFacing( a, b, c, direction ) {
_v0$1.subVectors( c, b );
_v1$3.subVectors( a, b );
// strictly front facing
return ( _v0$1.cross( _v1$3 ).dot( direction ) < 0 ) ? true : false;
}
set( a, b, c ) {
this.a.copy( a );
this.b.copy( b );
this.c.copy( c );
return this;
}
setFromPointsAndIndices( points, i0, i1, i2 ) {
this.a.copy( points[ i0 ] );
this.b.copy( points[ i1 ] );
this.c.copy( points[ i2 ] );
return this;
}
setFromAttributeAndIndices( attribute, i0, i1, i2 ) {
this.a.fromBufferAttribute( attribute, i0 );
this.b.fromBufferAttribute( attribute, i1 );
this.c.fromBufferAttribute( attribute, i2 );
return this;
}
clone() {
return new this.constructor().copy( this );
}
copy( triangle ) {
this.a.copy( triangle.a );
this.b.copy( triangle.b );
this.c.copy( triangle.c );
return this;
}
getArea() {
_v0$1.subVectors( this.c, this.b );
_v1$3.subVectors( this.a, this.b );
return _v0$1.cross( _v1$3 ).length() * 0.5;
}
getMidpoint( target ) {
return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );
}
getNormal( target ) {
return Triangle.getNormal( this.a, this.b, this.c, target );
}
getPlane( target ) {
return target.setFromCoplanarPoints( this.a, this.b, this.c );
}
getBarycoord( point, target ) {
return Triangle.getBarycoord( point, this.a, this.b, this.c, target );
}
getInterpolation( point, v1, v2, v3, target ) {
return Triangle.getInterpolation( point, this.a, this.b, this.c, v1, v2, v3, target );
}
containsPoint( point ) {
return Triangle.containsPoint( point, this.a, this.b, this.c );
}
isFrontFacing( direction ) {
return Triangle.isFrontFacing( this.a, this.b, this.c, direction );
}
intersectsBox( box ) {
return box.intersectsTriangle( this );
}
closestPointToPoint( p, target ) {
const a = this.a, b = this.b, c = this.c;
let v, w;
// algorithm thanks to Real-Time Collision Detection by Christer Ericson,
// published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
// under the accompanying license; see chapter 5.1.5 for detailed explanation.
// basically, we're distinguishing which of the voronoi regions of the triangle
// the point lies in with the minimum amount of redundant computation.
_vab.subVectors( b, a );
_vac.subVectors( c, a );
_vap.subVectors( p, a );
const d1 = _vab.dot( _vap );
const d2 = _vac.dot( _vap );
if ( d1 <= 0 && d2 <= 0 ) {
// vertex region of A; barycentric coords (1, 0, 0)
return target.copy( a );
}
_vbp.subVectors( p, b );
const d3 = _vab.dot( _vbp );
const d4 = _vac.dot( _vbp );
if ( d3 >= 0 && d4 <= d3 ) {
// vertex region of B; barycentric coords (0, 1, 0)
return target.copy( b );
}
const vc = d1 * d4 - d3 * d2;
if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) {
v = d1 / ( d1 - d3 );
// edge region of AB; barycentric coords (1-v, v, 0)
return target.copy( a ).addScaledVector( _vab, v );
}
_vcp.subVectors( p, c );
const d5 = _vab.dot( _vcp );
const d6 = _vac.dot( _vcp );
if ( d6 >= 0 && d5 <= d6 ) {
// vertex region of C; barycentric coords (0, 0, 1)
return target.copy( c );
}
const vb = d5 * d2 - d1 * d6;
if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) {
w = d2 / ( d2 - d6 );
// edge region of AC; barycentric coords (1-w, 0, w)
return target.copy( a ).addScaledVector( _vac, w );
}
const va = d3 * d6 - d5 * d4;
if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) {
_vbc.subVectors( c, b );
w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) );
// edge region of BC; barycentric coords (0, 1-w, w)
return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC
}
// face region
const denom = 1 / ( va + vb + vc );
// u = va * denom
v = vb * denom;
w = vc * denom;
return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w );
}
equals( triangle ) {
return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );
}
}
const _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF,
'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2,
'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50,
'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B,
'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B,
'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F,
'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3,
'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222,
'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700,
'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4,
'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00,
'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3,
'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA,
'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32,
'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3,
'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC,
'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD,
'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6,
'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9,
'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F,
'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE,
'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA,
'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0,
'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 };
const _hslA = { h: 0, s: 0, l: 0 };
const _hslB = { h: 0, s: 0, l: 0 };
function hue2rgb( p, q, t ) {
if ( t < 0 ) t += 1;
if ( t > 1 ) t -= 1;
if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t;
if ( t < 1 / 2 ) return q;
if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t );
return p;
}
class Color {
constructor( r, g, b ) {
this.isColor = true;
this.r = 1;
this.g = 1;
this.b = 1;
return this.set( r, g, b );
}
set( r, g, b ) {
if ( g === undefined && b === undefined ) {
// r is THREE.Color, hex or string
const value = r;
if ( value && value.isColor ) {
this.copy( value );
} else if ( typeof value === 'number' ) {
this.setHex( value );
} else if ( typeof value === 'string' ) {
this.setStyle( value );
}
} else {
this.setRGB( r, g, b );
}
return this;
}
setScalar( scalar ) {
this.r = scalar;
this.g = scalar;
this.b = scalar;
return this;
}
setHex( hex, colorSpace = SRGBColorSpace ) {
hex = Math.floor( hex );
this.r = ( hex >> 16 & 255 ) / 255;
this.g = ( hex >> 8 & 255 ) / 255;
this.b = ( hex & 255 ) / 255;
ColorManagement.toWorkingColorSpace( this, colorSpace );
return this;
}
setRGB( r, g, b, colorSpace = ColorManagement.workingColorSpace ) {
this.r = r;
this.g = g;
this.b = b;
ColorManagement.toWorkingColorSpace( this, colorSpace );
return this;
}
setHSL( h, s, l, colorSpace = ColorManagement.workingColorSpace ) {
// h,s,l ranges are in 0.0 - 1.0
h = euclideanModulo( h, 1 );
s = clamp$1( s, 0, 1 );
l = clamp$1( l, 0, 1 );
if ( s === 0 ) {
this.r = this.g = this.b = l;
} else {
const p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s );
const q = ( 2 * l ) - p;
this.r = hue2rgb( q, p, h + 1 / 3 );
this.g = hue2rgb( q, p, h );
this.b = hue2rgb( q, p, h - 1 / 3 );
}
ColorManagement.toWorkingColorSpace( this, colorSpace );
return this;
}
setStyle( style, colorSpace = SRGBColorSpace ) {
function handleAlpha( string ) {
if ( string === undefined ) return;
if ( parseFloat( string ) < 1 ) {
console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' );
}
}
let m;
if ( m = /^(\w+)\(([^\)]*)\)/.exec( style ) ) {
// rgb / hsl
let color;
const name = m[ 1 ];
const components = m[ 2 ];
switch ( name ) {
case 'rgb':
case 'rgba':
if ( color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) {
// rgb(255,0,0) rgba(255,0,0,0.5)
handleAlpha( color[ 4 ] );
return this.setRGB(
Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255,
Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255,
Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255,
colorSpace
);
}
if ( color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) {
// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
handleAlpha( color[ 4 ] );
return this.setRGB(
Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100,
Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100,
Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100,
colorSpace
);
}
break;
case 'hsl':
case 'hsla':
if ( color = /^\s*(\d*\.?\d+)\s*,\s*(\d*\.?\d+)\%\s*,\s*(\d*\.?\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) {
// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
handleAlpha( color[ 4 ] );
return this.setHSL(
parseFloat( color[ 1 ] ) / 360,
parseFloat( color[ 2 ] ) / 100,
parseFloat( color[ 3 ] ) / 100,
colorSpace
);
}
break;
default:
console.warn( 'THREE.Color: Unknown color model ' + style );
}
} else if ( m = /^\#([A-Fa-f\d]+)$/.exec( style ) ) {
// hex color
const hex = m[ 1 ];
const size = hex.length;
if ( size === 3 ) {
// #ff0
return this.setRGB(
parseInt( hex.charAt( 0 ), 16 ) / 15,
parseInt( hex.charAt( 1 ), 16 ) / 15,
parseInt( hex.charAt( 2 ), 16 ) / 15,
colorSpace
);
} else if ( size === 6 ) {
// #ff0000
return this.setHex( parseInt( hex, 16 ), colorSpace );
} else {
console.warn( 'THREE.Color: Invalid hex color ' + style );
}
} else if ( style && style.length > 0 ) {
return this.setColorName( style, colorSpace );
}
return this;
}
setColorName( style, colorSpace = SRGBColorSpace ) {
// color keywords
const hex = _colorKeywords[ style.toLowerCase() ];
if ( hex !== undefined ) {
// red
this.setHex( hex, colorSpace );
} else {
// unknown color
console.warn( 'THREE.Color: Unknown color ' + style );
}
return this;
}
clone() {
return new this.constructor( this.r, this.g, this.b );
}
copy( color ) {
this.r = color.r;
this.g = color.g;
this.b = color.b;
return this;
}
copySRGBToLinear( color ) {
this.r = SRGBToLinear( color.r );
this.g = SRGBToLinear( color.g );
this.b = SRGBToLinear( color.b );
return this;
}
copyLinearToSRGB( color ) {
this.r = LinearToSRGB( color.r );
this.g = LinearToSRGB( color.g );
this.b = LinearToSRGB( color.b );
return this;
}
convertSRGBToLinear() {
this.copySRGBToLinear( this );
return this;
}
convertLinearToSRGB() {
this.copyLinearToSRGB( this );
return this;
}
getHex( colorSpace = SRGBColorSpace ) {
ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace );
return Math.round( clamp$1( _color.r * 255, 0, 255 ) ) * 65536 + Math.round( clamp$1( _color.g * 255, 0, 255 ) ) * 256 + Math.round( clamp$1( _color.b * 255, 0, 255 ) );
}
getHexString( colorSpace = SRGBColorSpace ) {
return ( '000000' + this.getHex( colorSpace ).toString( 16 ) ).slice( - 6 );
}
getHSL( target, colorSpace = ColorManagement.workingColorSpace ) {
// h,s,l ranges are in 0.0 - 1.0
ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace );
const r = _color.r, g = _color.g, b = _color.b;
const max = Math.max( r, g, b );
const min = Math.min( r, g, b );
let hue, saturation;
const lightness = ( min + max ) / 2.0;
if ( min === max ) {
hue = 0;
saturation = 0;
} else {
const delta = max - min;
saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );
switch ( max ) {
case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break;
case g: hue = ( b - r ) / delta + 2; break;
case b: hue = ( r - g ) / delta + 4; break;
}
hue /= 6;
}
target.h = hue;
target.s = saturation;
target.l = lightness;
return target;
}
getRGB( target, colorSpace = ColorManagement.workingColorSpace ) {
ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace );
target.r = _color.r;
target.g = _color.g;
target.b = _color.b;
return target;
}
getStyle( colorSpace = SRGBColorSpace ) {
ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace );
const r = _color.r, g = _color.g, b = _color.b;
if ( colorSpace !== SRGBColorSpace ) {
// Requires CSS Color Module Level 4 (https://www.w3.org/TR/css-color-4/).
return `color(${ colorSpace } ${ r.toFixed( 3 ) } ${ g.toFixed( 3 ) } ${ b.toFixed( 3 ) })`;
}
return `rgb(${ Math.round( r * 255 ) },${ Math.round( g * 255 ) },${ Math.round( b * 255 ) })`;
}
offsetHSL( h, s, l ) {
this.getHSL( _hslA );
return this.setHSL( _hslA.h + h, _hslA.s + s, _hslA.l + l );
}
add( color ) {
this.r += color.r;
this.g += color.g;
this.b += color.b;
return this;
}
addColors( color1, color2 ) {
this.r = color1.r + color2.r;
this.g = color1.g + color2.g;
this.b = color1.b + color2.b;
return this;
}
addScalar( s ) {
this.r += s;
this.g += s;
this.b += s;
return this;
}
sub( color ) {
this.r = Math.max( 0, this.r - color.r );
this.g = Math.max( 0, this.g - color.g );
this.b = Math.max( 0, this.b - color.b );
return this;
}
multiply( color ) {
this.r *= color.r;
this.g *= color.g;
this.b *= color.b;
return this;
}
multiplyScalar( s ) {
this.r *= s;
this.g *= s;
this.b *= s;
return this;
}
lerp( color, alpha ) {
this.r += ( color.r - this.r ) * alpha;
this.g += ( color.g - this.g ) * alpha;
this.b += ( color.b - this.b ) * alpha;
return this;
}
lerpColors( color1, color2, alpha ) {
this.r = color1.r + ( color2.r - color1.r ) * alpha;
this.g = color1.g + ( color2.g - color1.g ) * alpha;
this.b = color1.b + ( color2.b - color1.b ) * alpha;
return this;
}
lerpHSL( color, alpha ) {
this.getHSL( _hslA );
color.getHSL( _hslB );
const h = lerp( _hslA.h, _hslB.h, alpha );
const s = lerp( _hslA.s, _hslB.s, alpha );
const l = lerp( _hslA.l, _hslB.l, alpha );
this.setHSL( h, s, l );
return this;
}
setFromVector3( v ) {
this.r = v.x;
this.g = v.y;
this.b = v.z;
return this;
}
applyMatrix3( m ) {
const r = this.r, g = this.g, b = this.b;
const e = m.elements;
this.r = e[ 0 ] * r + e[ 3 ] * g + e[ 6 ] * b;
this.g = e[ 1 ] * r + e[ 4 ] * g + e[ 7 ] * b;
this.b = e[ 2 ] * r + e[ 5 ] * g + e[ 8 ] * b;
return this;
}
equals( c ) {
return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );
}
fromArray( array, offset = 0 ) {
this.r = array[ offset ];
this.g = array[ offset + 1 ];
this.b = array[ offset + 2 ];
return this;
}
toArray( array = [], offset = 0 ) {
array[ offset ] = this.r;
array[ offset + 1 ] = this.g;
array[ offset + 2 ] = this.b;
return array;
}
fromBufferAttribute( attribute, index ) {
this.r = attribute.getX( index );
this.g = attribute.getY( index );
this.b = attribute.getZ( index );
return this;
}
toJSON() {
return this.getHex();
}
*[ Symbol.iterator ]() {
yield this.r;
yield this.g;
yield this.b;
}
}
const _color = /*@__PURE__*/ new Color();
Color.NAMES = _colorKeywords;
let _materialId = 0;
class Material extends EventDispatcher {
constructor() {
super();
this.isMaterial = true;
Object.defineProperty( this, 'id', { value: _materialId ++ } );
this.uuid = generateUUID();
this.name = '';
this.type = 'Material';
this.blending = NormalBlending;
this.side = FrontSide;
this.vertexColors = false;
this.opacity = 1;
this.transparent = false;
this.alphaHash = false;
this.blendSrc = SrcAlphaFactor;
this.blendDst = OneMinusSrcAlphaFactor;
this.blendEquation = AddEquation;
this.blendSrcAlpha = null;
this.blendDstAlpha = null;
this.blendEquationAlpha = null;
this.blendColor = new Color( 0, 0, 0 );
this.blendAlpha = 0;
this.depthFunc = LessEqualDepth;
this.depthTest = true;
this.depthWrite = true;
this.stencilWriteMask = 0xff;
this.stencilFunc = AlwaysStencilFunc;
this.stencilRef = 0;
this.stencilFuncMask = 0xff;
this.stencilFail = KeepStencilOp;
this.stencilZFail = KeepStencilOp;
this.stencilZPass = KeepStencilOp;
this.stencilWrite = false;
this.clippingPlanes = null;
this.clipIntersection = false;
this.clipShadows = false;
this.shadowSide = null;
this.colorWrite = true;
this.precision = null; // override the renderer's default precision for this material
this.polygonOffset = false;
this.polygonOffsetFactor = 0;
this.polygonOffsetUnits = 0;
this.dithering = false;
this.alphaToCoverage = false;
this.premultipliedAlpha = false;
this.forceSinglePass = false;
this.visible = true;
this.toneMapped = true;
this.userData = {};
this.version = 0;
this._alphaTest = 0;
}
get alphaTest() {
return this._alphaTest;
}
set alphaTest( value ) {
if ( this._alphaTest > 0 !== value > 0 ) {
this.version ++;
}
this._alphaTest = value;
}
onBeforeCompile( /* shaderobject, renderer */ ) {}
customProgramCacheKey() {
return this.onBeforeCompile.toString();
}
setValues( values ) {
if ( values === undefined ) return;
for ( const key in values ) {
const newValue = values[ key ];
if ( newValue === undefined ) {
console.warn( `THREE.Material: parameter '${ key }' has value of undefined.` );
continue;
}
const currentValue = this[ key ];
if ( currentValue === undefined ) {
console.warn( `THREE.Material: '${ key }' is not a property of THREE.${ this.type }.` );
continue;
}
if ( currentValue && currentValue.isColor ) {
currentValue.set( newValue );
} else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) {
currentValue.copy( newValue );
} else {
this[ key ] = newValue;
}
}
}
toJSON( meta ) {
const isRootObject = ( meta === undefined || typeof meta === 'string' );
if ( isRootObject ) {
meta = {
textures: {},
images: {}
};
}
const data = {
metadata: {
version: 4.6,
type: 'Material',
generator: 'Material.toJSON'
}
};
// standard Material serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( this.color && this.color.isColor ) data.color = this.color.getHex();
if ( this.roughness !== undefined ) data.roughness = this.roughness;
if ( this.metalness !== undefined ) data.metalness = this.metalness;
if ( this.sheen !== undefined ) data.sheen = this.sheen;
if ( this.sheenColor && this.sheenColor.isColor ) data.sheenColor = this.sheenColor.getHex();
if ( this.sheenRoughness !== undefined ) data.sheenRoughness = this.sheenRoughness;
if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex();
if ( this.emissiveIntensity !== undefined && this.emissiveIntensity !== 1 ) data.emissiveIntensity = this.emissiveIntensity;
if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex();
if ( this.specularIntensity !== undefined ) data.specularIntensity = this.specularIntensity;
if ( this.specularColor && this.specularColor.isColor ) data.specularColor = this.specularColor.getHex();
if ( this.shininess !== undefined ) data.shininess = this.shininess;
if ( this.clearcoat !== undefined ) data.clearcoat = this.clearcoat;
if ( this.clearcoatRoughness !== undefined ) data.clearcoatRoughness = this.clearcoatRoughness;
if ( this.clearcoatMap && this.clearcoatMap.isTexture ) {
data.clearcoatMap = this.clearcoatMap.toJSON( meta ).uuid;
}
if ( this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture ) {
data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON( meta ).uuid;
}
if ( this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture ) {
data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON( meta ).uuid;
data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();
}
if ( this.dispersion !== undefined ) data.dispersion = this.dispersion;
if ( this.iridescence !== undefined ) data.iridescence = this.iridescence;
if ( this.iridescenceIOR !== undefined ) data.iridescenceIOR = this.iridescenceIOR;
if ( this.iridescenceThicknessRange !== undefined ) data.iridescenceThicknessRange = this.iridescenceThicknessRange;
if ( this.iridescenceMap && this.iridescenceMap.isTexture ) {
data.iridescenceMap = this.iridescenceMap.toJSON( meta ).uuid;
}
if ( this.iridescenceThicknessMap && this.iridescenceThicknessMap.isTexture ) {
data.iridescenceThicknessMap = this.iridescenceThicknessMap.toJSON( meta ).uuid;
}
if ( this.anisotropy !== undefined ) data.anisotropy = this.anisotropy;
if ( this.anisotropyRotation !== undefined ) data.anisotropyRotation = this.anisotropyRotation;
if ( this.anisotropyMap && this.anisotropyMap.isTexture ) {
data.anisotropyMap = this.anisotropyMap.toJSON( meta ).uuid;
}
if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid;
if ( this.matcap && this.matcap.isTexture ) data.matcap = this.matcap.toJSON( meta ).uuid;
if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid;
if ( this.lightMap && this.lightMap.isTexture ) {
data.lightMap = this.lightMap.toJSON( meta ).uuid;
data.lightMapIntensity = this.lightMapIntensity;
}
if ( this.aoMap && this.aoMap.isTexture ) {
data.aoMap = this.aoMap.toJSON( meta ).uuid;
data.aoMapIntensity = this.aoMapIntensity;
}
if ( this.bumpMap && this.bumpMap.isTexture ) {
data.bumpMap = this.bumpMap.toJSON( meta ).uuid;
data.bumpScale = this.bumpScale;
}
if ( this.normalMap && this.normalMap.isTexture ) {
data.normalMap = this.normalMap.toJSON( meta ).uuid;
data.normalMapType = this.normalMapType;
data.normalScale = this.normalScale.toArray();
}
if ( this.displacementMap && this.displacementMap.isTexture ) {
data.displacementMap = this.displacementMap.toJSON( meta ).uuid;
data.displacementScale = this.displacementScale;
data.displacementBias = this.displacementBias;
}
if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid;
if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid;
if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid;
if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid;
if ( this.specularIntensityMap && this.specularIntensityMap.isTexture ) data.specularIntensityMap = this.specularIntensityMap.toJSON( meta ).uuid;
if ( this.specularColorMap && this.specularColorMap.isTexture ) data.specularColorMap = this.specularColorMap.toJSON( meta ).uuid;
if ( this.envMap && this.envMap.isTexture ) {
data.envMap = this.envMap.toJSON( meta ).uuid;
if ( this.combine !== undefined ) data.combine = this.combine;
}
if ( this.envMapRotation !== undefined ) data.envMapRotation = this.envMapRotation.toArray();
if ( this.envMapIntensity !== undefined ) data.envMapIntensity = this.envMapIntensity;
if ( this.reflectivity !== undefined ) data.reflectivity = this.reflectivity;
if ( this.refractionRatio !== undefined ) data.refractionRatio = this.refractionRatio;
if ( this.gradientMap && this.gradientMap.isTexture ) {
data.gradientMap = this.gradientMap.toJSON( meta ).uuid;
}
if ( this.transmission !== undefined ) data.transmission = this.transmission;
if ( this.transmissionMap && this.transmissionMap.isTexture ) data.transmissionMap = this.transmissionMap.toJSON( meta ).uuid;
if ( this.thickness !== undefined ) data.thickness = this.thickness;
if ( this.thicknessMap && this.thicknessMap.isTexture ) data.thicknessMap = this.thicknessMap.toJSON( meta ).uuid;
if ( this.attenuationDistance !== undefined && this.attenuationDistance !== Infinity ) data.attenuationDistance = this.attenuationDistance;
if ( this.attenuationColor !== undefined ) data.attenuationColor = this.attenuationColor.getHex();
if ( this.size !== undefined ) data.size = this.size;
if ( this.shadowSide !== null ) data.shadowSide = this.shadowSide;
if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation;
if ( this.blending !== NormalBlending ) data.blending = this.blending;
if ( this.side !== FrontSide ) data.side = this.side;
if ( this.vertexColors === true ) data.vertexColors = true;
if ( this.opacity < 1 ) data.opacity = this.opacity;
if ( this.transparent === true ) data.transparent = true;
if ( this.blendSrc !== SrcAlphaFactor ) data.blendSrc = this.blendSrc;
if ( this.blendDst !== OneMinusSrcAlphaFactor ) data.blendDst = this.blendDst;
if ( this.blendEquation !== AddEquation ) data.blendEquation = this.blendEquation;
if ( this.blendSrcAlpha !== null ) data.blendSrcAlpha = this.blendSrcAlpha;
if ( this.blendDstAlpha !== null ) data.blendDstAlpha = this.blendDstAlpha;
if ( this.blendEquationAlpha !== null ) data.blendEquationAlpha = this.blendEquationAlpha;
if ( this.blendColor && this.blendColor.isColor ) data.blendColor = this.blendColor.getHex();
if ( this.blendAlpha !== 0 ) data.blendAlpha = this.blendAlpha;
if ( this.depthFunc !== LessEqualDepth ) data.depthFunc = this.depthFunc;
if ( this.depthTest === false ) data.depthTest = this.depthTest;
if ( this.depthWrite === false ) data.depthWrite = this.depthWrite;
if ( this.colorWrite === false ) data.colorWrite = this.colorWrite;
if ( this.stencilWriteMask !== 0xff ) data.stencilWriteMask = this.stencilWriteMask;
if ( this.stencilFunc !== AlwaysStencilFunc ) data.stencilFunc = this.stencilFunc;
if ( this.stencilRef !== 0 ) data.stencilRef = this.stencilRef;
if ( this.stencilFuncMask !== 0xff ) data.stencilFuncMask = this.stencilFuncMask;
if ( this.stencilFail !== KeepStencilOp ) data.stencilFail = this.stencilFail;
if ( this.stencilZFail !== KeepStencilOp ) data.stencilZFail = this.stencilZFail;
if ( this.stencilZPass !== KeepStencilOp ) data.stencilZPass = this.stencilZPass;
if ( this.stencilWrite === true ) data.stencilWrite = this.stencilWrite;
// rotation (SpriteMaterial)
if ( this.rotation !== undefined && this.rotation !== 0 ) data.rotation = this.rotation;
if ( this.polygonOffset === true ) data.polygonOffset = true;
if ( this.polygonOffsetFactor !== 0 ) data.polygonOffsetFactor = this.polygonOffsetFactor;
if ( this.polygonOffsetUnits !== 0 ) data.polygonOffsetUnits = this.polygonOffsetUnits;
if ( this.linewidth !== undefined && this.linewidth !== 1 ) data.linewidth = this.linewidth;
if ( this.dashSize !== undefined ) data.dashSize = this.dashSize;
if ( this.gapSize !== undefined ) data.gapSize = this.gapSize;
if ( this.scale !== undefined ) data.scale = this.scale;
if ( this.dithering === true ) data.dithering = true;
if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest;
if ( this.alphaHash === true ) data.alphaHash = true;
if ( this.alphaToCoverage === true ) data.alphaToCoverage = true;
if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = true;
if ( this.forceSinglePass === true ) data.forceSinglePass = true;
if ( this.wireframe === true ) data.wireframe = true;
if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth;
if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap;
if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin;
if ( this.flatShading === true ) data.flatShading = true;
if ( this.visible === false ) data.visible = false;
if ( this.toneMapped === false ) data.toneMapped = false;
if ( this.fog === false ) data.fog = false;
if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData;
// TODO: Copied from Object3D.toJSON
function extractFromCache( cache ) {
const values = [];
for ( const key in cache ) {
const data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
if ( isRootObject ) {
const textures = extractFromCache( meta.textures );
const images = extractFromCache( meta.images );
if ( textures.length > 0 ) data.textures = textures;
if ( images.length > 0 ) data.images = images;
}
return data;
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
this.name = source.name;
this.blending = source.blending;
this.side = source.side;
this.vertexColors = source.vertexColors;
this.opacity = source.opacity;
this.transparent = source.transparent;
this.blendSrc = source.blendSrc;
this.blendDst = source.blendDst;
this.blendEquation = source.blendEquation;
this.blendSrcAlpha = source.blendSrcAlpha;
this.blendDstAlpha = source.blendDstAlpha;
this.blendEquationAlpha = source.blendEquationAlpha;
this.blendColor.copy( source.blendColor );
this.blendAlpha = source.blendAlpha;
this.depthFunc = source.depthFunc;
this.depthTest = source.depthTest;
this.depthWrite = source.depthWrite;
this.stencilWriteMask = source.stencilWriteMask;
this.stencilFunc = source.stencilFunc;
this.stencilRef = source.stencilRef;
this.stencilFuncMask = source.stencilFuncMask;
this.stencilFail = source.stencilFail;
this.stencilZFail = source.stencilZFail;
this.stencilZPass = source.stencilZPass;
this.stencilWrite = source.stencilWrite;
const srcPlanes = source.clippingPlanes;
let dstPlanes = null;
if ( srcPlanes !== null ) {
const n = srcPlanes.length;
dstPlanes = new Array( n );
for ( let i = 0; i !== n; ++ i ) {
dstPlanes[ i ] = srcPlanes[ i ].clone();
}
}
this.clippingPlanes = dstPlanes;
this.clipIntersection = source.clipIntersection;
this.clipShadows = source.clipShadows;
this.shadowSide = source.shadowSide;
this.colorWrite = source.colorWrite;
this.precision = source.precision;
this.polygonOffset = source.polygonOffset;
this.polygonOffsetFactor = source.polygonOffsetFactor;
this.polygonOffsetUnits = source.polygonOffsetUnits;
this.dithering = source.dithering;
this.alphaTest = source.alphaTest;
this.alphaHash = source.alphaHash;
this.alphaToCoverage = source.alphaToCoverage;
this.premultipliedAlpha = source.premultipliedAlpha;
this.forceSinglePass = source.forceSinglePass;
this.visible = source.visible;
this.toneMapped = source.toneMapped;
this.userData = JSON.parse( JSON.stringify( source.userData ) );
return this;
}
dispose() {
this.dispatchEvent( { type: 'dispose' } );
}
set needsUpdate( value ) {
if ( value === true ) this.version ++;
}
onBuild( /* shaderobject, renderer */ ) {
console.warn( 'Material: onBuild() has been removed.' ); // @deprecated, r166
}
onBeforeRender( /* renderer, scene, camera, geometry, object, group */ ) {
console.warn( 'Material: onBeforeRender() has been removed.' ); // @deprecated, r166
}
}
class MeshBasicMaterial extends Material {
constructor( parameters ) {
super();
this.isMeshBasicMaterial = true;
this.type = 'MeshBasicMaterial';
this.color = new Color( 0xffffff ); // emissive
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.envMapRotation = new Euler();
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.fog = true;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.color.copy( source.color );
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.envMapRotation.copy( source.envMapRotation );
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.fog = source.fog;
return this;
}
}
// Fast Half Float Conversions, http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf
const _tables = /*@__PURE__*/ _generateTables();
function _generateTables() {
// float32 to float16 helpers
const buffer = new ArrayBuffer( 4 );
const floatView = new Float32Array( buffer );
const uint32View = new Uint32Array( buffer );
const baseTable = new Uint32Array( 512 );
const shiftTable = new Uint32Array( 512 );
for ( let i = 0; i < 256; ++ i ) {
const e = i - 127;
// very small number (0, -0)
if ( e < - 27 ) {
baseTable[ i ] = 0x0000;
baseTable[ i | 0x100 ] = 0x8000;
shiftTable[ i ] = 24;
shiftTable[ i | 0x100 ] = 24;
// small number (denorm)
} else if ( e < - 14 ) {
baseTable[ i ] = 0x0400 >> ( - e - 14 );
baseTable[ i | 0x100 ] = ( 0x0400 >> ( - e - 14 ) ) | 0x8000;
shiftTable[ i ] = - e - 1;
shiftTable[ i | 0x100 ] = - e - 1;
// normal number
} else if ( e <= 15 ) {
baseTable[ i ] = ( e + 15 ) << 10;
baseTable[ i | 0x100 ] = ( ( e + 15 ) << 10 ) | 0x8000;
shiftTable[ i ] = 13;
shiftTable[ i | 0x100 ] = 13;
// large number (Infinity, -Infinity)
} else if ( e < 128 ) {
baseTable[ i ] = 0x7c00;
baseTable[ i | 0x100 ] = 0xfc00;
shiftTable[ i ] = 24;
shiftTable[ i | 0x100 ] = 24;
// stay (NaN, Infinity, -Infinity)
} else {
baseTable[ i ] = 0x7c00;
baseTable[ i | 0x100 ] = 0xfc00;
shiftTable[ i ] = 13;
shiftTable[ i | 0x100 ] = 13;
}
}
// float16 to float32 helpers
const mantissaTable = new Uint32Array( 2048 );
const exponentTable = new Uint32Array( 64 );
const offsetTable = new Uint32Array( 64 );
for ( let i = 1; i < 1024; ++ i ) {
let m = i << 13; // zero pad mantissa bits
let e = 0; // zero exponent
// normalized
while ( ( m & 0x00800000 ) === 0 ) {
m <<= 1;
e -= 0x00800000; // decrement exponent
}
m &= ~ 0x00800000; // clear leading 1 bit
e += 0x38800000; // adjust bias
mantissaTable[ i ] = m | e;
}
for ( let i = 1024; i < 2048; ++ i ) {
mantissaTable[ i ] = 0x38000000 + ( ( i - 1024 ) << 13 );
}
for ( let i = 1; i < 31; ++ i ) {
exponentTable[ i ] = i << 23;
}
exponentTable[ 31 ] = 0x47800000;
exponentTable[ 32 ] = 0x80000000;
for ( let i = 33; i < 63; ++ i ) {
exponentTable[ i ] = 0x80000000 + ( ( i - 32 ) << 23 );
}
exponentTable[ 63 ] = 0xc7800000;
for ( let i = 1; i < 64; ++ i ) {
if ( i !== 32 ) {
offsetTable[ i ] = 1024;
}
}
return {
floatView: floatView,
uint32View: uint32View,
baseTable: baseTable,
shiftTable: shiftTable,
mantissaTable: mantissaTable,
exponentTable: exponentTable,
offsetTable: offsetTable
};
}
// float32 to float16
function toHalfFloat( val ) {
if ( Math.abs( val ) > 65504 ) console.warn( 'THREE.DataUtils.toHalfFloat(): Value out of range.' );
val = clamp$1( val, - 65504, 65504 );
_tables.floatView[ 0 ] = val;
const f = _tables.uint32View[ 0 ];
const e = ( f >> 23 ) & 0x1ff;
return _tables.baseTable[ e ] + ( ( f & 0x007fffff ) >> _tables.shiftTable[ e ] );
}
// float16 to float32
function fromHalfFloat( val ) {
const m = val >> 10;
_tables.uint32View[ 0 ] = _tables.mantissaTable[ _tables.offsetTable[ m ] + ( val & 0x3ff ) ] + _tables.exponentTable[ m ];
return _tables.floatView[ 0 ];
}
const DataUtils = {
toHalfFloat: toHalfFloat,
fromHalfFloat: fromHalfFloat,
};
const _vector$9 = /*@__PURE__*/ new Vector3();
const _vector2$1 = /*@__PURE__*/ new Vector2();
class BufferAttribute {
constructor( array, itemSize, normalized = false ) {
if ( Array.isArray( array ) ) {
throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );
}
this.isBufferAttribute = true;
this.name = '';
this.array = array;
this.itemSize = itemSize;
this.count = array !== undefined ? array.length / itemSize : 0;
this.normalized = normalized;
this.usage = StaticDrawUsage;
this._updateRange = { offset: 0, count: - 1 };
this.updateRanges = [];
this.gpuType = FloatType;
this.version = 0;
}
onUploadCallback() {}
set needsUpdate( value ) {
if ( value === true ) this.version ++;
}
get updateRange() {
warnOnce( 'THREE.BufferAttribute: updateRange() is deprecated and will be removed in r169. Use addUpdateRange() instead.' ); // @deprecated, r159
return this._updateRange;
}
setUsage( value ) {
this.usage = value;
return this;
}
addUpdateRange( start, count ) {
this.updateRanges.push( { start, count } );
}
clearUpdateRanges() {
this.updateRanges.length = 0;
}
copy( source ) {
this.name = source.name;
this.array = new source.array.constructor( source.array );
this.itemSize = source.itemSize;
this.count = source.count;
this.normalized = source.normalized;
this.usage = source.usage;
this.gpuType = source.gpuType;
return this;
}
copyAt( index1, attribute, index2 ) {
index1 *= this.itemSize;
index2 *= attribute.itemSize;
for ( let i = 0, l = this.itemSize; i < l; i ++ ) {
this.array[ index1 + i ] = attribute.array[ index2 + i ];
}
return this;
}
copyArray( array ) {
this.array.set( array );
return this;
}
applyMatrix3( m ) {
if ( this.itemSize === 2 ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector2$1.fromBufferAttribute( this, i );
_vector2$1.applyMatrix3( m );
this.setXY( i, _vector2$1.x, _vector2$1.y );
}
} else if ( this.itemSize === 3 ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$9.fromBufferAttribute( this, i );
_vector$9.applyMatrix3( m );
this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z );
}
}
return this;
}
applyMatrix4( m ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$9.fromBufferAttribute( this, i );
_vector$9.applyMatrix4( m );
this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z );
}
return this;
}
applyNormalMatrix( m ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$9.fromBufferAttribute( this, i );
_vector$9.applyNormalMatrix( m );
this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z );
}
return this;
}
transformDirection( m ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$9.fromBufferAttribute( this, i );
_vector$9.transformDirection( m );
this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z );
}
return this;
}
set( value, offset = 0 ) {
// Matching BufferAttribute constructor, do not normalize the array.
this.array.set( value, offset );
return this;
}
getComponent( index, component ) {
let value = this.array[ index * this.itemSize + component ];
if ( this.normalized ) value = denormalize( value, this.array );
return value;
}
setComponent( index, component, value ) {
if ( this.normalized ) value = normalize$1( value, this.array );
this.array[ index * this.itemSize + component ] = value;
return this;
}
getX( index ) {
let x = this.array[ index * this.itemSize ];
if ( this.normalized ) x = denormalize( x, this.array );
return x;
}
setX( index, x ) {
if ( this.normalized ) x = normalize$1( x, this.array );
this.array[ index * this.itemSize ] = x;
return this;
}
getY( index ) {
let y = this.array[ index * this.itemSize + 1 ];
if ( this.normalized ) y = denormalize( y, this.array );
return y;
}
setY( index, y ) {
if ( this.normalized ) y = normalize$1( y, this.array );
this.array[ index * this.itemSize + 1 ] = y;
return this;
}
getZ( index ) {
let z = this.array[ index * this.itemSize + 2 ];
if ( this.normalized ) z = denormalize( z, this.array );
return z;
}
setZ( index, z ) {
if ( this.normalized ) z = normalize$1( z, this.array );
this.array[ index * this.itemSize + 2 ] = z;
return this;
}
getW( index ) {
let w = this.array[ index * this.itemSize + 3 ];
if ( this.normalized ) w = denormalize( w, this.array );
return w;
}
setW( index, w ) {
if ( this.normalized ) w = normalize$1( w, this.array );
this.array[ index * this.itemSize + 3 ] = w;
return this;
}
setXY( index, x, y ) {
index *= this.itemSize;
if ( this.normalized ) {
x = normalize$1( x, this.array );
y = normalize$1( y, this.array );
}
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
return this;
}
setXYZ( index, x, y, z ) {
index *= this.itemSize;
if ( this.normalized ) {
x = normalize$1( x, this.array );
y = normalize$1( y, this.array );
z = normalize$1( z, this.array );
}
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
return this;
}
setXYZW( index, x, y, z, w ) {
index *= this.itemSize;
if ( this.normalized ) {
x = normalize$1( x, this.array );
y = normalize$1( y, this.array );
z = normalize$1( z, this.array );
w = normalize$1( w, this.array );
}
this.array[ index + 0 ] = x;
this.array[ index + 1 ] = y;
this.array[ index + 2 ] = z;
this.array[ index + 3 ] = w;
return this;
}
onUpload( callback ) {
this.onUploadCallback = callback;
return this;
}
clone() {
return new this.constructor( this.array, this.itemSize ).copy( this );
}
toJSON() {
const data = {
itemSize: this.itemSize,
type: this.array.constructor.name,
array: Array.from( this.array ),
normalized: this.normalized
};
if ( this.name !== '' ) data.name = this.name;
if ( this.usage !== StaticDrawUsage ) data.usage = this.usage;
return data;
}
}
//
class Int8BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Int8Array( array ), itemSize, normalized );
}
}
class Uint8BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Uint8Array( array ), itemSize, normalized );
}
}
class Uint8ClampedBufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Uint8ClampedArray( array ), itemSize, normalized );
}
}
class Int16BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Int16Array( array ), itemSize, normalized );
}
}
class Uint16BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Uint16Array( array ), itemSize, normalized );
}
}
class Int32BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Int32Array( array ), itemSize, normalized );
}
}
class Uint32BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Uint32Array( array ), itemSize, normalized );
}
}
class Float16BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Uint16Array( array ), itemSize, normalized );
this.isFloat16BufferAttribute = true;
}
getX( index ) {
let x = fromHalfFloat( this.array[ index * this.itemSize ] );
if ( this.normalized ) x = denormalize( x, this.array );
return x;
}
setX( index, x ) {
if ( this.normalized ) x = normalize$1( x, this.array );
this.array[ index * this.itemSize ] = toHalfFloat( x );
return this;
}
getY( index ) {
let y = fromHalfFloat( this.array[ index * this.itemSize + 1 ] );
if ( this.normalized ) y = denormalize( y, this.array );
return y;
}
setY( index, y ) {
if ( this.normalized ) y = normalize$1( y, this.array );
this.array[ index * this.itemSize + 1 ] = toHalfFloat( y );
return this;
}
getZ( index ) {
let z = fromHalfFloat( this.array[ index * this.itemSize + 2 ] );
if ( this.normalized ) z = denormalize( z, this.array );
return z;
}
setZ( index, z ) {
if ( this.normalized ) z = normalize$1( z, this.array );
this.array[ index * this.itemSize + 2 ] = toHalfFloat( z );
return this;
}
getW( index ) {
let w = fromHalfFloat( this.array[ index * this.itemSize + 3 ] );
if ( this.normalized ) w = denormalize( w, this.array );
return w;
}
setW( index, w ) {
if ( this.normalized ) w = normalize$1( w, this.array );
this.array[ index * this.itemSize + 3 ] = toHalfFloat( w );
return this;
}
setXY( index, x, y ) {
index *= this.itemSize;
if ( this.normalized ) {
x = normalize$1( x, this.array );
y = normalize$1( y, this.array );
}
this.array[ index + 0 ] = toHalfFloat( x );
this.array[ index + 1 ] = toHalfFloat( y );
return this;
}
setXYZ( index, x, y, z ) {
index *= this.itemSize;
if ( this.normalized ) {
x = normalize$1( x, this.array );
y = normalize$1( y, this.array );
z = normalize$1( z, this.array );
}
this.array[ index + 0 ] = toHalfFloat( x );
this.array[ index + 1 ] = toHalfFloat( y );
this.array[ index + 2 ] = toHalfFloat( z );
return this;
}
setXYZW( index, x, y, z, w ) {
index *= this.itemSize;
if ( this.normalized ) {
x = normalize$1( x, this.array );
y = normalize$1( y, this.array );
z = normalize$1( z, this.array );
w = normalize$1( w, this.array );
}
this.array[ index + 0 ] = toHalfFloat( x );
this.array[ index + 1 ] = toHalfFloat( y );
this.array[ index + 2 ] = toHalfFloat( z );
this.array[ index + 3 ] = toHalfFloat( w );
return this;
}
}
class Float32BufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized ) {
super( new Float32Array( array ), itemSize, normalized );
}
}
let _id$9 = 0;
const _m1 = /*@__PURE__*/ new Matrix4();
const _obj = /*@__PURE__*/ new Object3D();
const _offset = /*@__PURE__*/ new Vector3();
const _box$2 = /*@__PURE__*/ new Box3();
const _boxMorphTargets = /*@__PURE__*/ new Box3();
const _vector$8 = /*@__PURE__*/ new Vector3();
class BufferGeometry extends EventDispatcher {
constructor() {
super();
this.isBufferGeometry = true;
Object.defineProperty( this, 'id', { value: _id$9 ++ } );
this.uuid = generateUUID();
this.name = '';
this.type = 'BufferGeometry';
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.morphTargetsRelative = false;
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
this.drawRange = { start: 0, count: Infinity };
this.userData = {};
}
getIndex() {
return this.index;
}
setIndex( index ) {
if ( Array.isArray( index ) ) {
this.index = new ( arrayNeedsUint32$1( index ) ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 );
} else {
this.index = index;
}
return this;
}
getAttribute( name ) {
return this.attributes[ name ];
}
setAttribute( name, attribute ) {
this.attributes[ name ] = attribute;
return this;
}
deleteAttribute( name ) {
delete this.attributes[ name ];
return this;
}
hasAttribute( name ) {
return this.attributes[ name ] !== undefined;
}
addGroup( start, count, materialIndex = 0 ) {
this.groups.push( {
start: start,
count: count,
materialIndex: materialIndex
} );
}
clearGroups() {
this.groups = [];
}
setDrawRange( start, count ) {
this.drawRange.start = start;
this.drawRange.count = count;
}
applyMatrix4( matrix ) {
const position = this.attributes.position;
if ( position !== undefined ) {
position.applyMatrix4( matrix );
position.needsUpdate = true;
}
const normal = this.attributes.normal;
if ( normal !== undefined ) {
const normalMatrix = new Matrix3().getNormalMatrix( matrix );
normal.applyNormalMatrix( normalMatrix );
normal.needsUpdate = true;
}
const tangent = this.attributes.tangent;
if ( tangent !== undefined ) {
tangent.transformDirection( matrix );
tangent.needsUpdate = true;
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
return this;
}
applyQuaternion( q ) {
_m1.makeRotationFromQuaternion( q );
this.applyMatrix4( _m1 );
return this;
}
rotateX( angle ) {
// rotate geometry around world x-axis
_m1.makeRotationX( angle );
this.applyMatrix4( _m1 );
return this;
}
rotateY( angle ) {
// rotate geometry around world y-axis
_m1.makeRotationY( angle );
this.applyMatrix4( _m1 );
return this;
}
rotateZ( angle ) {
// rotate geometry around world z-axis
_m1.makeRotationZ( angle );
this.applyMatrix4( _m1 );
return this;
}
translate( x, y, z ) {
// translate geometry
_m1.makeTranslation( x, y, z );
this.applyMatrix4( _m1 );
return this;
}
scale( x, y, z ) {
// scale geometry
_m1.makeScale( x, y, z );
this.applyMatrix4( _m1 );
return this;
}
lookAt( vector ) {
_obj.lookAt( vector );
_obj.updateMatrix();
this.applyMatrix4( _obj.matrix );
return this;
}
center() {
this.computeBoundingBox();
this.boundingBox.getCenter( _offset ).negate();
this.translate( _offset.x, _offset.y, _offset.z );
return this;
}
setFromPoints( points ) {
const position = [];
for ( let i = 0, l = points.length; i < l; i ++ ) {
const point = points[ i ];
position.push( point.x, point.y, point.z || 0 );
}
this.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) );
return this;
}
computeBoundingBox() {
if ( this.boundingBox === null ) {
this.boundingBox = new Box3();
}
const position = this.attributes.position;
const morphAttributesPosition = this.morphAttributes.position;
if ( position && position.isGLBufferAttribute ) {
console.error( 'THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box.', this );
this.boundingBox.set(
new Vector3( - Infinity, - Infinity, - Infinity ),
new Vector3( + Infinity, + Infinity, + Infinity )
);
return;
}
if ( position !== undefined ) {
this.boundingBox.setFromBufferAttribute( position );
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
_box$2.setFromBufferAttribute( morphAttribute );
if ( this.morphTargetsRelative ) {
_vector$8.addVectors( this.boundingBox.min, _box$2.min );
this.boundingBox.expandByPoint( _vector$8 );
_vector$8.addVectors( this.boundingBox.max, _box$2.max );
this.boundingBox.expandByPoint( _vector$8 );
} else {
this.boundingBox.expandByPoint( _box$2.min );
this.boundingBox.expandByPoint( _box$2.max );
}
}
}
} else {
this.boundingBox.makeEmpty();
}
if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );
}
}
computeBoundingSphere() {
if ( this.boundingSphere === null ) {
this.boundingSphere = new Sphere();
}
const position = this.attributes.position;
const morphAttributesPosition = this.morphAttributes.position;
if ( position && position.isGLBufferAttribute ) {
console.error( 'THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere.', this );
this.boundingSphere.set( new Vector3(), Infinity );
return;
}
if ( position ) {
// first, find the center of the bounding sphere
const center = this.boundingSphere.center;
_box$2.setFromBufferAttribute( position );
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
_boxMorphTargets.setFromBufferAttribute( morphAttribute );
if ( this.morphTargetsRelative ) {
_vector$8.addVectors( _box$2.min, _boxMorphTargets.min );
_box$2.expandByPoint( _vector$8 );
_vector$8.addVectors( _box$2.max, _boxMorphTargets.max );
_box$2.expandByPoint( _vector$8 );
} else {
_box$2.expandByPoint( _boxMorphTargets.min );
_box$2.expandByPoint( _boxMorphTargets.max );
}
}
}
_box$2.getCenter( center );
// second, try to find a boundingSphere with a radius smaller than the
// boundingSphere of the boundingBox: sqrt(3) smaller in the best case
let maxRadiusSq = 0;
for ( let i = 0, il = position.count; i < il; i ++ ) {
_vector$8.fromBufferAttribute( position, i );
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$8 ) );
}
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
const morphTargetsRelative = this.morphTargetsRelative;
for ( let j = 0, jl = morphAttribute.count; j < jl; j ++ ) {
_vector$8.fromBufferAttribute( morphAttribute, j );
if ( morphTargetsRelative ) {
_offset.fromBufferAttribute( position, j );
_vector$8.add( _offset );
}
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$8 ) );
}
}
}
this.boundingSphere.radius = Math.sqrt( maxRadiusSq );
if ( isNaN( this.boundingSphere.radius ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );
}
}
}
computeTangents() {
const index = this.index;
const attributes = this.attributes;
// based on http://www.terathon.com/code/tangent.html
// (per vertex tangents)
if ( index === null ||
attributes.position === undefined ||
attributes.normal === undefined ||
attributes.uv === undefined ) {
console.error( 'THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)' );
return;
}
const positionAttribute = attributes.position;
const normalAttribute = attributes.normal;
const uvAttribute = attributes.uv;
if ( this.hasAttribute( 'tangent' ) === false ) {
this.setAttribute( 'tangent', new BufferAttribute( new Float32Array( 4 * positionAttribute.count ), 4 ) );
}
const tangentAttribute = this.getAttribute( 'tangent' );
const tan1 = [], tan2 = [];
for ( let i = 0; i < positionAttribute.count; i ++ ) {
tan1[ i ] = new Vector3();
tan2[ i ] = new Vector3();
}
const vA = new Vector3(),
vB = new Vector3(),
vC = new Vector3(),
uvA = new Vector2(),
uvB = new Vector2(),
uvC = new Vector2(),
sdir = new Vector3(),
tdir = new Vector3();
function handleTriangle( a, b, c ) {
vA.fromBufferAttribute( positionAttribute, a );
vB.fromBufferAttribute( positionAttribute, b );
vC.fromBufferAttribute( positionAttribute, c );
uvA.fromBufferAttribute( uvAttribute, a );
uvB.fromBufferAttribute( uvAttribute, b );
uvC.fromBufferAttribute( uvAttribute, c );
vB.sub( vA );
vC.sub( vA );
uvB.sub( uvA );
uvC.sub( uvA );
const r = 1.0 / ( uvB.x * uvC.y - uvC.x * uvB.y );
// silently ignore degenerate uv triangles having coincident or colinear vertices
if ( ! isFinite( r ) ) return;
sdir.copy( vB ).multiplyScalar( uvC.y ).addScaledVector( vC, - uvB.y ).multiplyScalar( r );
tdir.copy( vC ).multiplyScalar( uvB.x ).addScaledVector( vB, - uvC.x ).multiplyScalar( r );
tan1[ a ].add( sdir );
tan1[ b ].add( sdir );
tan1[ c ].add( sdir );
tan2[ a ].add( tdir );
tan2[ b ].add( tdir );
tan2[ c ].add( tdir );
}
let groups = this.groups;
if ( groups.length === 0 ) {
groups = [ {
start: 0,
count: index.count
} ];
}
for ( let i = 0, il = groups.length; i < il; ++ i ) {
const group = groups[ i ];
const start = group.start;
const count = group.count;
for ( let j = start, jl = start + count; j < jl; j += 3 ) {
handleTriangle(
index.getX( j + 0 ),
index.getX( j + 1 ),
index.getX( j + 2 )
);
}
}
const tmp = new Vector3(), tmp2 = new Vector3();
const n = new Vector3(), n2 = new Vector3();
function handleVertex( v ) {
n.fromBufferAttribute( normalAttribute, v );
n2.copy( n );
const t = tan1[ v ];
// Gram-Schmidt orthogonalize
tmp.copy( t );
tmp.sub( n.multiplyScalar( n.dot( t ) ) ).normalize();
// Calculate handedness
tmp2.crossVectors( n2, t );
const test = tmp2.dot( tan2[ v ] );
const w = ( test < 0.0 ) ? - 1.0 : 1.0;
tangentAttribute.setXYZW( v, tmp.x, tmp.y, tmp.z, w );
}
for ( let i = 0, il = groups.length; i < il; ++ i ) {
const group = groups[ i ];
const start = group.start;
const count = group.count;
for ( let j = start, jl = start + count; j < jl; j += 3 ) {
handleVertex( index.getX( j + 0 ) );
handleVertex( index.getX( j + 1 ) );
handleVertex( index.getX( j + 2 ) );
}
}
}
computeVertexNormals() {
const index = this.index;
const positionAttribute = this.getAttribute( 'position' );
if ( positionAttribute !== undefined ) {
let normalAttribute = this.getAttribute( 'normal' );
if ( normalAttribute === undefined ) {
normalAttribute = new BufferAttribute( new Float32Array( positionAttribute.count * 3 ), 3 );
this.setAttribute( 'normal', normalAttribute );
} else {
// reset existing normals to zero
for ( let i = 0, il = normalAttribute.count; i < il; i ++ ) {
normalAttribute.setXYZ( i, 0, 0, 0 );
}
}
const pA = new Vector3(), pB = new Vector3(), pC = new Vector3();
const nA = new Vector3(), nB = new Vector3(), nC = new Vector3();
const cb = new Vector3(), ab = new Vector3();
// indexed elements
if ( index ) {
for ( let i = 0, il = index.count; i < il; i += 3 ) {
const vA = index.getX( i + 0 );
const vB = index.getX( i + 1 );
const vC = index.getX( i + 2 );
pA.fromBufferAttribute( positionAttribute, vA );
pB.fromBufferAttribute( positionAttribute, vB );
pC.fromBufferAttribute( positionAttribute, vC );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
nA.fromBufferAttribute( normalAttribute, vA );
nB.fromBufferAttribute( normalAttribute, vB );
nC.fromBufferAttribute( normalAttribute, vC );
nA.add( cb );
nB.add( cb );
nC.add( cb );
normalAttribute.setXYZ( vA, nA.x, nA.y, nA.z );
normalAttribute.setXYZ( vB, nB.x, nB.y, nB.z );
normalAttribute.setXYZ( vC, nC.x, nC.y, nC.z );
}
} else {
// non-indexed elements (unconnected triangle soup)
for ( let i = 0, il = positionAttribute.count; i < il; i += 3 ) {
pA.fromBufferAttribute( positionAttribute, i + 0 );
pB.fromBufferAttribute( positionAttribute, i + 1 );
pC.fromBufferAttribute( positionAttribute, i + 2 );
cb.subVectors( pC, pB );
ab.subVectors( pA, pB );
cb.cross( ab );
normalAttribute.setXYZ( i + 0, cb.x, cb.y, cb.z );
normalAttribute.setXYZ( i + 1, cb.x, cb.y, cb.z );
normalAttribute.setXYZ( i + 2, cb.x, cb.y, cb.z );
}
}
this.normalizeNormals();
normalAttribute.needsUpdate = true;
}
}
normalizeNormals() {
const normals = this.attributes.normal;
for ( let i = 0, il = normals.count; i < il; i ++ ) {
_vector$8.fromBufferAttribute( normals, i );
_vector$8.normalize();
normals.setXYZ( i, _vector$8.x, _vector$8.y, _vector$8.z );
}
}
toNonIndexed() {
function convertBufferAttribute( attribute, indices ) {
const array = attribute.array;
const itemSize = attribute.itemSize;
const normalized = attribute.normalized;
const array2 = new array.constructor( indices.length * itemSize );
let index = 0, index2 = 0;
for ( let i = 0, l = indices.length; i < l; i ++ ) {
if ( attribute.isInterleavedBufferAttribute ) {
index = indices[ i ] * attribute.data.stride + attribute.offset;
} else {
index = indices[ i ] * itemSize;
}
for ( let j = 0; j < itemSize; j ++ ) {
array2[ index2 ++ ] = array[ index ++ ];
}
}
return new BufferAttribute( array2, itemSize, normalized );
}
//
if ( this.index === null ) {
console.warn( 'THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.' );
return this;
}
const geometry2 = new BufferGeometry();
const indices = this.index.array;
const attributes = this.attributes;
// attributes
for ( const name in attributes ) {
const attribute = attributes[ name ];
const newAttribute = convertBufferAttribute( attribute, indices );
geometry2.setAttribute( name, newAttribute );
}
// morph attributes
const morphAttributes = this.morphAttributes;
for ( const name in morphAttributes ) {
const morphArray = [];
const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes
for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) {
const attribute = morphAttribute[ i ];
const newAttribute = convertBufferAttribute( attribute, indices );
morphArray.push( newAttribute );
}
geometry2.morphAttributes[ name ] = morphArray;
}
geometry2.morphTargetsRelative = this.morphTargetsRelative;
// groups
const groups = this.groups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
geometry2.addGroup( group.start, group.count, group.materialIndex );
}
return geometry2;
}
toJSON() {
const data = {
metadata: {
version: 4.6,
type: 'BufferGeometry',
generator: 'BufferGeometry.toJSON'
}
};
// standard BufferGeometry serialization
data.uuid = this.uuid;
data.type = this.type;
if ( this.name !== '' ) data.name = this.name;
if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData;
if ( this.parameters !== undefined ) {
const parameters = this.parameters;
for ( const key in parameters ) {
if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];
}
return data;
}
// for simplicity the code assumes attributes are not shared across geometries, see #15811
data.data = { attributes: {} };
const index = this.index;
if ( index !== null ) {
data.data.index = {
type: index.array.constructor.name,
array: Array.prototype.slice.call( index.array )
};
}
const attributes = this.attributes;
for ( const key in attributes ) {
const attribute = attributes[ key ];
data.data.attributes[ key ] = attribute.toJSON( data.data );
}
const morphAttributes = {};
let hasMorphAttributes = false;
for ( const key in this.morphAttributes ) {
const attributeArray = this.morphAttributes[ key ];
const array = [];
for ( let i = 0, il = attributeArray.length; i < il; i ++ ) {
const attribute = attributeArray[ i ];
array.push( attribute.toJSON( data.data ) );
}
if ( array.length > 0 ) {
morphAttributes[ key ] = array;
hasMorphAttributes = true;
}
}
if ( hasMorphAttributes ) {
data.data.morphAttributes = morphAttributes;
data.data.morphTargetsRelative = this.morphTargetsRelative;
}
const groups = this.groups;
if ( groups.length > 0 ) {
data.data.groups = JSON.parse( JSON.stringify( groups ) );
}
const boundingSphere = this.boundingSphere;
if ( boundingSphere !== null ) {
data.data.boundingSphere = {
center: boundingSphere.center.toArray(),
radius: boundingSphere.radius
};
}
return data;
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
// reset
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
// used for storing cloned, shared data
const data = {};
// name
this.name = source.name;
// index
const index = source.index;
if ( index !== null ) {
this.setIndex( index.clone( data ) );
}
// attributes
const attributes = source.attributes;
for ( const name in attributes ) {
const attribute = attributes[ name ];
this.setAttribute( name, attribute.clone( data ) );
}
// morph attributes
const morphAttributes = source.morphAttributes;
for ( const name in morphAttributes ) {
const array = [];
const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes
for ( let i = 0, l = morphAttribute.length; i < l; i ++ ) {
array.push( morphAttribute[ i ].clone( data ) );
}
this.morphAttributes[ name ] = array;
}
this.morphTargetsRelative = source.morphTargetsRelative;
// groups
const groups = source.groups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
this.addGroup( group.start, group.count, group.materialIndex );
}
// bounding box
const boundingBox = source.boundingBox;
if ( boundingBox !== null ) {
this.boundingBox = boundingBox.clone();
}
// bounding sphere
const boundingSphere = source.boundingSphere;
if ( boundingSphere !== null ) {
this.boundingSphere = boundingSphere.clone();
}
// draw range
this.drawRange.start = source.drawRange.start;
this.drawRange.count = source.drawRange.count;
// user data
this.userData = source.userData;
return this;
}
dispose() {
this.dispatchEvent( { type: 'dispose' } );
}
}
const _inverseMatrix$3 = /*@__PURE__*/ new Matrix4();
const _ray$3 = /*@__PURE__*/ new Ray();
const _sphere$6 = /*@__PURE__*/ new Sphere();
const _sphereHitAt = /*@__PURE__*/ new Vector3();
const _vA$1 = /*@__PURE__*/ new Vector3();
const _vB$1 = /*@__PURE__*/ new Vector3();
const _vC$1 = /*@__PURE__*/ new Vector3();
const _tempA = /*@__PURE__*/ new Vector3();
const _morphA = /*@__PURE__*/ new Vector3();
const _uvA$1 = /*@__PURE__*/ new Vector2();
const _uvB$1 = /*@__PURE__*/ new Vector2();
const _uvC$1 = /*@__PURE__*/ new Vector2();
const _normalA = /*@__PURE__*/ new Vector3();
const _normalB = /*@__PURE__*/ new Vector3();
const _normalC = /*@__PURE__*/ new Vector3();
const _intersectionPoint = /*@__PURE__*/ new Vector3();
const _intersectionPointWorld = /*@__PURE__*/ new Vector3();
class Mesh extends Object3D {
constructor( geometry = new BufferGeometry(), material = new MeshBasicMaterial() ) {
super();
this.isMesh = true;
this.type = 'Mesh';
this.geometry = geometry;
this.material = material;
this.updateMorphTargets();
}
copy( source, recursive ) {
super.copy( source, recursive );
if ( source.morphTargetInfluences !== undefined ) {
this.morphTargetInfluences = source.morphTargetInfluences.slice();
}
if ( source.morphTargetDictionary !== undefined ) {
this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary );
}
this.material = Array.isArray( source.material ) ? source.material.slice() : source.material;
this.geometry = source.geometry;
return this;
}
updateMorphTargets() {
const geometry = this.geometry;
const morphAttributes = geometry.morphAttributes;
const keys = Object.keys( morphAttributes );
if ( keys.length > 0 ) {
const morphAttribute = morphAttributes[ keys[ 0 ] ];
if ( morphAttribute !== undefined ) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) {
const name = morphAttribute[ m ].name || String( m );
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ name ] = m;
}
}
}
}
getVertexPosition( index, target ) {
const geometry = this.geometry;
const position = geometry.attributes.position;
const morphPosition = geometry.morphAttributes.position;
const morphTargetsRelative = geometry.morphTargetsRelative;
target.fromBufferAttribute( position, index );
const morphInfluences = this.morphTargetInfluences;
if ( morphPosition && morphInfluences ) {
_morphA.set( 0, 0, 0 );
for ( let i = 0, il = morphPosition.length; i < il; i ++ ) {
const influence = morphInfluences[ i ];
const morphAttribute = morphPosition[ i ];
if ( influence === 0 ) continue;
_tempA.fromBufferAttribute( morphAttribute, index );
if ( morphTargetsRelative ) {
_morphA.addScaledVector( _tempA, influence );
} else {
_morphA.addScaledVector( _tempA.sub( target ), influence );
}
}
target.add( _morphA );
}
return target;
}
raycast( raycaster, intersects ) {
const geometry = this.geometry;
const material = this.material;
const matrixWorld = this.matrixWorld;
if ( material === undefined ) return;
// test with bounding sphere in world space
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_sphere$6.copy( geometry.boundingSphere );
_sphere$6.applyMatrix4( matrixWorld );
// check distance from ray origin to bounding sphere
_ray$3.copy( raycaster.ray ).recast( raycaster.near );
if ( _sphere$6.containsPoint( _ray$3.origin ) === false ) {
if ( _ray$3.intersectSphere( _sphere$6, _sphereHitAt ) === null ) return;
if ( _ray$3.origin.distanceToSquared( _sphereHitAt ) > ( raycaster.far - raycaster.near ) ** 2 ) return;
}
// convert ray to local space of mesh
_inverseMatrix$3.copy( matrixWorld ).invert();
_ray$3.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$3 );
// test with bounding box in local space
if ( geometry.boundingBox !== null ) {
if ( _ray$3.intersectsBox( geometry.boundingBox ) === false ) return;
}
// test for intersections with geometry
this._computeIntersections( raycaster, intersects, _ray$3 );
}
_computeIntersections( raycaster, intersects, rayLocalSpace ) {
let intersection;
const geometry = this.geometry;
const material = this.material;
const index = geometry.index;
const position = geometry.attributes.position;
const uv = geometry.attributes.uv;
const uv1 = geometry.attributes.uv1;
const normal = geometry.attributes.normal;
const groups = geometry.groups;
const drawRange = geometry.drawRange;
if ( index !== null ) {
// indexed buffer geometry
if ( Array.isArray( material ) ) {
for ( let i = 0, il = groups.length; i < il; i ++ ) {
const group = groups[ i ];
const groupMaterial = material[ group.materialIndex ];
const start = Math.max( group.start, drawRange.start );
const end = Math.min( index.count, Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ) );
for ( let j = start, jl = end; j < jl; j += 3 ) {
const a = index.getX( j );
const b = index.getX( j + 1 );
const c = index.getX( j + 2 );
intersection = checkGeometryIntersection( this, groupMaterial, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics
intersection.face.materialIndex = group.materialIndex;
intersects.push( intersection );
}
}
}
} else {
const start = Math.max( 0, drawRange.start );
const end = Math.min( index.count, ( drawRange.start + drawRange.count ) );
for ( let i = start, il = end; i < il; i += 3 ) {
const a = index.getX( i );
const b = index.getX( i + 1 );
const c = index.getX( i + 2 );
intersection = checkGeometryIntersection( this, material, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indexed buffer semantics
intersects.push( intersection );
}
}
}
} else if ( position !== undefined ) {
// non-indexed buffer geometry
if ( Array.isArray( material ) ) {
for ( let i = 0, il = groups.length; i < il; i ++ ) {
const group = groups[ i ];
const groupMaterial = material[ group.materialIndex ];
const start = Math.max( group.start, drawRange.start );
const end = Math.min( position.count, Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ) );
for ( let j = start, jl = end; j < jl; j += 3 ) {
const a = j;
const b = j + 1;
const c = j + 2;
intersection = checkGeometryIntersection( this, groupMaterial, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( j / 3 ); // triangle number in non-indexed buffer semantics
intersection.face.materialIndex = group.materialIndex;
intersects.push( intersection );
}
}
}
} else {
const start = Math.max( 0, drawRange.start );
const end = Math.min( position.count, ( drawRange.start + drawRange.count ) );
for ( let i = start, il = end; i < il; i += 3 ) {
const a = i;
const b = i + 1;
const c = i + 2;
intersection = checkGeometryIntersection( this, material, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c );
if ( intersection ) {
intersection.faceIndex = Math.floor( i / 3 ); // triangle number in non-indexed buffer semantics
intersects.push( intersection );
}
}
}
}
}
}
function checkIntersection$1( object, material, raycaster, ray, pA, pB, pC, point ) {
let intersect;
if ( material.side === BackSide ) {
intersect = ray.intersectTriangle( pC, pB, pA, true, point );
} else {
intersect = ray.intersectTriangle( pA, pB, pC, ( material.side === FrontSide ), point );
}
if ( intersect === null ) return null;
_intersectionPointWorld.copy( point );
_intersectionPointWorld.applyMatrix4( object.matrixWorld );
const distance = raycaster.ray.origin.distanceTo( _intersectionPointWorld );
if ( distance < raycaster.near || distance > raycaster.far ) return null;
return {
distance: distance,
point: _intersectionPointWorld.clone(),
object: object
};
}
function checkGeometryIntersection( object, material, raycaster, ray, uv, uv1, normal, a, b, c ) {
object.getVertexPosition( a, _vA$1 );
object.getVertexPosition( b, _vB$1 );
object.getVertexPosition( c, _vC$1 );
const intersection = checkIntersection$1( object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint );
if ( intersection ) {
if ( uv ) {
_uvA$1.fromBufferAttribute( uv, a );
_uvB$1.fromBufferAttribute( uv, b );
_uvC$1.fromBufferAttribute( uv, c );
intersection.uv = Triangle.getInterpolation( _intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() );
}
if ( uv1 ) {
_uvA$1.fromBufferAttribute( uv1, a );
_uvB$1.fromBufferAttribute( uv1, b );
_uvC$1.fromBufferAttribute( uv1, c );
intersection.uv1 = Triangle.getInterpolation( _intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() );
}
if ( normal ) {
_normalA.fromBufferAttribute( normal, a );
_normalB.fromBufferAttribute( normal, b );
_normalC.fromBufferAttribute( normal, c );
intersection.normal = Triangle.getInterpolation( _intersectionPoint, _vA$1, _vB$1, _vC$1, _normalA, _normalB, _normalC, new Vector3() );
if ( intersection.normal.dot( ray.direction ) > 0 ) {
intersection.normal.multiplyScalar( - 1 );
}
}
const face = {
a: a,
b: b,
c: c,
normal: new Vector3(),
materialIndex: 0
};
Triangle.getNormal( _vA$1, _vB$1, _vC$1, face.normal );
intersection.face = face;
}
return intersection;
}
class BoxGeometry extends BufferGeometry {
constructor( width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1 ) {
super();
this.type = 'BoxGeometry';
this.parameters = {
width: width,
height: height,
depth: depth,
widthSegments: widthSegments,
heightSegments: heightSegments,
depthSegments: depthSegments
};
const scope = this;
// segments
widthSegments = Math.floor( widthSegments );
heightSegments = Math.floor( heightSegments );
depthSegments = Math.floor( depthSegments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
let numberOfVertices = 0;
let groupStart = 0;
// build each side of the box geometry
buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px
buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx
buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py
buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny
buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz
buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) {
const segmentWidth = width / gridX;
const segmentHeight = height / gridY;
const widthHalf = width / 2;
const heightHalf = height / 2;
const depthHalf = depth / 2;
const gridX1 = gridX + 1;
const gridY1 = gridY + 1;
let vertexCounter = 0;
let groupCount = 0;
const vector = new Vector3();
// generate vertices, normals and uvs
for ( let iy = 0; iy < gridY1; iy ++ ) {
const y = iy * segmentHeight - heightHalf;
for ( let ix = 0; ix < gridX1; ix ++ ) {
const x = ix * segmentWidth - widthHalf;
// set values to correct vector component
vector[ u ] = x * udir;
vector[ v ] = y * vdir;
vector[ w ] = depthHalf;
// now apply vector to vertex buffer
vertices.push( vector.x, vector.y, vector.z );
// set values to correct vector component
vector[ u ] = 0;
vector[ v ] = 0;
vector[ w ] = depth > 0 ? 1 : - 1;
// now apply vector to normal buffer
normals.push( vector.x, vector.y, vector.z );
// uvs
uvs.push( ix / gridX );
uvs.push( 1 - ( iy / gridY ) );
// counters
vertexCounter += 1;
}
}
// indices
// 1. you need three indices to draw a single face
// 2. a single segment consists of two faces
// 3. so we need to generate six (2*3) indices per segment
for ( let iy = 0; iy < gridY; iy ++ ) {
for ( let ix = 0; ix < gridX; ix ++ ) {
const a = numberOfVertices + ix + gridX1 * iy;
const b = numberOfVertices + ix + gridX1 * ( iy + 1 );
const c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 );
const d = numberOfVertices + ( ix + 1 ) + gridX1 * iy;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
// increase counter
groupCount += 6;
}
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, materialIndex );
// calculate new start value for groups
groupStart += groupCount;
// update total number of vertices
numberOfVertices += vertexCounter;
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new BoxGeometry( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments );
}
}
/**
* Uniform Utilities
*/
function cloneUniforms( src ) {
const dst = {};
for ( const u in src ) {
dst[ u ] = {};
for ( const p in src[ u ] ) {
const property = src[ u ][ p ];
if ( property && ( property.isColor ||
property.isMatrix3 || property.isMatrix4 ||
property.isVector2 || property.isVector3 || property.isVector4 ||
property.isTexture || property.isQuaternion ) ) {
if ( property.isRenderTargetTexture ) {
console.warn( 'UniformsUtils: Textures of render targets cannot be cloned via cloneUniforms() or mergeUniforms().' );
dst[ u ][ p ] = null;
} else {
dst[ u ][ p ] = property.clone();
}
} else if ( Array.isArray( property ) ) {
dst[ u ][ p ] = property.slice();
} else {
dst[ u ][ p ] = property;
}
}
}
return dst;
}
function cloneUniformsGroups( src ) {
const dst = [];
for ( let u = 0; u < src.length; u ++ ) {
dst.push( src[ u ].clone() );
}
return dst;
}
var default_vertex = /* glsl */`
void main() {
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}
`;
var default_fragment = /* glsl */`
void main() {
gl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );
}
`;
class ShaderMaterial extends Material {
constructor( parameters ) {
super();
this.isShaderMaterial = true;
this.type = 'ShaderMaterial';
this.defines = {};
this.uniforms = {};
this.uniformsGroups = [];
this.vertexShader = default_vertex;
this.fragmentShader = default_fragment;
this.linewidth = 1;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.fog = false; // set to use scene fog
this.lights = false; // set to use scene lights
this.clipping = false; // set to use user-defined clipping planes
this.forceSinglePass = true;
this.extensions = {
clipCullDistance: false, // set to use vertex shader clipping
multiDraw: false // set to use vertex shader multi_draw / enable gl_DrawID
};
// When rendered geometry doesn't include these attributes but the material does,
// use these default values in WebGL. This avoids errors when buffer data is missing.
this.defaultAttributeValues = {
'color': [ 1, 1, 1 ],
'uv': [ 0, 0 ],
'uv1': [ 0, 0 ]
};
this.index0AttributeName = undefined;
this.uniformsNeedUpdate = false;
this.glslVersion = null;
if ( parameters !== undefined ) {
this.setValues( parameters );
}
}
copy( source ) {
super.copy( source );
this.fragmentShader = source.fragmentShader;
this.vertexShader = source.vertexShader;
this.uniforms = cloneUniforms( source.uniforms );
this.uniformsGroups = cloneUniformsGroups( source.uniformsGroups );
this.defines = Object.assign( {}, source.defines );
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.fog = source.fog;
this.lights = source.lights;
this.clipping = source.clipping;
this.extensions = Object.assign( {}, source.extensions );
this.glslVersion = source.glslVersion;
return this;
}
toJSON( meta ) {
const data = super.toJSON( meta );
data.glslVersion = this.glslVersion;
data.uniforms = {};
for ( const name in this.uniforms ) {
const uniform = this.uniforms[ name ];
const value = uniform.value;
if ( value && value.isTexture ) {
data.uniforms[ name ] = {
type: 't',
value: value.toJSON( meta ).uuid
};
} else if ( value && value.isColor ) {
data.uniforms[ name ] = {
type: 'c',
value: value.getHex()
};
} else if ( value && value.isVector2 ) {
data.uniforms[ name ] = {
type: 'v2',
value: value.toArray()
};
} else if ( value && value.isVector3 ) {
data.uniforms[ name ] = {
type: 'v3',
value: value.toArray()
};
} else if ( value && value.isVector4 ) {
data.uniforms[ name ] = {
type: 'v4',
value: value.toArray()
};
} else if ( value && value.isMatrix3 ) {
data.uniforms[ name ] = {
type: 'm3',
value: value.toArray()
};
} else if ( value && value.isMatrix4 ) {
data.uniforms[ name ] = {
type: 'm4',
value: value.toArray()
};
} else {
data.uniforms[ name ] = {
value: value
};
// note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far
}
}
if ( Object.keys( this.defines ).length > 0 ) data.defines = this.defines;
data.vertexShader = this.vertexShader;
data.fragmentShader = this.fragmentShader;
data.lights = this.lights;
data.clipping = this.clipping;
const extensions = {};
for ( const key in this.extensions ) {
if ( this.extensions[ key ] === true ) extensions[ key ] = true;
}
if ( Object.keys( extensions ).length > 0 ) data.extensions = extensions;
return data;
}
}
class Camera extends Object3D {
constructor() {
super();
this.isCamera = true;
this.type = 'Camera';
this.matrixWorldInverse = new Matrix4();
this.projectionMatrix = new Matrix4();
this.projectionMatrixInverse = new Matrix4();
this.coordinateSystem = WebGLCoordinateSystem;
}
copy( source, recursive ) {
super.copy( source, recursive );
this.matrixWorldInverse.copy( source.matrixWorldInverse );
this.projectionMatrix.copy( source.projectionMatrix );
this.projectionMatrixInverse.copy( source.projectionMatrixInverse );
this.coordinateSystem = source.coordinateSystem;
return this;
}
getWorldDirection( target ) {
return super.getWorldDirection( target ).negate();
}
updateMatrixWorld( force ) {
super.updateMatrixWorld( force );
this.matrixWorldInverse.copy( this.matrixWorld ).invert();
}
updateWorldMatrix( updateParents, updateChildren ) {
super.updateWorldMatrix( updateParents, updateChildren );
this.matrixWorldInverse.copy( this.matrixWorld ).invert();
}
clone() {
return new this.constructor().copy( this );
}
}
const _v3$1 = /*@__PURE__*/ new Vector3();
const _minTarget = /*@__PURE__*/ new Vector2();
const _maxTarget = /*@__PURE__*/ new Vector2();
class PerspectiveCamera extends Camera {
constructor( fov = 50, aspect = 1, near = 0.1, far = 2000 ) {
super();
this.isPerspectiveCamera = true;
this.type = 'PerspectiveCamera';
this.fov = fov;
this.zoom = 1;
this.near = near;
this.far = far;
this.focus = 10;
this.aspect = aspect;
this.view = null;
this.filmGauge = 35; // width of the film (default in millimeters)
this.filmOffset = 0; // horizontal film offset (same unit as gauge)
this.updateProjectionMatrix();
}
copy( source, recursive ) {
super.copy( source, recursive );
this.fov = source.fov;
this.zoom = source.zoom;
this.near = source.near;
this.far = source.far;
this.focus = source.focus;
this.aspect = source.aspect;
this.view = source.view === null ? null : Object.assign( {}, source.view );
this.filmGauge = source.filmGauge;
this.filmOffset = source.filmOffset;
return this;
}
/**
* Sets the FOV by focal length in respect to the current .filmGauge.
*
* The default film gauge is 35, so that the focal length can be specified for
* a 35mm (full frame) camera.
*
* Values for focal length and film gauge must have the same unit.
*/
setFocalLength( focalLength ) {
/** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */
const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
this.fov = RAD2DEG * 2 * Math.atan( vExtentSlope );
this.updateProjectionMatrix();
}
/**
* Calculates the focal length from the current .fov and .filmGauge.
*/
getFocalLength() {
const vExtentSlope = Math.tan( DEG2RAD * 0.5 * this.fov );
return 0.5 * this.getFilmHeight() / vExtentSlope;
}
getEffectiveFOV() {
return RAD2DEG * 2 * Math.atan(
Math.tan( DEG2RAD * 0.5 * this.fov ) / this.zoom );
}
getFilmWidth() {
// film not completely covered in portrait format (aspect < 1)
return this.filmGauge * Math.min( this.aspect, 1 );
}
getFilmHeight() {
// film not completely covered in landscape format (aspect > 1)
return this.filmGauge / Math.max( this.aspect, 1 );
}
/**
* Computes the 2D bounds of the camera's viewable rectangle at a given distance along the viewing direction.
* Sets minTarget and maxTarget to the coordinates of the lower-left and upper-right corners of the view rectangle.
*/
getViewBounds( distance, minTarget, maxTarget ) {
_v3$1.set( - 1, - 1, 0.5 ).applyMatrix4( this.projectionMatrixInverse );
minTarget.set( _v3$1.x, _v3$1.y ).multiplyScalar( - distance / _v3$1.z );
_v3$1.set( 1, 1, 0.5 ).applyMatrix4( this.projectionMatrixInverse );
maxTarget.set( _v3$1.x, _v3$1.y ).multiplyScalar( - distance / _v3$1.z );
}
/**
* Computes the width and height of the camera's viewable rectangle at a given distance along the viewing direction.
* Copies the result into the target Vector2, where x is width and y is height.
*/
getViewSize( distance, target ) {
this.getViewBounds( distance, _minTarget, _maxTarget );
return target.subVectors( _maxTarget, _minTarget );
}
/**
* Sets an offset in a larger frustum. This is useful for multi-window or
* multi-monitor/multi-machine setups.
*
* For example, if you have 3x2 monitors and each monitor is 1920x1080 and
* the monitors are in grid like this
*
* +---+---+---+
* | A | B | C |
* +---+---+---+
* | D | E | F |
* +---+---+---+
*
* then for each monitor you would call it like this
*
* const w = 1920;
* const h = 1080;
* const fullWidth = w * 3;
* const fullHeight = h * 2;
*
* --A--
* camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
* --B--
* camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
* --C--
* camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
* --D--
* camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
* --E--
* camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
* --F--
* camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
*
* Note there is no reason monitors have to be the same size or in a grid.
*/
setViewOffset( fullWidth, fullHeight, x, y, width, height ) {
this.aspect = fullWidth / fullHeight;
if ( this.view === null ) {
this.view = {
enabled: true,
fullWidth: 1,
fullHeight: 1,
offsetX: 0,
offsetY: 0,
width: 1,
height: 1
};
}
this.view.enabled = true;
this.view.fullWidth = fullWidth;
this.view.fullHeight = fullHeight;
this.view.offsetX = x;
this.view.offsetY = y;
this.view.width = width;
this.view.height = height;
this.updateProjectionMatrix();
}
clearViewOffset() {
if ( this.view !== null ) {
this.view.enabled = false;
}
this.updateProjectionMatrix();
}
updateProjectionMatrix() {
const near = this.near;
let top = near * Math.tan( DEG2RAD * 0.5 * this.fov ) / this.zoom;
let height = 2 * top;
let width = this.aspect * height;
let left = - 0.5 * width;
const view = this.view;
if ( this.view !== null && this.view.enabled ) {
const fullWidth = view.fullWidth,
fullHeight = view.fullHeight;
left += view.offsetX * width / fullWidth;
top -= view.offsetY * height / fullHeight;
width *= view.width / fullWidth;
height *= view.height / fullHeight;
}
const skew = this.filmOffset;
if ( skew !== 0 ) left += near * skew / this.getFilmWidth();
this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far, this.coordinateSystem );
this.projectionMatrixInverse.copy( this.projectionMatrix ).invert();
}
toJSON( meta ) {
const data = super.toJSON( meta );
data.object.fov = this.fov;
data.object.zoom = this.zoom;
data.object.near = this.near;
data.object.far = this.far;
data.object.focus = this.focus;
data.object.aspect = this.aspect;
if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );
data.object.filmGauge = this.filmGauge;
data.object.filmOffset = this.filmOffset;
return data;
}
}
const fov = - 90; // negative fov is not an error
const aspect = 1;
class CubeCamera extends Object3D {
constructor( near, far, renderTarget ) {
super();
this.type = 'CubeCamera';
this.renderTarget = renderTarget;
this.coordinateSystem = null;
this.activeMipmapLevel = 0;
const cameraPX = new PerspectiveCamera( fov, aspect, near, far );
cameraPX.layers = this.layers;
this.add( cameraPX );
const cameraNX = new PerspectiveCamera( fov, aspect, near, far );
cameraNX.layers = this.layers;
this.add( cameraNX );
const cameraPY = new PerspectiveCamera( fov, aspect, near, far );
cameraPY.layers = this.layers;
this.add( cameraPY );
const cameraNY = new PerspectiveCamera( fov, aspect, near, far );
cameraNY.layers = this.layers;
this.add( cameraNY );
const cameraPZ = new PerspectiveCamera( fov, aspect, near, far );
cameraPZ.layers = this.layers;
this.add( cameraPZ );
const cameraNZ = new PerspectiveCamera( fov, aspect, near, far );
cameraNZ.layers = this.layers;
this.add( cameraNZ );
}
updateCoordinateSystem() {
const coordinateSystem = this.coordinateSystem;
const cameras = this.children.concat();
const [ cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ ] = cameras;
for ( const camera of cameras ) this.remove( camera );
if ( coordinateSystem === WebGLCoordinateSystem ) {
cameraPX.up.set( 0, 1, 0 );
cameraPX.lookAt( 1, 0, 0 );
cameraNX.up.set( 0, 1, 0 );
cameraNX.lookAt( - 1, 0, 0 );
cameraPY.up.set( 0, 0, - 1 );
cameraPY.lookAt( 0, 1, 0 );
cameraNY.up.set( 0, 0, 1 );
cameraNY.lookAt( 0, - 1, 0 );
cameraPZ.up.set( 0, 1, 0 );
cameraPZ.lookAt( 0, 0, 1 );
cameraNZ.up.set( 0, 1, 0 );
cameraNZ.lookAt( 0, 0, - 1 );
} else if ( coordinateSystem === WebGPUCoordinateSystem ) {
cameraPX.up.set( 0, - 1, 0 );
cameraPX.lookAt( - 1, 0, 0 );
cameraNX.up.set( 0, - 1, 0 );
cameraNX.lookAt( 1, 0, 0 );
cameraPY.up.set( 0, 0, 1 );
cameraPY.lookAt( 0, 1, 0 );
cameraNY.up.set( 0, 0, - 1 );
cameraNY.lookAt( 0, - 1, 0 );
cameraPZ.up.set( 0, - 1, 0 );
cameraPZ.lookAt( 0, 0, 1 );
cameraNZ.up.set( 0, - 1, 0 );
cameraNZ.lookAt( 0, 0, - 1 );
} else {
throw new Error( 'THREE.CubeCamera.updateCoordinateSystem(): Invalid coordinate system: ' + coordinateSystem );
}
for ( const camera of cameras ) {
this.add( camera );
camera.updateMatrixWorld();
}
}
update( renderer, scene ) {
if ( this.parent === null ) this.updateMatrixWorld();
const { renderTarget, activeMipmapLevel } = this;
if ( this.coordinateSystem !== renderer.coordinateSystem ) {
this.coordinateSystem = renderer.coordinateSystem;
this.updateCoordinateSystem();
}
const [ cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ ] = this.children;
const currentRenderTarget = renderer.getRenderTarget();
const currentActiveCubeFace = renderer.getActiveCubeFace();
const currentActiveMipmapLevel = renderer.getActiveMipmapLevel();
const currentXrEnabled = renderer.xr.enabled;
renderer.xr.enabled = false;
const generateMipmaps = renderTarget.texture.generateMipmaps;
renderTarget.texture.generateMipmaps = false;
renderer.setRenderTarget( renderTarget, 0, activeMipmapLevel );
renderer.render( scene, cameraPX );
renderer.setRenderTarget( renderTarget, 1, activeMipmapLevel );
renderer.render( scene, cameraNX );
renderer.setRenderTarget( renderTarget, 2, activeMipmapLevel );
renderer.render( scene, cameraPY );
renderer.setRenderTarget( renderTarget, 3, activeMipmapLevel );
renderer.render( scene, cameraNY );
renderer.setRenderTarget( renderTarget, 4, activeMipmapLevel );
renderer.render( scene, cameraPZ );
// mipmaps are generated during the last call of render()
// at this point, all sides of the cube render target are defined
renderTarget.texture.generateMipmaps = generateMipmaps;
renderer.setRenderTarget( renderTarget, 5, activeMipmapLevel );
renderer.render( scene, cameraNZ );
renderer.setRenderTarget( currentRenderTarget, currentActiveCubeFace, currentActiveMipmapLevel );
renderer.xr.enabled = currentXrEnabled;
renderTarget.texture.needsPMREMUpdate = true;
}
}
class CubeTexture extends Texture {
constructor( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace ) {
images = images !== undefined ? images : [];
mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
super( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace );
this.isCubeTexture = true;
this.flipY = false;
}
get images() {
return this.image;
}
set images( value ) {
this.image = value;
}
}
class WebGLCubeRenderTarget extends WebGLRenderTarget {
constructor( size = 1, options = {} ) {
super( size, size, options );
this.isWebGLCubeRenderTarget = true;
const image = { width: size, height: size, depth: 1 };
const images = [ image, image, image, image, image, image ];
this.texture = new CubeTexture( images, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.colorSpace );
// By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js)
// in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words,
// in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly.
// three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped
// and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture
// as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures).
this.texture.isRenderTargetTexture = true;
this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
}
fromEquirectangularTexture( renderer, texture ) {
this.texture.type = texture.type;
this.texture.colorSpace = texture.colorSpace;
this.texture.generateMipmaps = texture.generateMipmaps;
this.texture.minFilter = texture.minFilter;
this.texture.magFilter = texture.magFilter;
const shader = {
uniforms: {
tEquirect: { value: null },
},
vertexShader: /* glsl */`
varying vec3 vWorldDirection;
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
}
void main() {
vWorldDirection = transformDirection( position, modelMatrix );
#include <begin_vertex>
#include <project_vertex>
}
`,
fragmentShader: /* glsl */`
uniform sampler2D tEquirect;
varying vec3 vWorldDirection;
#include <common>
void main() {
vec3 direction = normalize( vWorldDirection );
vec2 sampleUV = equirectUv( direction );
gl_FragColor = texture2D( tEquirect, sampleUV );
}
`
};
const geometry = new BoxGeometry( 5, 5, 5 );
const material = new ShaderMaterial( {
name: 'CubemapFromEquirect',
uniforms: cloneUniforms( shader.uniforms ),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader,
side: BackSide,
blending: NoBlending
} );
material.uniforms.tEquirect.value = texture;
const mesh = new Mesh( geometry, material );
const currentMinFilter = texture.minFilter;
// Avoid blurred poles
if ( texture.minFilter === LinearMipmapLinearFilter ) texture.minFilter = LinearFilter;
const camera = new CubeCamera( 1, 10, this );
camera.update( renderer, mesh );
texture.minFilter = currentMinFilter;
mesh.geometry.dispose();
mesh.material.dispose();
return this;
}
clear( renderer, color, depth, stencil ) {
const currentRenderTarget = renderer.getRenderTarget();
for ( let i = 0; i < 6; i ++ ) {
renderer.setRenderTarget( this, i );
renderer.clear( color, depth, stencil );
}
renderer.setRenderTarget( currentRenderTarget );
}
}
class FogExp2 {
constructor( color, density = 0.00025 ) {
this.isFogExp2 = true;
this.name = '';
this.color = new Color( color );
this.density = density;
}
clone() {
return new FogExp2( this.color, this.density );
}
toJSON( /* meta */ ) {
return {
type: 'FogExp2',
name: this.name,
color: this.color.getHex(),
density: this.density
};
}
}
class Fog {
constructor( color, near = 1, far = 1000 ) {
this.isFog = true;
this.name = '';
this.color = new Color( color );
this.near = near;
this.far = far;
}
clone() {
return new Fog( this.color, this.near, this.far );
}
toJSON( /* meta */ ) {
return {
type: 'Fog',
name: this.name,
color: this.color.getHex(),
near: this.near,
far: this.far
};
}
}
class Scene extends Object3D {
constructor() {
super();
this.isScene = true;
this.type = 'Scene';
this.background = null;
this.environment = null;
this.fog = null;
this.backgroundBlurriness = 0;
this.backgroundIntensity = 1;
this.backgroundRotation = new Euler();
this.environmentIntensity = 1;
this.environmentRotation = new Euler();
this.overrideMaterial = null;
if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) {
__THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) );
}
}
copy( source, recursive ) {
super.copy( source, recursive );
if ( source.background !== null ) this.background = source.background.clone();
if ( source.environment !== null ) this.environment = source.environment.clone();
if ( source.fog !== null ) this.fog = source.fog.clone();
this.backgroundBlurriness = source.backgroundBlurriness;
this.backgroundIntensity = source.backgroundIntensity;
this.backgroundRotation.copy( source.backgroundRotation );
this.environmentIntensity = source.environmentIntensity;
this.environmentRotation.copy( source.environmentRotation );
if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone();
this.matrixAutoUpdate = source.matrixAutoUpdate;
return this;
}
toJSON( meta ) {
const data = super.toJSON( meta );
if ( this.fog !== null ) data.object.fog = this.fog.toJSON();
if ( this.backgroundBlurriness > 0 ) data.object.backgroundBlurriness = this.backgroundBlurriness;
if ( this.backgroundIntensity !== 1 ) data.object.backgroundIntensity = this.backgroundIntensity;
data.object.backgroundRotation = this.backgroundRotation.toArray();
if ( this.environmentIntensity !== 1 ) data.object.environmentIntensity = this.environmentIntensity;
data.object.environmentRotation = this.environmentRotation.toArray();
return data;
}
}
class InterleavedBuffer {
constructor( array, stride ) {
this.isInterleavedBuffer = true;
this.array = array;
this.stride = stride;
this.count = array !== undefined ? array.length / stride : 0;
this.usage = StaticDrawUsage;
this._updateRange = { offset: 0, count: - 1 };
this.updateRanges = [];
this.version = 0;
this.uuid = generateUUID();
}
onUploadCallback() {}
set needsUpdate( value ) {
if ( value === true ) this.version ++;
}
get updateRange() {
warnOnce( 'THREE.InterleavedBuffer: updateRange() is deprecated and will be removed in r169. Use addUpdateRange() instead.' ); // @deprecated, r159
return this._updateRange;
}
setUsage( value ) {
this.usage = value;
return this;
}
addUpdateRange( start, count ) {
this.updateRanges.push( { start, count } );
}
clearUpdateRanges() {
this.updateRanges.length = 0;
}
copy( source ) {
this.array = new source.array.constructor( source.array );
this.count = source.count;
this.stride = source.stride;
this.usage = source.usage;
return this;
}
copyAt( index1, attribute, index2 ) {
index1 *= this.stride;
index2 *= attribute.stride;
for ( let i = 0, l = this.stride; i < l; i ++ ) {
this.array[ index1 + i ] = attribute.array[ index2 + i ];
}
return this;
}
set( value, offset = 0 ) {
this.array.set( value, offset );
return this;
}
clone( data ) {
if ( data.arrayBuffers === undefined ) {
data.arrayBuffers = {};
}
if ( this.array.buffer._uuid === undefined ) {
this.array.buffer._uuid = generateUUID();
}
if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) {
data.arrayBuffers[ this.array.buffer._uuid ] = this.array.slice( 0 ).buffer;
}
const array = new this.array.constructor( data.arrayBuffers[ this.array.buffer._uuid ] );
const ib = new this.constructor( array, this.stride );
ib.setUsage( this.usage );
return ib;
}
onUpload( callback ) {
this.onUploadCallback = callback;
return this;
}
toJSON( data ) {
if ( data.arrayBuffers === undefined ) {
data.arrayBuffers = {};
}
// generate UUID for array buffer if necessary
if ( this.array.buffer._uuid === undefined ) {
this.array.buffer._uuid = generateUUID();
}
if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) {
data.arrayBuffers[ this.array.buffer._uuid ] = Array.from( new Uint32Array( this.array.buffer ) );
}
//
return {
uuid: this.uuid,
buffer: this.array.buffer._uuid,
type: this.array.constructor.name,
stride: this.stride
};
}
}
const _vector$7 = /*@__PURE__*/ new Vector3();
class InterleavedBufferAttribute {
constructor( interleavedBuffer, itemSize, offset, normalized = false ) {
this.isInterleavedBufferAttribute = true;
this.name = '';
this.data = interleavedBuffer;
this.itemSize = itemSize;
this.offset = offset;
this.normalized = normalized;
}
get count() {
return this.data.count;
}
get array() {
return this.data.array;
}
set needsUpdate( value ) {
this.data.needsUpdate = value;
}
applyMatrix4( m ) {
for ( let i = 0, l = this.data.count; i < l; i ++ ) {
_vector$7.fromBufferAttribute( this, i );
_vector$7.applyMatrix4( m );
this.setXYZ( i, _vector$7.x, _vector$7.y, _vector$7.z );
}
return this;
}
applyNormalMatrix( m ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$7.fromBufferAttribute( this, i );
_vector$7.applyNormalMatrix( m );
this.setXYZ( i, _vector$7.x, _vector$7.y, _vector$7.z );
}
return this;
}
transformDirection( m ) {
for ( let i = 0, l = this.count; i < l; i ++ ) {
_vector$7.fromBufferAttribute( this, i );
_vector$7.transformDirection( m );
this.setXYZ( i, _vector$7.x, _vector$7.y, _vector$7.z );
}
return this;
}
getComponent( index, component ) {
let value = this.array[ index * this.data.stride + this.offset + component ];
if ( this.normalized ) value = denormalize( value, this.array );
return value;
}
setComponent( index, component, value ) {
if ( this.normalized ) value = normalize$1( value, this.array );
this.data.array[ index * this.data.stride + this.offset + component ] = value;
return this;
}
setX( index, x ) {
if ( this.normalized ) x = normalize$1( x, this.array );
this.data.array[ index * this.data.stride + this.offset ] = x;
return this;
}
setY( index, y ) {
if ( this.normalized ) y = normalize$1( y, this.array );
this.data.array[ index * this.data.stride + this.offset + 1 ] = y;
return this;
}
setZ( index, z ) {
if ( this.normalized ) z = normalize$1( z, this.array );
this.data.array[ index * this.data.stride + this.offset + 2 ] = z;
return this;
}
setW( index, w ) {
if ( this.normalized ) w = normalize$1( w, this.array );
this.data.array[ index * this.data.stride + this.offset + 3 ] = w;
return this;
}
getX( index ) {
let x = this.data.array[ index * this.data.stride + this.offset ];
if ( this.normalized ) x = denormalize( x, this.array );
return x;
}
getY( index ) {
let y = this.data.array[ index * this.data.stride + this.offset + 1 ];
if ( this.normalized ) y = denormalize( y, this.array );
return y;
}
getZ( index ) {
let z = this.data.array[ index * this.data.stride + this.offset + 2 ];
if ( this.normalized ) z = denormalize( z, this.array );
return z;
}
getW( index ) {
let w = this.data.array[ index * this.data.stride + this.offset + 3 ];
if ( this.normalized ) w = denormalize( w, this.array );
return w;
}
setXY( index, x, y ) {
index = index * this.data.stride + this.offset;
if ( this.normalized ) {
x = normalize$1( x, this.array );
y = normalize$1( y, this.array );
}
this.data.array[ index + 0 ] = x;
this.data.array[ index + 1 ] = y;
return this;
}
setXYZ( index, x, y, z ) {
index = index * this.data.stride + this.offset;
if ( this.normalized ) {
x = normalize$1( x, this.array );
y = normalize$1( y, this.array );
z = normalize$1( z, this.array );
}
this.data.array[ index + 0 ] = x;
this.data.array[ index + 1 ] = y;
this.data.array[ index + 2 ] = z;
return this;
}
setXYZW( index, x, y, z, w ) {
index = index * this.data.stride + this.offset;
if ( this.normalized ) {
x = normalize$1( x, this.array );
y = normalize$1( y, this.array );
z = normalize$1( z, this.array );
w = normalize$1( w, this.array );
}
this.data.array[ index + 0 ] = x;
this.data.array[ index + 1 ] = y;
this.data.array[ index + 2 ] = z;
this.data.array[ index + 3 ] = w;
return this;
}
clone( data ) {
if ( data === undefined ) {
console.log( 'THREE.InterleavedBufferAttribute.clone(): Cloning an interleaved buffer attribute will de-interleave buffer data.' );
const array = [];
for ( let i = 0; i < this.count; i ++ ) {
const index = i * this.data.stride + this.offset;
for ( let j = 0; j < this.itemSize; j ++ ) {
array.push( this.data.array[ index + j ] );
}
}
return new BufferAttribute( new this.array.constructor( array ), this.itemSize, this.normalized );
} else {
if ( data.interleavedBuffers === undefined ) {
data.interleavedBuffers = {};
}
if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) {
data.interleavedBuffers[ this.data.uuid ] = this.data.clone( data );
}
return new InterleavedBufferAttribute( data.interleavedBuffers[ this.data.uuid ], this.itemSize, this.offset, this.normalized );
}
}
toJSON( data ) {
if ( data === undefined ) {
console.log( 'THREE.InterleavedBufferAttribute.toJSON(): Serializing an interleaved buffer attribute will de-interleave buffer data.' );
const array = [];
for ( let i = 0; i < this.count; i ++ ) {
const index = i * this.data.stride + this.offset;
for ( let j = 0; j < this.itemSize; j ++ ) {
array.push( this.data.array[ index + j ] );
}
}
// de-interleave data and save it as an ordinary buffer attribute for now
return {
itemSize: this.itemSize,
type: this.array.constructor.name,
array: array,
normalized: this.normalized
};
} else {
// save as true interleaved attribute
if ( data.interleavedBuffers === undefined ) {
data.interleavedBuffers = {};
}
if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) {
data.interleavedBuffers[ this.data.uuid ] = this.data.toJSON( data );
}
return {
isInterleavedBufferAttribute: true,
itemSize: this.itemSize,
data: this.data.uuid,
offset: this.offset,
normalized: this.normalized
};
}
}
}
class SpriteMaterial extends Material {
constructor( parameters ) {
super();
this.isSpriteMaterial = true;
this.type = 'SpriteMaterial';
this.color = new Color( 0xffffff );
this.map = null;
this.alphaMap = null;
this.rotation = 0;
this.sizeAttenuation = true;
this.transparent = true;
this.fog = true;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.color.copy( source.color );
this.map = source.map;
this.alphaMap = source.alphaMap;
this.rotation = source.rotation;
this.sizeAttenuation = source.sizeAttenuation;
this.fog = source.fog;
return this;
}
}
let _geometry$1;
const _intersectPoint = /*@__PURE__*/ new Vector3();
const _worldScale = /*@__PURE__*/ new Vector3();
const _mvPosition = /*@__PURE__*/ new Vector3();
const _alignedPosition = /*@__PURE__*/ new Vector2();
const _rotatedPosition = /*@__PURE__*/ new Vector2();
const _viewWorldMatrix = /*@__PURE__*/ new Matrix4();
const _vA = /*@__PURE__*/ new Vector3();
const _vB = /*@__PURE__*/ new Vector3();
const _vC = /*@__PURE__*/ new Vector3();
const _uvA = /*@__PURE__*/ new Vector2();
const _uvB = /*@__PURE__*/ new Vector2();
const _uvC = /*@__PURE__*/ new Vector2();
class Sprite extends Object3D {
constructor( material = new SpriteMaterial() ) {
super();
this.isSprite = true;
this.type = 'Sprite';
if ( _geometry$1 === undefined ) {
_geometry$1 = new BufferGeometry();
const float32Array = new Float32Array( [
- 0.5, - 0.5, 0, 0, 0,
0.5, - 0.5, 0, 1, 0,
0.5, 0.5, 0, 1, 1,
- 0.5, 0.5, 0, 0, 1
] );
const interleavedBuffer = new InterleavedBuffer( float32Array, 5 );
_geometry$1.setIndex( [ 0, 1, 2, 0, 2, 3 ] );
_geometry$1.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) );
_geometry$1.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) );
}
this.geometry = _geometry$1;
this.material = material;
this.center = new Vector2( 0.5, 0.5 );
}
raycast( raycaster, intersects ) {
if ( raycaster.camera === null ) {
console.error( 'THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.' );
}
_worldScale.setFromMatrixScale( this.matrixWorld );
_viewWorldMatrix.copy( raycaster.camera.matrixWorld );
this.modelViewMatrix.multiplyMatrices( raycaster.camera.matrixWorldInverse, this.matrixWorld );
_mvPosition.setFromMatrixPosition( this.modelViewMatrix );
if ( raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false ) {
_worldScale.multiplyScalar( - _mvPosition.z );
}
const rotation = this.material.rotation;
let sin, cos;
if ( rotation !== 0 ) {
cos = Math.cos( rotation );
sin = Math.sin( rotation );
}
const center = this.center;
transformVertex( _vA.set( - 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
transformVertex( _vB.set( 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
transformVertex( _vC.set( 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
_uvA.set( 0, 0 );
_uvB.set( 1, 0 );
_uvC.set( 1, 1 );
// check first triangle
let intersect = raycaster.ray.intersectTriangle( _vA, _vB, _vC, false, _intersectPoint );
if ( intersect === null ) {
// check second triangle
transformVertex( _vB.set( - 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos );
_uvB.set( 0, 1 );
intersect = raycaster.ray.intersectTriangle( _vA, _vC, _vB, false, _intersectPoint );
if ( intersect === null ) {
return;
}
}
const distance = raycaster.ray.origin.distanceTo( _intersectPoint );
if ( distance < raycaster.near || distance > raycaster.far ) return;
intersects.push( {
distance: distance,
point: _intersectPoint.clone(),
uv: Triangle.getInterpolation( _intersectPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() ),
face: null,
object: this
} );
}
copy( source, recursive ) {
super.copy( source, recursive );
if ( source.center !== undefined ) this.center.copy( source.center );
this.material = source.material;
return this;
}
}
function transformVertex( vertexPosition, mvPosition, center, scale, sin, cos ) {
// compute position in camera space
_alignedPosition.subVectors( vertexPosition, center ).addScalar( 0.5 ).multiply( scale );
// to check if rotation is not zero
if ( sin !== undefined ) {
_rotatedPosition.x = ( cos * _alignedPosition.x ) - ( sin * _alignedPosition.y );
_rotatedPosition.y = ( sin * _alignedPosition.x ) + ( cos * _alignedPosition.y );
} else {
_rotatedPosition.copy( _alignedPosition );
}
vertexPosition.copy( mvPosition );
vertexPosition.x += _rotatedPosition.x;
vertexPosition.y += _rotatedPosition.y;
// transform to world space
vertexPosition.applyMatrix4( _viewWorldMatrix );
}
const _v1$2 = /*@__PURE__*/ new Vector3();
const _v2$1 = /*@__PURE__*/ new Vector3();
class LOD extends Object3D {
constructor() {
super();
this._currentLevel = 0;
this.type = 'LOD';
Object.defineProperties( this, {
levels: {
enumerable: true,
value: []
},
isLOD: {
value: true,
}
} );
this.autoUpdate = true;
}
copy( source ) {
super.copy( source, false );
const levels = source.levels;
for ( let i = 0, l = levels.length; i < l; i ++ ) {
const level = levels[ i ];
this.addLevel( level.object.clone(), level.distance, level.hysteresis );
}
this.autoUpdate = source.autoUpdate;
return this;
}
addLevel( object, distance = 0, hysteresis = 0 ) {
distance = Math.abs( distance );
const levels = this.levels;
let l;
for ( l = 0; l < levels.length; l ++ ) {
if ( distance < levels[ l ].distance ) {
break;
}
}
levels.splice( l, 0, { distance: distance, hysteresis: hysteresis, object: object } );
this.add( object );
return this;
}
getCurrentLevel() {
return this._currentLevel;
}
getObjectForDistance( distance ) {
const levels = this.levels;
if ( levels.length > 0 ) {
let i, l;
for ( i = 1, l = levels.length; i < l; i ++ ) {
let levelDistance = levels[ i ].distance;
if ( levels[ i ].object.visible ) {
levelDistance -= levelDistance * levels[ i ].hysteresis;
}
if ( distance < levelDistance ) {
break;
}
}
return levels[ i - 1 ].object;
}
return null;
}
raycast( raycaster, intersects ) {
const levels = this.levels;
if ( levels.length > 0 ) {
_v1$2.setFromMatrixPosition( this.matrixWorld );
const distance = raycaster.ray.origin.distanceTo( _v1$2 );
this.getObjectForDistance( distance ).raycast( raycaster, intersects );
}
}
update( camera ) {
const levels = this.levels;
if ( levels.length > 1 ) {
_v1$2.setFromMatrixPosition( camera.matrixWorld );
_v2$1.setFromMatrixPosition( this.matrixWorld );
const distance = _v1$2.distanceTo( _v2$1 ) / camera.zoom;
levels[ 0 ].object.visible = true;
let i, l;
for ( i = 1, l = levels.length; i < l; i ++ ) {
let levelDistance = levels[ i ].distance;
if ( levels[ i ].object.visible ) {
levelDistance -= levelDistance * levels[ i ].hysteresis;
}
if ( distance >= levelDistance ) {
levels[ i - 1 ].object.visible = false;
levels[ i ].object.visible = true;
} else {
break;
}
}
this._currentLevel = i - 1;
for ( ; i < l; i ++ ) {
levels[ i ].object.visible = false;
}
}
}
toJSON( meta ) {
const data = super.toJSON( meta );
if ( this.autoUpdate === false ) data.object.autoUpdate = false;
data.object.levels = [];
const levels = this.levels;
for ( let i = 0, l = levels.length; i < l; i ++ ) {
const level = levels[ i ];
data.object.levels.push( {
object: level.object.uuid,
distance: level.distance,
hysteresis: level.hysteresis
} );
}
return data;
}
}
const _basePosition = /*@__PURE__*/ new Vector3();
const _skinIndex = /*@__PURE__*/ new Vector4();
const _skinWeight = /*@__PURE__*/ new Vector4();
const _vector3$1 = /*@__PURE__*/ new Vector3();
const _matrix4 = /*@__PURE__*/ new Matrix4();
const _vertex = /*@__PURE__*/ new Vector3();
const _sphere$5 = /*@__PURE__*/ new Sphere();
const _inverseMatrix$2 = /*@__PURE__*/ new Matrix4();
const _ray$2 = /*@__PURE__*/ new Ray();
class SkinnedMesh extends Mesh {
constructor( geometry, material ) {
super( geometry, material );
this.isSkinnedMesh = true;
this.type = 'SkinnedMesh';
this.bindMode = AttachedBindMode;
this.bindMatrix = new Matrix4();
this.bindMatrixInverse = new Matrix4();
this.boundingBox = null;
this.boundingSphere = null;
}
computeBoundingBox() {
const geometry = this.geometry;
if ( this.boundingBox === null ) {
this.boundingBox = new Box3();
}
this.boundingBox.makeEmpty();
const positionAttribute = geometry.getAttribute( 'position' );
for ( let i = 0; i < positionAttribute.count; i ++ ) {
this.getVertexPosition( i, _vertex );
this.boundingBox.expandByPoint( _vertex );
}
}
computeBoundingSphere() {
const geometry = this.geometry;
if ( this.boundingSphere === null ) {
this.boundingSphere = new Sphere();
}
this.boundingSphere.makeEmpty();
const positionAttribute = geometry.getAttribute( 'position' );
for ( let i = 0; i < positionAttribute.count; i ++ ) {
this.getVertexPosition( i, _vertex );
this.boundingSphere.expandByPoint( _vertex );
}
}
copy( source, recursive ) {
super.copy( source, recursive );
this.bindMode = source.bindMode;
this.bindMatrix.copy( source.bindMatrix );
this.bindMatrixInverse.copy( source.bindMatrixInverse );
this.skeleton = source.skeleton;
if ( source.boundingBox !== null ) this.boundingBox = source.boundingBox.clone();
if ( source.boundingSphere !== null ) this.boundingSphere = source.boundingSphere.clone();
return this;
}
raycast( raycaster, intersects ) {
const material = this.material;
const matrixWorld = this.matrixWorld;
if ( material === undefined ) return;
// test with bounding sphere in world space
if ( this.boundingSphere === null ) this.computeBoundingSphere();
_sphere$5.copy( this.boundingSphere );
_sphere$5.applyMatrix4( matrixWorld );
if ( raycaster.ray.intersectsSphere( _sphere$5 ) === false ) return;
// convert ray to local space of skinned mesh
_inverseMatrix$2.copy( matrixWorld ).invert();
_ray$2.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$2 );
// test with bounding box in local space
if ( this.boundingBox !== null ) {
if ( _ray$2.intersectsBox( this.boundingBox ) === false ) return;
}
// test for intersections with geometry
this._computeIntersections( raycaster, intersects, _ray$2 );
}
getVertexPosition( index, target ) {
super.getVertexPosition( index, target );
this.applyBoneTransform( index, target );
return target;
}
bind( skeleton, bindMatrix ) {
this.skeleton = skeleton;
if ( bindMatrix === undefined ) {
this.updateMatrixWorld( true );
this.skeleton.calculateInverses();
bindMatrix = this.matrixWorld;
}
this.bindMatrix.copy( bindMatrix );
this.bindMatrixInverse.copy( bindMatrix ).invert();
}
pose() {
this.skeleton.pose();
}
normalizeSkinWeights() {
const vector = new Vector4();
const skinWeight = this.geometry.attributes.skinWeight;
for ( let i = 0, l = skinWeight.count; i < l; i ++ ) {
vector.fromBufferAttribute( skinWeight, i );
const scale = 1.0 / vector.manhattanLength();
if ( scale !== Infinity ) {
vector.multiplyScalar( scale );
} else {
vector.set( 1, 0, 0, 0 ); // do something reasonable
}
skinWeight.setXYZW( i, vector.x, vector.y, vector.z, vector.w );
}
}
updateMatrixWorld( force ) {
super.updateMatrixWorld( force );
if ( this.bindMode === AttachedBindMode ) {
this.bindMatrixInverse.copy( this.matrixWorld ).invert();
} else if ( this.bindMode === DetachedBindMode ) {
this.bindMatrixInverse.copy( this.bindMatrix ).invert();
} else {
console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode );
}
}
applyBoneTransform( index, vector ) {
const skeleton = this.skeleton;
const geometry = this.geometry;
_skinIndex.fromBufferAttribute( geometry.attributes.skinIndex, index );
_skinWeight.fromBufferAttribute( geometry.attributes.skinWeight, index );
_basePosition.copy( vector ).applyMatrix4( this.bindMatrix );
vector.set( 0, 0, 0 );
for ( let i = 0; i < 4; i ++ ) {
const weight = _skinWeight.getComponent( i );
if ( weight !== 0 ) {
const boneIndex = _skinIndex.getComponent( i );
_matrix4.multiplyMatrices( skeleton.bones[ boneIndex ].matrixWorld, skeleton.boneInverses[ boneIndex ] );
vector.addScaledVector( _vector3$1.copy( _basePosition ).applyMatrix4( _matrix4 ), weight );
}
}
return vector.applyMatrix4( this.bindMatrixInverse );
}
}
class Bone extends Object3D {
constructor() {
super();
this.isBone = true;
this.type = 'Bone';
}
}
class DataTexture extends Texture {
constructor( data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, colorSpace ) {
super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace );
this.isDataTexture = true;
this.image = { data: data, width: width, height: height };
this.generateMipmaps = false;
this.flipY = false;
this.unpackAlignment = 1;
}
}
const _offsetMatrix = /*@__PURE__*/ new Matrix4();
const _identityMatrix$1 = /*@__PURE__*/ new Matrix4();
class Skeleton {
constructor( bones = [], boneInverses = [] ) {
this.uuid = generateUUID();
this.bones = bones.slice( 0 );
this.boneInverses = boneInverses;
this.boneMatrices = null;
this.boneTexture = null;
this.init();
}
init() {
const bones = this.bones;
const boneInverses = this.boneInverses;
this.boneMatrices = new Float32Array( bones.length * 16 );
// calculate inverse bone matrices if necessary
if ( boneInverses.length === 0 ) {
this.calculateInverses();
} else {
// handle special case
if ( bones.length !== boneInverses.length ) {
console.warn( 'THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.' );
this.boneInverses = [];
for ( let i = 0, il = this.bones.length; i < il; i ++ ) {
this.boneInverses.push( new Matrix4() );
}
}
}
}
calculateInverses() {
this.boneInverses.length = 0;
for ( let i = 0, il = this.bones.length; i < il; i ++ ) {
const inverse = new Matrix4();
if ( this.bones[ i ] ) {
inverse.copy( this.bones[ i ].matrixWorld ).invert();
}
this.boneInverses.push( inverse );
}
}
pose() {
// recover the bind-time world matrices
for ( let i = 0, il = this.bones.length; i < il; i ++ ) {
const bone = this.bones[ i ];
if ( bone ) {
bone.matrixWorld.copy( this.boneInverses[ i ] ).invert();
}
}
// compute the local matrices, positions, rotations and scales
for ( let i = 0, il = this.bones.length; i < il; i ++ ) {
const bone = this.bones[ i ];
if ( bone ) {
if ( bone.parent && bone.parent.isBone ) {
bone.matrix.copy( bone.parent.matrixWorld ).invert();
bone.matrix.multiply( bone.matrixWorld );
} else {
bone.matrix.copy( bone.matrixWorld );
}
bone.matrix.decompose( bone.position, bone.quaternion, bone.scale );
}
}
}
update() {
const bones = this.bones;
const boneInverses = this.boneInverses;
const boneMatrices = this.boneMatrices;
const boneTexture = this.boneTexture;
// flatten bone matrices to array
for ( let i = 0, il = bones.length; i < il; i ++ ) {
// compute the offset between the current and the original transform
const matrix = bones[ i ] ? bones[ i ].matrixWorld : _identityMatrix$1;
_offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] );
_offsetMatrix.toArray( boneMatrices, i * 16 );
}
if ( boneTexture !== null ) {
boneTexture.needsUpdate = true;
}
}
clone() {
return new Skeleton( this.bones, this.boneInverses );
}
computeBoneTexture() {
// layout (1 matrix = 4 pixels)
// RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
// with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8)
// 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16)
// 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32)
// 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)
let size = Math.sqrt( this.bones.length * 4 ); // 4 pixels needed for 1 matrix
size = Math.ceil( size / 4 ) * 4;
size = Math.max( size, 4 );
const boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel
boneMatrices.set( this.boneMatrices ); // copy current values
const boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType );
boneTexture.needsUpdate = true;
this.boneMatrices = boneMatrices;
this.boneTexture = boneTexture;
return this;
}
getBoneByName( name ) {
for ( let i = 0, il = this.bones.length; i < il; i ++ ) {
const bone = this.bones[ i ];
if ( bone.name === name ) {
return bone;
}
}
return undefined;
}
dispose( ) {
if ( this.boneTexture !== null ) {
this.boneTexture.dispose();
this.boneTexture = null;
}
}
fromJSON( json, bones ) {
this.uuid = json.uuid;
for ( let i = 0, l = json.bones.length; i < l; i ++ ) {
const uuid = json.bones[ i ];
let bone = bones[ uuid ];
if ( bone === undefined ) {
console.warn( 'THREE.Skeleton: No bone found with UUID:', uuid );
bone = new Bone();
}
this.bones.push( bone );
this.boneInverses.push( new Matrix4().fromArray( json.boneInverses[ i ] ) );
}
this.init();
return this;
}
toJSON() {
const data = {
metadata: {
version: 4.6,
type: 'Skeleton',
generator: 'Skeleton.toJSON'
},
bones: [],
boneInverses: []
};
data.uuid = this.uuid;
const bones = this.bones;
const boneInverses = this.boneInverses;
for ( let i = 0, l = bones.length; i < l; i ++ ) {
const bone = bones[ i ];
data.bones.push( bone.uuid );
const boneInverse = boneInverses[ i ];
data.boneInverses.push( boneInverse.toArray() );
}
return data;
}
}
class InstancedBufferAttribute extends BufferAttribute {
constructor( array, itemSize, normalized, meshPerAttribute = 1 ) {
super( array, itemSize, normalized );
this.isInstancedBufferAttribute = true;
this.meshPerAttribute = meshPerAttribute;
}
copy( source ) {
super.copy( source );
this.meshPerAttribute = source.meshPerAttribute;
return this;
}
toJSON() {
const data = super.toJSON();
data.meshPerAttribute = this.meshPerAttribute;
data.isInstancedBufferAttribute = true;
return data;
}
}
const _instanceLocalMatrix = /*@__PURE__*/ new Matrix4();
const _instanceWorldMatrix = /*@__PURE__*/ new Matrix4();
const _instanceIntersects = [];
const _box3 = /*@__PURE__*/ new Box3();
const _identity = /*@__PURE__*/ new Matrix4();
const _mesh$1 = /*@__PURE__*/ new Mesh();
const _sphere$4 = /*@__PURE__*/ new Sphere();
class InstancedMesh extends Mesh {
constructor( geometry, material, count ) {
super( geometry, material );
this.isInstancedMesh = true;
this.instanceMatrix = new InstancedBufferAttribute( new Float32Array( count * 16 ), 16 );
this.instanceColor = null;
this.morphTexture = null;
this.count = count;
this.boundingBox = null;
this.boundingSphere = null;
for ( let i = 0; i < count; i ++ ) {
this.setMatrixAt( i, _identity );
}
}
computeBoundingBox() {
const geometry = this.geometry;
const count = this.count;
if ( this.boundingBox === null ) {
this.boundingBox = new Box3();
}
if ( geometry.boundingBox === null ) {
geometry.computeBoundingBox();
}
this.boundingBox.makeEmpty();
for ( let i = 0; i < count; i ++ ) {
this.getMatrixAt( i, _instanceLocalMatrix );
_box3.copy( geometry.boundingBox ).applyMatrix4( _instanceLocalMatrix );
this.boundingBox.union( _box3 );
}
}
computeBoundingSphere() {
const geometry = this.geometry;
const count = this.count;
if ( this.boundingSphere === null ) {
this.boundingSphere = new Sphere();
}
if ( geometry.boundingSphere === null ) {
geometry.computeBoundingSphere();
}
this.boundingSphere.makeEmpty();
for ( let i = 0; i < count; i ++ ) {
this.getMatrixAt( i, _instanceLocalMatrix );
_sphere$4.copy( geometry.boundingSphere ).applyMatrix4( _instanceLocalMatrix );
this.boundingSphere.union( _sphere$4 );
}
}
copy( source, recursive ) {
super.copy( source, recursive );
this.instanceMatrix.copy( source.instanceMatrix );
if ( source.morphTexture !== null ) this.morphTexture = source.morphTexture.clone();
if ( source.instanceColor !== null ) this.instanceColor = source.instanceColor.clone();
this.count = source.count;
if ( source.boundingBox !== null ) this.boundingBox = source.boundingBox.clone();
if ( source.boundingSphere !== null ) this.boundingSphere = source.boundingSphere.clone();
return this;
}
getColorAt( index, color ) {
color.fromArray( this.instanceColor.array, index * 3 );
}
getMatrixAt( index, matrix ) {
matrix.fromArray( this.instanceMatrix.array, index * 16 );
}
getMorphAt( index, object ) {
const objectInfluences = object.morphTargetInfluences;
const array = this.morphTexture.source.data.data;
const len = objectInfluences.length + 1; // All influences + the baseInfluenceSum
const dataIndex = index * len + 1; // Skip the baseInfluenceSum at the beginning
for ( let i = 0; i < objectInfluences.length; i ++ ) {
objectInfluences[ i ] = array[ dataIndex + i ];
}
}
raycast( raycaster, intersects ) {
const matrixWorld = this.matrixWorld;
const raycastTimes = this.count;
_mesh$1.geometry = this.geometry;
_mesh$1.material = this.material;
if ( _mesh$1.material === undefined ) return;
// test with bounding sphere first
if ( this.boundingSphere === null ) this.computeBoundingSphere();
_sphere$4.copy( this.boundingSphere );
_sphere$4.applyMatrix4( matrixWorld );
if ( raycaster.ray.intersectsSphere( _sphere$4 ) === false ) return;
// now test each instance
for ( let instanceId = 0; instanceId < raycastTimes; instanceId ++ ) {
// calculate the world matrix for each instance
this.getMatrixAt( instanceId, _instanceLocalMatrix );
_instanceWorldMatrix.multiplyMatrices( matrixWorld, _instanceLocalMatrix );
// the mesh represents this single instance
_mesh$1.matrixWorld = _instanceWorldMatrix;
_mesh$1.raycast( raycaster, _instanceIntersects );
// process the result of raycast
for ( let i = 0, l = _instanceIntersects.length; i < l; i ++ ) {
const intersect = _instanceIntersects[ i ];
intersect.instanceId = instanceId;
intersect.object = this;
intersects.push( intersect );
}
_instanceIntersects.length = 0;
}
}
setColorAt( index, color ) {
if ( this.instanceColor === null ) {
this.instanceColor = new InstancedBufferAttribute( new Float32Array( this.instanceMatrix.count * 3 ).fill( 1 ), 3 );
}
color.toArray( this.instanceColor.array, index * 3 );
}
setMatrixAt( index, matrix ) {
matrix.toArray( this.instanceMatrix.array, index * 16 );
}
setMorphAt( index, object ) {
const objectInfluences = object.morphTargetInfluences;
const len = objectInfluences.length + 1; // morphBaseInfluence + all influences
if ( this.morphTexture === null ) {
this.morphTexture = new DataTexture( new Float32Array( len * this.count ), len, this.count, RedFormat, FloatType );
}
const array = this.morphTexture.source.data.data;
let morphInfluencesSum = 0;
for ( let i = 0; i < objectInfluences.length; i ++ ) {
morphInfluencesSum += objectInfluences[ i ];
}
const morphBaseInfluence = this.geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;
const dataIndex = len * index;
array[ dataIndex ] = morphBaseInfluence;
array.set( objectInfluences, dataIndex + 1 );
}
updateMorphTargets() {
}
dispose() {
this.dispatchEvent( { type: 'dispose' } );
if ( this.morphTexture !== null ) {
this.morphTexture.dispose();
this.morphTexture = null;
}
return this;
}
}
const _vector1 = /*@__PURE__*/ new Vector3();
const _vector2 = /*@__PURE__*/ new Vector3();
const _normalMatrix = /*@__PURE__*/ new Matrix3();
class Plane {
constructor( normal = new Vector3( 1, 0, 0 ), constant = 0 ) {
this.isPlane = true;
// normal is assumed to be normalized
this.normal = normal;
this.constant = constant;
}
set( normal, constant ) {
this.normal.copy( normal );
this.constant = constant;
return this;
}
setComponents( x, y, z, w ) {
this.normal.set( x, y, z );
this.constant = w;
return this;
}
setFromNormalAndCoplanarPoint( normal, point ) {
this.normal.copy( normal );
this.constant = - point.dot( this.normal );
return this;
}
setFromCoplanarPoints( a, b, c ) {
const normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize();
// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
this.setFromNormalAndCoplanarPoint( normal, a );
return this;
}
copy( plane ) {
this.normal.copy( plane.normal );
this.constant = plane.constant;
return this;
}
normalize() {
// Note: will lead to a divide by zero if the plane is invalid.
const inverseNormalLength = 1.0 / this.normal.length();
this.normal.multiplyScalar( inverseNormalLength );
this.constant *= inverseNormalLength;
return this;
}
negate() {
this.constant *= - 1;
this.normal.negate();
return this;
}
distanceToPoint( point ) {
return this.normal.dot( point ) + this.constant;
}
distanceToSphere( sphere ) {
return this.distanceToPoint( sphere.center ) - sphere.radius;
}
projectPoint( point, target ) {
return target.copy( point ).addScaledVector( this.normal, - this.distanceToPoint( point ) );
}
intersectLine( line, target ) {
const direction = line.delta( _vector1 );
const denominator = this.normal.dot( direction );
if ( denominator === 0 ) {
// line is coplanar, return origin
if ( this.distanceToPoint( line.start ) === 0 ) {
return target.copy( line.start );
}
// Unsure if this is the correct method to handle this case.
return null;
}
const t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;
if ( t < 0 || t > 1 ) {
return null;
}
return target.copy( line.start ).addScaledVector( direction, t );
}
intersectsLine( line ) {
// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
const startSign = this.distanceToPoint( line.start );
const endSign = this.distanceToPoint( line.end );
return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );
}
intersectsBox( box ) {
return box.intersectsPlane( this );
}
intersectsSphere( sphere ) {
return sphere.intersectsPlane( this );
}
coplanarPoint( target ) {
return target.copy( this.normal ).multiplyScalar( - this.constant );
}
applyMatrix4( matrix, optionalNormalMatrix ) {
const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix );
const referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix );
const normal = this.normal.applyMatrix3( normalMatrix ).normalize();
this.constant = - referencePoint.dot( normal );
return this;
}
translate( offset ) {
this.constant -= offset.dot( this.normal );
return this;
}
equals( plane ) {
return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );
}
clone() {
return new this.constructor().copy( this );
}
}
const _sphere$3 = /*@__PURE__*/ new Sphere();
const _vector$6 = /*@__PURE__*/ new Vector3();
class Frustum {
constructor( p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane() ) {
this.planes = [ p0, p1, p2, p3, p4, p5 ];
}
set( p0, p1, p2, p3, p4, p5 ) {
const planes = this.planes;
planes[ 0 ].copy( p0 );
planes[ 1 ].copy( p1 );
planes[ 2 ].copy( p2 );
planes[ 3 ].copy( p3 );
planes[ 4 ].copy( p4 );
planes[ 5 ].copy( p5 );
return this;
}
copy( frustum ) {
const planes = this.planes;
for ( let i = 0; i < 6; i ++ ) {
planes[ i ].copy( frustum.planes[ i ] );
}
return this;
}
setFromProjectionMatrix( m, coordinateSystem = WebGLCoordinateSystem ) {
const planes = this.planes;
const me = m.elements;
const me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];
const me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];
const me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];
const me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];
planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();
planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();
planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();
planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();
planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();
if ( coordinateSystem === WebGLCoordinateSystem ) {
planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();
} else if ( coordinateSystem === WebGPUCoordinateSystem ) {
planes[ 5 ].setComponents( me2, me6, me10, me14 ).normalize();
} else {
throw new Error( 'THREE.Frustum.setFromProjectionMatrix(): Invalid coordinate system: ' + coordinateSystem );
}
return this;
}
intersectsObject( object ) {
if ( object.boundingSphere !== undefined ) {
if ( object.boundingSphere === null ) object.computeBoundingSphere();
_sphere$3.copy( object.boundingSphere ).applyMatrix4( object.matrixWorld );
} else {
const geometry = object.geometry;
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_sphere$3.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld );
}
return this.intersectsSphere( _sphere$3 );
}
intersectsSprite( sprite ) {
_sphere$3.center.set( 0, 0, 0 );
_sphere$3.radius = 0.7071067811865476;
_sphere$3.applyMatrix4( sprite.matrixWorld );
return this.intersectsSphere( _sphere$3 );
}
intersectsSphere( sphere ) {
const planes = this.planes;
const center = sphere.center;
const negRadius = - sphere.radius;
for ( let i = 0; i < 6; i ++ ) {
const distance = planes[ i ].distanceToPoint( center );
if ( distance < negRadius ) {
return false;
}
}
return true;
}
intersectsBox( box ) {
const planes = this.planes;
for ( let i = 0; i < 6; i ++ ) {
const plane = planes[ i ];
// corner at max distance
_vector$6.x = plane.normal.x > 0 ? box.max.x : box.min.x;
_vector$6.y = plane.normal.y > 0 ? box.max.y : box.min.y;
_vector$6.z = plane.normal.z > 0 ? box.max.z : box.min.z;
if ( plane.distanceToPoint( _vector$6 ) < 0 ) {
return false;
}
}
return true;
}
containsPoint( point ) {
const planes = this.planes;
for ( let i = 0; i < 6; i ++ ) {
if ( planes[ i ].distanceToPoint( point ) < 0 ) {
return false;
}
}
return true;
}
clone() {
return new this.constructor().copy( this );
}
}
function sortOpaque( a, b ) {
return a.z - b.z;
}
function sortTransparent( a, b ) {
return b.z - a.z;
}
class MultiDrawRenderList {
constructor() {
this.index = 0;
this.pool = [];
this.list = [];
}
push( drawRange, z, index ) {
const pool = this.pool;
const list = this.list;
if ( this.index >= pool.length ) {
pool.push( {
start: - 1,
count: - 1,
z: - 1,
index: - 1,
} );
}
const item = pool[ this.index ];
list.push( item );
this.index ++;
item.start = drawRange.start;
item.count = drawRange.count;
item.z = z;
item.index = index;
}
reset() {
this.list.length = 0;
this.index = 0;
}
}
const _matrix$1 = /*@__PURE__*/ new Matrix4();
const _invMatrixWorld = /*@__PURE__*/ new Matrix4();
const _identityMatrix = /*@__PURE__*/ new Matrix4();
const _whiteColor = /*@__PURE__*/ new Color( 1, 1, 1 );
const _projScreenMatrix$3 = /*@__PURE__*/ new Matrix4();
const _frustum$1 = /*@__PURE__*/ new Frustum();
const _box$1 = /*@__PURE__*/ new Box3();
const _sphere$2 = /*@__PURE__*/ new Sphere();
const _vector$5 = /*@__PURE__*/ new Vector3();
const _forward = /*@__PURE__*/ new Vector3();
const _temp = /*@__PURE__*/ new Vector3();
const _renderList = /*@__PURE__*/ new MultiDrawRenderList();
const _mesh = /*@__PURE__*/ new Mesh();
const _batchIntersects = [];
// @TODO: SkinnedMesh support?
// @TODO: geometry.groups support?
// @TODO: geometry.drawRange support?
// @TODO: geometry.morphAttributes support?
// @TODO: Support uniform parameter per geometry
// @TODO: Add an "optimize" function to pack geometry and remove data gaps
// copies data from attribute "src" into "target" starting at "targetOffset"
function copyAttributeData( src, target, targetOffset = 0 ) {
const itemSize = target.itemSize;
if ( src.isInterleavedBufferAttribute || src.array.constructor !== target.array.constructor ) {
// use the component getters and setters if the array data cannot
// be copied directly
const vertexCount = src.count;
for ( let i = 0; i < vertexCount; i ++ ) {
for ( let c = 0; c < itemSize; c ++ ) {
target.setComponent( i + targetOffset, c, src.getComponent( i, c ) );
}
}
} else {
// faster copy approach using typed array set function
target.array.set( src.array, targetOffset * itemSize );
}
target.needsUpdate = true;
}
class BatchedMesh extends Mesh {
get maxInstanceCount() {
return this._maxInstanceCount;
}
constructor( maxInstanceCount, maxVertexCount, maxIndexCount = maxVertexCount * 2, material ) {
super( new BufferGeometry(), material );
this.isBatchedMesh = true;
this.perObjectFrustumCulled = true;
this.sortObjects = true;
this.boundingBox = null;
this.boundingSphere = null;
this.customSort = null;
// stores visible, active, and geometry id per object
this._drawInfo = [];
// geometry information
this._drawRanges = [];
this._reservedRanges = [];
this._bounds = [];
this._maxInstanceCount = maxInstanceCount;
this._maxVertexCount = maxVertexCount;
this._maxIndexCount = maxIndexCount;
this._geometryInitialized = false;
this._geometryCount = 0;
this._multiDrawCounts = new Int32Array( maxInstanceCount );
this._multiDrawStarts = new Int32Array( maxInstanceCount );
this._multiDrawCount = 0;
this._multiDrawInstances = null;
this._visibilityChanged = true;
// Local matrix per geometry by using data texture
this._matricesTexture = null;
this._indirectTexture = null;
this._colorsTexture = null;
this._initMatricesTexture();
this._initIndirectTexture();
}
_initMatricesTexture() {
// layout (1 matrix = 4 pixels)
// RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
// with 8x8 pixel texture max 16 matrices * 4 pixels = (8 * 8)
// 16x16 pixel texture max 64 matrices * 4 pixels = (16 * 16)
// 32x32 pixel texture max 256 matrices * 4 pixels = (32 * 32)
// 64x64 pixel texture max 1024 matrices * 4 pixels = (64 * 64)
let size = Math.sqrt( this._maxInstanceCount * 4 ); // 4 pixels needed for 1 matrix
size = Math.ceil( size / 4 ) * 4;
size = Math.max( size, 4 );
const matricesArray = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel
const matricesTexture = new DataTexture( matricesArray, size, size, RGBAFormat, FloatType );
this._matricesTexture = matricesTexture;
}
_initIndirectTexture() {
let size = Math.sqrt( this._maxInstanceCount );
size = Math.ceil( size );
const indirectArray = new Uint32Array( size * size );
const indirectTexture = new DataTexture( indirectArray, size, size, RedIntegerFormat, UnsignedIntType );
this._indirectTexture = indirectTexture;
}
_initColorsTexture() {
let size = Math.sqrt( this._maxIndexCount );
size = Math.ceil( size );
// 4 floats per RGBA pixel initialized to white
const colorsArray = new Float32Array( size * size * 4 ).fill( 1 );
const colorsTexture = new DataTexture( colorsArray, size, size, RGBAFormat, FloatType );
colorsTexture.colorSpace = ColorManagement.workingColorSpace;
this._colorsTexture = colorsTexture;
}
_initializeGeometry( reference ) {
const geometry = this.geometry;
const maxVertexCount = this._maxVertexCount;
const maxIndexCount = this._maxIndexCount;
if ( this._geometryInitialized === false ) {
for ( const attributeName in reference.attributes ) {
const srcAttribute = reference.getAttribute( attributeName );
const { array, itemSize, normalized } = srcAttribute;
const dstArray = new array.constructor( maxVertexCount * itemSize );
const dstAttribute = new BufferAttribute( dstArray, itemSize, normalized );
geometry.setAttribute( attributeName, dstAttribute );
}
if ( reference.getIndex() !== null ) {
// Reserve last u16 index for primitive restart.
const indexArray = maxVertexCount > 65535
? new Uint32Array( maxIndexCount )
: new Uint16Array( maxIndexCount );
geometry.setIndex( new BufferAttribute( indexArray, 1 ) );
}
this._geometryInitialized = true;
}
}
// Make sure the geometry is compatible with the existing combined geometry attributes
_validateGeometry( geometry ) {
// check to ensure the geometries are using consistent attributes and indices
const batchGeometry = this.geometry;
if ( Boolean( geometry.getIndex() ) !== Boolean( batchGeometry.getIndex() ) ) {
throw new Error( 'BatchedMesh: All geometries must consistently have "index".' );
}
for ( const attributeName in batchGeometry.attributes ) {
if ( ! geometry.hasAttribute( attributeName ) ) {
throw new Error( `BatchedMesh: Added geometry missing "${ attributeName }". All geometries must have consistent attributes.` );
}
const srcAttribute = geometry.getAttribute( attributeName );
const dstAttribute = batchGeometry.getAttribute( attributeName );
if ( srcAttribute.itemSize !== dstAttribute.itemSize || srcAttribute.normalized !== dstAttribute.normalized ) {
throw new Error( 'BatchedMesh: All attributes must have a consistent itemSize and normalized value.' );
}
}
}
setCustomSort( func ) {
this.customSort = func;
return this;
}
computeBoundingBox() {
if ( this.boundingBox === null ) {
this.boundingBox = new Box3();
}
const geometryCount = this._geometryCount;
const boundingBox = this.boundingBox;
const drawInfo = this._drawInfo;
boundingBox.makeEmpty();
for ( let i = 0; i < geometryCount; i ++ ) {
if ( drawInfo[ i ].active === false ) continue;
const geometryId = drawInfo[ i ].geometryIndex;
this.getMatrixAt( i, _matrix$1 );
this.getBoundingBoxAt( geometryId, _box$1 ).applyMatrix4( _matrix$1 );
boundingBox.union( _box$1 );
}
}
computeBoundingSphere() {
if ( this.boundingSphere === null ) {
this.boundingSphere = new Sphere();
}
const boundingSphere = this.boundingSphere;
const drawInfo = this._drawInfo;
boundingSphere.makeEmpty();
for ( let i = 0, l = drawInfo.length; i < l; i ++ ) {
if ( drawInfo[ i ].active === false ) continue;
const geometryId = drawInfo[ i ].geometryIndex;
this.getMatrixAt( i, _matrix$1 );
this.getBoundingSphereAt( geometryId, _sphere$2 ).applyMatrix4( _matrix$1 );
boundingSphere.union( _sphere$2 );
}
}
addInstance( geometryId ) {
// ensure we're not over geometry
if ( this._drawInfo.length >= this._maxInstanceCount ) {
throw new Error( 'BatchedMesh: Maximum item count reached.' );
}
this._drawInfo.push( {
visible: true,
active: true,
geometryIndex: geometryId,
} );
// initialize the matrix
const drawId = this._drawInfo.length - 1;
const matricesTexture = this._matricesTexture;
const matricesArray = matricesTexture.image.data;
_identityMatrix.toArray( matricesArray, drawId * 16 );
matricesTexture.needsUpdate = true;
const colorsTexture = this._colorsTexture;
if ( colorsTexture ) {
_whiteColor.toArray( colorsTexture.image.data, drawId * 4 );
colorsTexture.needsUpdate = true;
}
return drawId;
}
addGeometry( geometry, vertexCount = - 1, indexCount = - 1 ) {
this._initializeGeometry( geometry );
this._validateGeometry( geometry );
// ensure we're not over geometry
if ( this._drawInfo.length >= this._maxInstanceCount ) {
throw new Error( 'BatchedMesh: Maximum item count reached.' );
}
// get the necessary range fo the geometry
const reservedRange = {
vertexStart: - 1,
vertexCount: - 1,
indexStart: - 1,
indexCount: - 1,
};
let lastRange = null;
const reservedRanges = this._reservedRanges;
const drawRanges = this._drawRanges;
const bounds = this._bounds;
if ( this._geometryCount !== 0 ) {
lastRange = reservedRanges[ reservedRanges.length - 1 ];
}
if ( vertexCount === - 1 ) {
reservedRange.vertexCount = geometry.getAttribute( 'position' ).count;
} else {
reservedRange.vertexCount = vertexCount;
}
if ( lastRange === null ) {
reservedRange.vertexStart = 0;
} else {
reservedRange.vertexStart = lastRange.vertexStart + lastRange.vertexCount;
}
const index = geometry.getIndex();
const hasIndex = index !== null;
if ( hasIndex ) {
if ( indexCount === - 1 ) {
reservedRange.indexCount = index.count;
} else {
reservedRange.indexCount = indexCount;
}
if ( lastRange === null ) {
reservedRange.indexStart = 0;
} else {
reservedRange.indexStart = lastRange.indexStart + lastRange.indexCount;
}
}
if (
reservedRange.indexStart !== - 1 &&
reservedRange.indexStart + reservedRange.indexCount > this._maxIndexCount ||
reservedRange.vertexStart + reservedRange.vertexCount > this._maxVertexCount
) {
throw new Error( 'BatchedMesh: Reserved space request exceeds the maximum buffer size.' );
}
// update id
const geometryId = this._geometryCount;
this._geometryCount ++;
// add the reserved range and draw range objects
reservedRanges.push( reservedRange );
drawRanges.push( {
start: hasIndex ? reservedRange.indexStart : reservedRange.vertexStart,
count: - 1
} );
bounds.push( {
boxInitialized: false,
box: new Box3(),
sphereInitialized: false,
sphere: new Sphere()
} );
// update the geometry
this.setGeometryAt( geometryId, geometry );
return geometryId;
}
setGeometryAt( geometryId, geometry ) {
if ( geometryId >= this._geometryCount ) {
throw new Error( 'BatchedMesh: Maximum geometry count reached.' );
}
this._validateGeometry( geometry );
const batchGeometry = this.geometry;
const hasIndex = batchGeometry.getIndex() !== null;
const dstIndex = batchGeometry.getIndex();
const srcIndex = geometry.getIndex();
const reservedRange = this._reservedRanges[ geometryId ];
if (
hasIndex &&
srcIndex.count > reservedRange.indexCount ||
geometry.attributes.position.count > reservedRange.vertexCount
) {
throw new Error( 'BatchedMesh: Reserved space not large enough for provided geometry.' );
}
// copy geometry over
const vertexStart = reservedRange.vertexStart;
const vertexCount = reservedRange.vertexCount;
for ( const attributeName in batchGeometry.attributes ) {
// copy attribute data
const srcAttribute = geometry.getAttribute( attributeName );
const dstAttribute = batchGeometry.getAttribute( attributeName );
copyAttributeData( srcAttribute, dstAttribute, vertexStart );
// fill the rest in with zeroes
const itemSize = srcAttribute.itemSize;
for ( let i = srcAttribute.count, l = vertexCount; i < l; i ++ ) {
const index = vertexStart + i;
for ( let c = 0; c < itemSize; c ++ ) {
dstAttribute.setComponent( index, c, 0 );
}
}
dstAttribute.needsUpdate = true;
dstAttribute.addUpdateRange( vertexStart * itemSize, vertexCount * itemSize );
}
// copy index
if ( hasIndex ) {
const indexStart = reservedRange.indexStart;
// copy index data over
for ( let i = 0; i < srcIndex.count; i ++ ) {
dstIndex.setX( indexStart + i, vertexStart + srcIndex.getX( i ) );
}
// fill the rest in with zeroes
for ( let i = srcIndex.count, l = reservedRange.indexCount; i < l; i ++ ) {
dstIndex.setX( indexStart + i, vertexStart );
}
dstIndex.needsUpdate = true;
dstIndex.addUpdateRange( indexStart, reservedRange.indexCount );
}
// store the bounding boxes
const bound = this._bounds[ geometryId ];
if ( geometry.boundingBox !== null ) {
bound.box.copy( geometry.boundingBox );
bound.boxInitialized = true;
} else {
bound.boxInitialized = false;
}
if ( geometry.boundingSphere !== null ) {
bound.sphere.copy( geometry.boundingSphere );
bound.sphereInitialized = true;
} else {
bound.sphereInitialized = false;
}
// set drawRange count
const drawRange = this._drawRanges[ geometryId ];
const posAttr = geometry.getAttribute( 'position' );
drawRange.count = hasIndex ? srcIndex.count : posAttr.count;
this._visibilityChanged = true;
return geometryId;
}
/*
deleteGeometry( geometryId ) {
// TODO: delete geometry and associated instances
}
*/
/*
deleteInstance( instanceId ) {
// Note: User needs to call optimize() afterward to pack the data.
const drawInfo = this._drawInfo;
if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false ) {
return this;
}
drawInfo[ instanceId ].active = false;
this._visibilityChanged = true;
return this;
}
*/
// get bounding box and compute it if it doesn't exist
getBoundingBoxAt( geometryId, target ) {
if ( geometryId >= this._geometryCount ) {
return null;
}
// compute bounding box
const bound = this._bounds[ geometryId ];
const box = bound.box;
const geometry = this.geometry;
if ( bound.boxInitialized === false ) {
box.makeEmpty();
const index = geometry.index;
const position = geometry.attributes.position;
const drawRange = this._drawRanges[ geometryId ];
for ( let i = drawRange.start, l = drawRange.start + drawRange.count; i < l; i ++ ) {
let iv = i;
if ( index ) {
iv = index.getX( iv );
}
box.expandByPoint( _vector$5.fromBufferAttribute( position, iv ) );
}
bound.boxInitialized = true;
}
target.copy( box );
return target;
}
// get bounding sphere and compute it if it doesn't exist
getBoundingSphereAt( geometryId, target ) {
if ( geometryId >= this._geometryCount ) {
return null;
}
// compute bounding sphere
const bound = this._bounds[ geometryId ];
const sphere = bound.sphere;
const geometry = this.geometry;
if ( bound.sphereInitialized === false ) {
sphere.makeEmpty();
this.getBoundingBoxAt( geometryId, _box$1 );
_box$1.getCenter( sphere.center );
const index = geometry.index;
const position = geometry.attributes.position;
const drawRange = this._drawRanges[ geometryId ];
let maxRadiusSq = 0;
for ( let i = drawRange.start, l = drawRange.start + drawRange.count; i < l; i ++ ) {
let iv = i;
if ( index ) {
iv = index.getX( iv );
}
_vector$5.fromBufferAttribute( position, iv );
maxRadiusSq = Math.max( maxRadiusSq, sphere.center.distanceToSquared( _vector$5 ) );
}
sphere.radius = Math.sqrt( maxRadiusSq );
bound.sphereInitialized = true;
}
target.copy( sphere );
return target;
}
setMatrixAt( instanceId, matrix ) {
// @TODO: Map geometryId to index of the arrays because
// optimize() can make geometryId mismatch the index
const drawInfo = this._drawInfo;
const matricesTexture = this._matricesTexture;
const matricesArray = this._matricesTexture.image.data;
if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false ) {
return this;
}
matrix.toArray( matricesArray, instanceId * 16 );
matricesTexture.needsUpdate = true;
return this;
}
getMatrixAt( instanceId, matrix ) {
const drawInfo = this._drawInfo;
const matricesArray = this._matricesTexture.image.data;
if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false ) {
return null;
}
return matrix.fromArray( matricesArray, instanceId * 16 );
}
setColorAt( instanceId, color ) {
if ( this._colorsTexture === null ) {
this._initColorsTexture();
}
// @TODO: Map id to index of the arrays because
// optimize() can make id mismatch the index
const colorsTexture = this._colorsTexture;
const colorsArray = this._colorsTexture.image.data;
const drawInfo = this._drawInfo;
if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false ) {
return this;
}
color.toArray( colorsArray, instanceId * 4 );
colorsTexture.needsUpdate = true;
return this;
}
getColorAt( instanceId, color ) {
const colorsArray = this._colorsTexture.image.data;
const drawInfo = this._drawInfo;
if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false ) {
return null;
}
return color.fromArray( colorsArray, instanceId * 4 );
}
setVisibleAt( instanceId, value ) {
// if the geometry is out of range, not active, or visibility state
// does not change then return early
const drawInfo = this._drawInfo;
if (
instanceId >= drawInfo.length ||
drawInfo[ instanceId ].active === false ||
drawInfo[ instanceId ].visible === value
) {
return this;
}
drawInfo[ instanceId ].visible = value;
this._visibilityChanged = true;
return this;
}
getVisibleAt( instanceId ) {
// return early if the geometry is out of range or not active
const drawInfo = this._drawInfo;
if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false ) {
return false;
}
return drawInfo[ instanceId ].visible;
}
raycast( raycaster, intersects ) {
const drawInfo = this._drawInfo;
const drawRanges = this._drawRanges;
const matrixWorld = this.matrixWorld;
const batchGeometry = this.geometry;
// iterate over each geometry
_mesh.material = this.material;
_mesh.geometry.index = batchGeometry.index;
_mesh.geometry.attributes = batchGeometry.attributes;
if ( _mesh.geometry.boundingBox === null ) {
_mesh.geometry.boundingBox = new Box3();
}
if ( _mesh.geometry.boundingSphere === null ) {
_mesh.geometry.boundingSphere = new Sphere();
}
for ( let i = 0, l = drawInfo.length; i < l; i ++ ) {
if ( ! drawInfo[ i ].visible || ! drawInfo[ i ].active ) {
continue;
}
const geometryId = drawInfo[ i ].geometryIndex;
const drawRange = drawRanges[ geometryId ];
_mesh.geometry.setDrawRange( drawRange.start, drawRange.count );
// ge the intersects
this.getMatrixAt( i, _mesh.matrixWorld ).premultiply( matrixWorld );
this.getBoundingBoxAt( geometryId, _mesh.geometry.boundingBox );
this.getBoundingSphereAt( geometryId, _mesh.geometry.boundingSphere );
_mesh.raycast( raycaster, _batchIntersects );
// add batch id to the intersects
for ( let j = 0, l = _batchIntersects.length; j < l; j ++ ) {
const intersect = _batchIntersects[ j ];
intersect.object = this;
intersect.batchId = i;
intersects.push( intersect );
}
_batchIntersects.length = 0;
}
_mesh.material = null;
_mesh.geometry.index = null;
_mesh.geometry.attributes = {};
_mesh.geometry.setDrawRange( 0, Infinity );
}
copy( source ) {
super.copy( source );
this.geometry = source.geometry.clone();
this.perObjectFrustumCulled = source.perObjectFrustumCulled;
this.sortObjects = source.sortObjects;
this.boundingBox = source.boundingBox !== null ? source.boundingBox.clone() : null;
this.boundingSphere = source.boundingSphere !== null ? source.boundingSphere.clone() : null;
this._drawRanges = source._drawRanges.map( range => ( { ...range } ) );
this._reservedRanges = source._reservedRanges.map( range => ( { ...range } ) );
this._drawInfo = source._drawInfo.map( inf => ( { ...inf } ) );
this._bounds = source._bounds.map( bound => ( {
boxInitialized: bound.boxInitialized,
box: bound.box.clone(),
sphereInitialized: bound.sphereInitialized,
sphere: bound.sphere.clone()
} ) );
this._maxInstanceCount = source._maxInstanceCount;
this._maxVertexCount = source._maxVertexCount;
this._maxIndexCount = source._maxIndexCount;
this._geometryInitialized = source._geometryInitialized;
this._geometryCount = source._geometryCount;
this._multiDrawCounts = source._multiDrawCounts.slice();
this._multiDrawStarts = source._multiDrawStarts.slice();
this._matricesTexture = source._matricesTexture.clone();
this._matricesTexture.image.data = this._matricesTexture.image.data.slice();
if ( this._colorsTexture !== null ) {
this._colorsTexture = source._colorsTexture.clone();
this._colorsTexture.image.data = this._colorsTexture.image.data.slice();
}
return this;
}
dispose() {
// Assuming the geometry is not shared with other meshes
this.geometry.dispose();
this._matricesTexture.dispose();
this._matricesTexture = null;
this._indirectTexture.dispose();
this._indirectTexture = null;
if ( this._colorsTexture !== null ) {
this._colorsTexture.dispose();
this._colorsTexture = null;
}
return this;
}
onBeforeRender( renderer, scene, camera, geometry, material/*, _group*/ ) {
// if visibility has not changed and frustum culling and object sorting is not required
// then skip iterating over all items
if ( ! this._visibilityChanged && ! this.perObjectFrustumCulled && ! this.sortObjects ) {
return;
}
// the indexed version of the multi draw function requires specifying the start
// offset in bytes.
const index = geometry.getIndex();
const bytesPerElement = index === null ? 1 : index.array.BYTES_PER_ELEMENT;
const drawInfo = this._drawInfo;
const multiDrawStarts = this._multiDrawStarts;
const multiDrawCounts = this._multiDrawCounts;
const drawRanges = this._drawRanges;
const perObjectFrustumCulled = this.perObjectFrustumCulled;
const indirectTexture = this._indirectTexture;
const indirectArray = indirectTexture.image.data;
// prepare the frustum in the local frame
if ( perObjectFrustumCulled ) {
_projScreenMatrix$3
.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse )
.multiply( this.matrixWorld );
_frustum$1.setFromProjectionMatrix(
_projScreenMatrix$3,
renderer.coordinateSystem
);
}
let count = 0;
if ( this.sortObjects ) {
// get the camera position in the local frame
_invMatrixWorld.copy( this.matrixWorld ).invert();
_vector$5.setFromMatrixPosition( camera.matrixWorld ).applyMatrix4( _invMatrixWorld );
_forward.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld ).transformDirection( _invMatrixWorld );
for ( let i = 0, l = drawInfo.length; i < l; i ++ ) {
if ( drawInfo[ i ].visible && drawInfo[ i ].active ) {
const geometryId = drawInfo[ i ].geometryIndex;
// get the bounds in world space
this.getMatrixAt( i, _matrix$1 );
this.getBoundingSphereAt( geometryId, _sphere$2 ).applyMatrix4( _matrix$1 );
// determine whether the batched geometry is within the frustum
let culled = false;
if ( perObjectFrustumCulled ) {
culled = ! _frustum$1.intersectsSphere( _sphere$2 );
}
if ( ! culled ) {
// get the distance from camera used for sorting
const z = _temp.subVectors( _sphere$2.center, _vector$5 ).dot( _forward );
_renderList.push( drawRanges[ geometryId ], z, i );
}
}
}
// Sort the draw ranges and prep for rendering
const list = _renderList.list;
const customSort = this.customSort;
if ( customSort === null ) {
list.sort( material.transparent ? sortTransparent : sortOpaque );
} else {
customSort.call( this, list, camera );
}
for ( let i = 0, l = list.length; i < l; i ++ ) {
const item = list[ i ];
multiDrawStarts[ count ] = item.start * bytesPerElement;
multiDrawCounts[ count ] = item.count;
indirectArray[ count ] = item.index;
count ++;
}
_renderList.reset();
} else {
for ( let i = 0, l = drawInfo.length; i < l; i ++ ) {
if ( drawInfo[ i ].visible && drawInfo[ i ].active ) {
const geometryId = drawInfo[ i ].geometryIndex;
// determine whether the batched geometry is within the frustum
let culled = false;
if ( perObjectFrustumCulled ) {
// get the bounds in world space
this.getMatrixAt( i, _matrix$1 );
this.getBoundingSphereAt( geometryId, _sphere$2 ).applyMatrix4( _matrix$1 );
culled = ! _frustum$1.intersectsSphere( _sphere$2 );
}
if ( ! culled ) {
const range = drawRanges[ geometryId ];
multiDrawStarts[ count ] = range.start * bytesPerElement;
multiDrawCounts[ count ] = range.count;
indirectArray[ count ] = i;
count ++;
}
}
}
}
indirectTexture.needsUpdate = true;
this._multiDrawCount = count;
this._visibilityChanged = false;
}
onBeforeShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial/* , group */ ) {
this.onBeforeRender( renderer, null, shadowCamera, geometry, depthMaterial );
}
}
class LineBasicMaterial extends Material {
constructor( parameters ) {
super();
this.isLineBasicMaterial = true;
this.type = 'LineBasicMaterial';
this.color = new Color( 0xffffff );
this.map = null;
this.linewidth = 1;
this.linecap = 'round';
this.linejoin = 'round';
this.fog = true;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.color.copy( source.color );
this.map = source.map;
this.linewidth = source.linewidth;
this.linecap = source.linecap;
this.linejoin = source.linejoin;
this.fog = source.fog;
return this;
}
}
const _vStart = /*@__PURE__*/ new Vector3();
const _vEnd = /*@__PURE__*/ new Vector3();
const _inverseMatrix$1 = /*@__PURE__*/ new Matrix4();
const _ray$1 = /*@__PURE__*/ new Ray();
const _sphere$1 = /*@__PURE__*/ new Sphere();
const _intersectPointOnRay = /*@__PURE__*/ new Vector3();
const _intersectPointOnSegment = /*@__PURE__*/ new Vector3();
class Line extends Object3D {
constructor( geometry = new BufferGeometry(), material = new LineBasicMaterial() ) {
super();
this.isLine = true;
this.type = 'Line';
this.geometry = geometry;
this.material = material;
this.updateMorphTargets();
}
copy( source, recursive ) {
super.copy( source, recursive );
this.material = Array.isArray( source.material ) ? source.material.slice() : source.material;
this.geometry = source.geometry;
return this;
}
computeLineDistances() {
const geometry = this.geometry;
// we assume non-indexed geometry
if ( geometry.index === null ) {
const positionAttribute = geometry.attributes.position;
const lineDistances = [ 0 ];
for ( let i = 1, l = positionAttribute.count; i < l; i ++ ) {
_vStart.fromBufferAttribute( positionAttribute, i - 1 );
_vEnd.fromBufferAttribute( positionAttribute, i );
lineDistances[ i ] = lineDistances[ i - 1 ];
lineDistances[ i ] += _vStart.distanceTo( _vEnd );
}
geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) );
} else {
console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' );
}
return this;
}
raycast( raycaster, intersects ) {
const geometry = this.geometry;
const matrixWorld = this.matrixWorld;
const threshold = raycaster.params.Line.threshold;
const drawRange = geometry.drawRange;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_sphere$1.copy( geometry.boundingSphere );
_sphere$1.applyMatrix4( matrixWorld );
_sphere$1.radius += threshold;
if ( raycaster.ray.intersectsSphere( _sphere$1 ) === false ) return;
//
_inverseMatrix$1.copy( matrixWorld ).invert();
_ray$1.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$1 );
const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
const localThresholdSq = localThreshold * localThreshold;
const step = this.isLineSegments ? 2 : 1;
const index = geometry.index;
const attributes = geometry.attributes;
const positionAttribute = attributes.position;
if ( index !== null ) {
const start = Math.max( 0, drawRange.start );
const end = Math.min( index.count, ( drawRange.start + drawRange.count ) );
for ( let i = start, l = end - 1; i < l; i += step ) {
const a = index.getX( i );
const b = index.getX( i + 1 );
const intersect = checkIntersection( this, raycaster, _ray$1, localThresholdSq, a, b );
if ( intersect ) {
intersects.push( intersect );
}
}
if ( this.isLineLoop ) {
const a = index.getX( end - 1 );
const b = index.getX( start );
const intersect = checkIntersection( this, raycaster, _ray$1, localThresholdSq, a, b );
if ( intersect ) {
intersects.push( intersect );
}
}
} else {
const start = Math.max( 0, drawRange.start );
const end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) );
for ( let i = start, l = end - 1; i < l; i += step ) {
const intersect = checkIntersection( this, raycaster, _ray$1, localThresholdSq, i, i + 1 );
if ( intersect ) {
intersects.push( intersect );
}
}
if ( this.isLineLoop ) {
const intersect = checkIntersection( this, raycaster, _ray$1, localThresholdSq, end - 1, start );
if ( intersect ) {
intersects.push( intersect );
}
}
}
}
updateMorphTargets() {
const geometry = this.geometry;
const morphAttributes = geometry.morphAttributes;
const keys = Object.keys( morphAttributes );
if ( keys.length > 0 ) {
const morphAttribute = morphAttributes[ keys[ 0 ] ];
if ( morphAttribute !== undefined ) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) {
const name = morphAttribute[ m ].name || String( m );
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ name ] = m;
}
}
}
}
}
function checkIntersection( object, raycaster, ray, thresholdSq, a, b ) {
const positionAttribute = object.geometry.attributes.position;
_vStart.fromBufferAttribute( positionAttribute, a );
_vEnd.fromBufferAttribute( positionAttribute, b );
const distSq = ray.distanceSqToSegment( _vStart, _vEnd, _intersectPointOnRay, _intersectPointOnSegment );
if ( distSq > thresholdSq ) return;
_intersectPointOnRay.applyMatrix4( object.matrixWorld ); // Move back to world space for distance calculation
const distance = raycaster.ray.origin.distanceTo( _intersectPointOnRay );
if ( distance < raycaster.near || distance > raycaster.far ) return;
return {
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: _intersectPointOnSegment.clone().applyMatrix4( object.matrixWorld ),
index: a,
face: null,
faceIndex: null,
object: object
};
}
const _start = /*@__PURE__*/ new Vector3();
const _end = /*@__PURE__*/ new Vector3();
class LineSegments extends Line {
constructor( geometry, material ) {
super( geometry, material );
this.isLineSegments = true;
this.type = 'LineSegments';
}
computeLineDistances() {
const geometry = this.geometry;
// we assume non-indexed geometry
if ( geometry.index === null ) {
const positionAttribute = geometry.attributes.position;
const lineDistances = [];
for ( let i = 0, l = positionAttribute.count; i < l; i += 2 ) {
_start.fromBufferAttribute( positionAttribute, i );
_end.fromBufferAttribute( positionAttribute, i + 1 );
lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ];
lineDistances[ i + 1 ] = lineDistances[ i ] + _start.distanceTo( _end );
}
geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) );
} else {
console.warn( 'THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' );
}
return this;
}
}
class LineLoop extends Line {
constructor( geometry, material ) {
super( geometry, material );
this.isLineLoop = true;
this.type = 'LineLoop';
}
}
class PointsMaterial extends Material {
constructor( parameters ) {
super();
this.isPointsMaterial = true;
this.type = 'PointsMaterial';
this.color = new Color( 0xffffff );
this.map = null;
this.alphaMap = null;
this.size = 1;
this.sizeAttenuation = true;
this.fog = true;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.color.copy( source.color );
this.map = source.map;
this.alphaMap = source.alphaMap;
this.size = source.size;
this.sizeAttenuation = source.sizeAttenuation;
this.fog = source.fog;
return this;
}
}
const _inverseMatrix = /*@__PURE__*/ new Matrix4();
const _ray = /*@__PURE__*/ new Ray();
const _sphere = /*@__PURE__*/ new Sphere();
const _position$2 = /*@__PURE__*/ new Vector3();
class Points extends Object3D {
constructor( geometry = new BufferGeometry(), material = new PointsMaterial() ) {
super();
this.isPoints = true;
this.type = 'Points';
this.geometry = geometry;
this.material = material;
this.updateMorphTargets();
}
copy( source, recursive ) {
super.copy( source, recursive );
this.material = Array.isArray( source.material ) ? source.material.slice() : source.material;
this.geometry = source.geometry;
return this;
}
raycast( raycaster, intersects ) {
const geometry = this.geometry;
const matrixWorld = this.matrixWorld;
const threshold = raycaster.params.Points.threshold;
const drawRange = geometry.drawRange;
// Checking boundingSphere distance to ray
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_sphere.copy( geometry.boundingSphere );
_sphere.applyMatrix4( matrixWorld );
_sphere.radius += threshold;
if ( raycaster.ray.intersectsSphere( _sphere ) === false ) return;
//
_inverseMatrix.copy( matrixWorld ).invert();
_ray.copy( raycaster.ray ).applyMatrix4( _inverseMatrix );
const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
const localThresholdSq = localThreshold * localThreshold;
const index = geometry.index;
const attributes = geometry.attributes;
const positionAttribute = attributes.position;
if ( index !== null ) {
const start = Math.max( 0, drawRange.start );
const end = Math.min( index.count, ( drawRange.start + drawRange.count ) );
for ( let i = start, il = end; i < il; i ++ ) {
const a = index.getX( i );
_position$2.fromBufferAttribute( positionAttribute, a );
testPoint( _position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this );
}
} else {
const start = Math.max( 0, drawRange.start );
const end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) );
for ( let i = start, l = end; i < l; i ++ ) {
_position$2.fromBufferAttribute( positionAttribute, i );
testPoint( _position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this );
}
}
}
updateMorphTargets() {
const geometry = this.geometry;
const morphAttributes = geometry.morphAttributes;
const keys = Object.keys( morphAttributes );
if ( keys.length > 0 ) {
const morphAttribute = morphAttributes[ keys[ 0 ] ];
if ( morphAttribute !== undefined ) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) {
const name = morphAttribute[ m ].name || String( m );
this.morphTargetInfluences.push( 0 );
this.morphTargetDictionary[ name ] = m;
}
}
}
}
}
function testPoint( point, index, localThresholdSq, matrixWorld, raycaster, intersects, object ) {
const rayPointDistanceSq = _ray.distanceSqToPoint( point );
if ( rayPointDistanceSq < localThresholdSq ) {
const intersectPoint = new Vector3();
_ray.closestPointToPoint( point, intersectPoint );
intersectPoint.applyMatrix4( matrixWorld );
const distance = raycaster.ray.origin.distanceTo( intersectPoint );
if ( distance < raycaster.near || distance > raycaster.far ) return;
intersects.push( {
distance: distance,
distanceToRay: Math.sqrt( rayPointDistanceSq ),
point: intersectPoint,
index: index,
face: null,
object: object
} );
}
}
class Group extends Object3D {
constructor() {
super();
this.isGroup = true;
this.type = 'Group';
}
}
class VideoTexture extends Texture {
constructor( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {
super( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
this.isVideoTexture = true;
this.minFilter = minFilter !== undefined ? minFilter : LinearFilter;
this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
this.generateMipmaps = false;
const scope = this;
function updateVideo() {
scope.needsUpdate = true;
video.requestVideoFrameCallback( updateVideo );
}
if ( 'requestVideoFrameCallback' in video ) {
video.requestVideoFrameCallback( updateVideo );
}
}
clone() {
return new this.constructor( this.image ).copy( this );
}
update() {
const video = this.image;
const hasVideoFrameCallback = 'requestVideoFrameCallback' in video;
if ( hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA ) {
this.needsUpdate = true;
}
}
}
class FramebufferTexture extends Texture {
constructor( width, height ) {
super( { width, height } );
this.isFramebufferTexture = true;
this.magFilter = NearestFilter;
this.minFilter = NearestFilter;
this.generateMipmaps = false;
this.needsUpdate = true;
}
}
class CompressedTexture extends Texture {
constructor( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, colorSpace ) {
super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace );
this.isCompressedTexture = true;
this.image = { width: width, height: height };
this.mipmaps = mipmaps;
// no flipping for cube textures
// (also flipping doesn't work for compressed textures )
this.flipY = false;
// can't generate mipmaps for compressed textures
// mips must be embedded in DDS files
this.generateMipmaps = false;
}
}
class CompressedArrayTexture extends CompressedTexture {
constructor( mipmaps, width, height, depth, format, type ) {
super( mipmaps, width, height, format, type );
this.isCompressedArrayTexture = true;
this.image.depth = depth;
this.wrapR = ClampToEdgeWrapping;
this.layerUpdates = new Set();
}
addLayerUpdate( layerIndex ) {
this.layerUpdates.add( layerIndex );
}
clearLayerUpdates() {
this.layerUpdates.clear();
}
}
class CompressedCubeTexture extends CompressedTexture {
constructor( images, format, type ) {
super( undefined, images[ 0 ].width, images[ 0 ].height, format, type, CubeReflectionMapping );
this.isCompressedCubeTexture = true;
this.isCubeTexture = true;
this.image = images;
}
}
class CanvasTexture extends Texture {
constructor( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {
super( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
this.isCanvasTexture = true;
this.needsUpdate = true;
}
}
class DepthTexture extends Texture {
constructor( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format = DepthFormat ) {
if ( format !== DepthFormat && format !== DepthStencilFormat ) {
throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' );
}
if ( type === undefined && format === DepthFormat ) type = UnsignedIntType;
if ( type === undefined && format === DepthStencilFormat ) type = UnsignedInt248Type;
super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );
this.isDepthTexture = true;
this.image = { width: width, height: height };
this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;
this.flipY = false;
this.generateMipmaps = false;
this.compareFunction = null;
}
copy( source ) {
super.copy( source );
this.compareFunction = source.compareFunction;
return this;
}
toJSON( meta ) {
const data = super.toJSON( meta );
if ( this.compareFunction !== null ) data.compareFunction = this.compareFunction;
return data;
}
}
/**
* Extensible curve object.
*
* Some common of curve methods:
* .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget )
* .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget )
* .getPoints(), .getSpacedPoints()
* .getLength()
* .updateArcLengths()
*
* This following curves inherit from THREE.Curve:
*
* -- 2D curves --
* THREE.ArcCurve
* THREE.CubicBezierCurve
* THREE.EllipseCurve
* THREE.LineCurve
* THREE.QuadraticBezierCurve
* THREE.SplineCurve
*
* -- 3D curves --
* THREE.CatmullRomCurve3
* THREE.CubicBezierCurve3
* THREE.LineCurve3
* THREE.QuadraticBezierCurve3
*
* A series of curves can be represented as a THREE.CurvePath.
*
**/
class Curve {
constructor() {
this.type = 'Curve';
this.arcLengthDivisions = 200;
}
// Virtual base class method to overwrite and implement in subclasses
// - t [0 .. 1]
getPoint( /* t, optionalTarget */ ) {
console.warn( 'THREE.Curve: .getPoint() not implemented.' );
return null;
}
// Get point at relative position in curve according to arc length
// - u [0 .. 1]
getPointAt( u, optionalTarget ) {
const t = this.getUtoTmapping( u );
return this.getPoint( t, optionalTarget );
}
// Get sequence of points using getPoint( t )
getPoints( divisions = 5 ) {
const points = [];
for ( let d = 0; d <= divisions; d ++ ) {
points.push( this.getPoint( d / divisions ) );
}
return points;
}
// Get sequence of points using getPointAt( u )
getSpacedPoints( divisions = 5 ) {
const points = [];
for ( let d = 0; d <= divisions; d ++ ) {
points.push( this.getPointAt( d / divisions ) );
}
return points;
}
// Get total curve arc length
getLength() {
const lengths = this.getLengths();
return lengths[ lengths.length - 1 ];
}
// Get list of cumulative segment lengths
getLengths( divisions = this.arcLengthDivisions ) {
if ( this.cacheArcLengths &&
( this.cacheArcLengths.length === divisions + 1 ) &&
! this.needsUpdate ) {
return this.cacheArcLengths;
}
this.needsUpdate = false;
const cache = [];
let current, last = this.getPoint( 0 );
let sum = 0;
cache.push( 0 );
for ( let p = 1; p <= divisions; p ++ ) {
current = this.getPoint( p / divisions );
sum += current.distanceTo( last );
cache.push( sum );
last = current;
}
this.cacheArcLengths = cache;
return cache; // { sums: cache, sum: sum }; Sum is in the last element.
}
updateArcLengths() {
this.needsUpdate = true;
this.getLengths();
}
// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
getUtoTmapping( u, distance ) {
const arcLengths = this.getLengths();
let i = 0;
const il = arcLengths.length;
let targetArcLength; // The targeted u distance value to get
if ( distance ) {
targetArcLength = distance;
} else {
targetArcLength = u * arcLengths[ il - 1 ];
}
// binary search for the index with largest value smaller than target u distance
let low = 0, high = il - 1, comparison;
while ( low <= high ) {
i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
comparison = arcLengths[ i ] - targetArcLength;
if ( comparison < 0 ) {
low = i + 1;
} else if ( comparison > 0 ) {
high = i - 1;
} else {
high = i;
break;
// DONE
}
}
i = high;
if ( arcLengths[ i ] === targetArcLength ) {
return i / ( il - 1 );
}
// we could get finer grain at lengths, or use simple interpolation between two points
const lengthBefore = arcLengths[ i ];
const lengthAfter = arcLengths[ i + 1 ];
const segmentLength = lengthAfter - lengthBefore;
// determine where we are between the 'before' and 'after' points
const segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;
// add that fractional amount to t
const t = ( i + segmentFraction ) / ( il - 1 );
return t;
}
// Returns a unit vector tangent at t
// In case any sub curve does not implement its tangent derivation,
// 2 points a small delta apart will be used to find its gradient
// which seems to give a reasonable approximation
getTangent( t, optionalTarget ) {
const delta = 0.0001;
let t1 = t - delta;
let t2 = t + delta;
// Capping in case of danger
if ( t1 < 0 ) t1 = 0;
if ( t2 > 1 ) t2 = 1;
const pt1 = this.getPoint( t1 );
const pt2 = this.getPoint( t2 );
const tangent = optionalTarget || ( ( pt1.isVector2 ) ? new Vector2() : new Vector3() );
tangent.copy( pt2 ).sub( pt1 ).normalize();
return tangent;
}
getTangentAt( u, optionalTarget ) {
const t = this.getUtoTmapping( u );
return this.getTangent( t, optionalTarget );
}
computeFrenetFrames( segments, closed ) {
// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
const normal = new Vector3();
const tangents = [];
const normals = [];
const binormals = [];
const vec = new Vector3();
const mat = new Matrix4();
// compute the tangent vectors for each segment on the curve
for ( let i = 0; i <= segments; i ++ ) {
const u = i / segments;
tangents[ i ] = this.getTangentAt( u, new Vector3() );
}
// select an initial normal vector perpendicular to the first tangent vector,
// and in the direction of the minimum tangent xyz component
normals[ 0 ] = new Vector3();
binormals[ 0 ] = new Vector3();
let min = Number.MAX_VALUE;
const tx = Math.abs( tangents[ 0 ].x );
const ty = Math.abs( tangents[ 0 ].y );
const tz = Math.abs( tangents[ 0 ].z );
if ( tx <= min ) {
min = tx;
normal.set( 1, 0, 0 );
}
if ( ty <= min ) {
min = ty;
normal.set( 0, 1, 0 );
}
if ( tz <= min ) {
normal.set( 0, 0, 1 );
}
vec.crossVectors( tangents[ 0 ], normal ).normalize();
normals[ 0 ].crossVectors( tangents[ 0 ], vec );
binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );
// compute the slowly-varying normal and binormal vectors for each segment on the curve
for ( let i = 1; i <= segments; i ++ ) {
normals[ i ] = normals[ i - 1 ].clone();
binormals[ i ] = binormals[ i - 1 ].clone();
vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );
if ( vec.length() > Number.EPSILON ) {
vec.normalize();
const theta = Math.acos( clamp$1( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors
normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );
}
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
if ( closed === true ) {
let theta = Math.acos( clamp$1( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) );
theta /= segments;
if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) {
theta = - theta;
}
for ( let i = 1; i <= segments; i ++ ) {
// twist a little...
normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
}
return {
tangents: tangents,
normals: normals,
binormals: binormals
};
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
this.arcLengthDivisions = source.arcLengthDivisions;
return this;
}
toJSON() {
const data = {
metadata: {
version: 4.6,
type: 'Curve',
generator: 'Curve.toJSON'
}
};
data.arcLengthDivisions = this.arcLengthDivisions;
data.type = this.type;
return data;
}
fromJSON( json ) {
this.arcLengthDivisions = json.arcLengthDivisions;
return this;
}
}
class EllipseCurve extends Curve {
constructor( aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0 ) {
super();
this.isEllipseCurve = true;
this.type = 'EllipseCurve';
this.aX = aX;
this.aY = aY;
this.xRadius = xRadius;
this.yRadius = yRadius;
this.aStartAngle = aStartAngle;
this.aEndAngle = aEndAngle;
this.aClockwise = aClockwise;
this.aRotation = aRotation;
}
getPoint( t, optionalTarget = new Vector2() ) {
const point = optionalTarget;
const twoPi = Math.PI * 2;
let deltaAngle = this.aEndAngle - this.aStartAngle;
const samePoints = Math.abs( deltaAngle ) < Number.EPSILON;
// ensures that deltaAngle is 0 .. 2 PI
while ( deltaAngle < 0 ) deltaAngle += twoPi;
while ( deltaAngle > twoPi ) deltaAngle -= twoPi;
if ( deltaAngle < Number.EPSILON ) {
if ( samePoints ) {
deltaAngle = 0;
} else {
deltaAngle = twoPi;
}
}
if ( this.aClockwise === true && ! samePoints ) {
if ( deltaAngle === twoPi ) {
deltaAngle = - twoPi;
} else {
deltaAngle = deltaAngle - twoPi;
}
}
const angle = this.aStartAngle + t * deltaAngle;
let x = this.aX + this.xRadius * Math.cos( angle );
let y = this.aY + this.yRadius * Math.sin( angle );
if ( this.aRotation !== 0 ) {
const cos = Math.cos( this.aRotation );
const sin = Math.sin( this.aRotation );
const tx = x - this.aX;
const ty = y - this.aY;
// Rotate the point about the center of the ellipse.
x = tx * cos - ty * sin + this.aX;
y = tx * sin + ty * cos + this.aY;
}
return point.set( x, y );
}
copy( source ) {
super.copy( source );
this.aX = source.aX;
this.aY = source.aY;
this.xRadius = source.xRadius;
this.yRadius = source.yRadius;
this.aStartAngle = source.aStartAngle;
this.aEndAngle = source.aEndAngle;
this.aClockwise = source.aClockwise;
this.aRotation = source.aRotation;
return this;
}
toJSON() {
const data = super.toJSON();
data.aX = this.aX;
data.aY = this.aY;
data.xRadius = this.xRadius;
data.yRadius = this.yRadius;
data.aStartAngle = this.aStartAngle;
data.aEndAngle = this.aEndAngle;
data.aClockwise = this.aClockwise;
data.aRotation = this.aRotation;
return data;
}
fromJSON( json ) {
super.fromJSON( json );
this.aX = json.aX;
this.aY = json.aY;
this.xRadius = json.xRadius;
this.yRadius = json.yRadius;
this.aStartAngle = json.aStartAngle;
this.aEndAngle = json.aEndAngle;
this.aClockwise = json.aClockwise;
this.aRotation = json.aRotation;
return this;
}
}
class ArcCurve extends EllipseCurve {
constructor( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
super( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );
this.isArcCurve = true;
this.type = 'ArcCurve';
}
}
/**
* Centripetal CatmullRom Curve - which is useful for avoiding
* cusps and self-intersections in non-uniform catmull rom curves.
* http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
*
* curve.type accepts centripetal(default), chordal and catmullrom
* curve.tension is used for catmullrom which defaults to 0.5
*/
/*
Based on an optimized c++ solution in
- http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
- http://ideone.com/NoEbVM
This CubicPoly class could be used for reusing some variables and calculations,
but for three.js curve use, it could be possible inlined and flatten into a single function call
which can be placed in CurveUtils.
*/
function CubicPoly() {
let c0 = 0, c1 = 0, c2 = 0, c3 = 0;
/*
* Compute coefficients for a cubic polynomial
* p(s) = c0 + c1*s + c2*s^2 + c3*s^3
* such that
* p(0) = x0, p(1) = x1
* and
* p'(0) = t0, p'(1) = t1.
*/
function init( x0, x1, t0, t1 ) {
c0 = x0;
c1 = t0;
c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1;
c3 = 2 * x0 - 2 * x1 + t0 + t1;
}
return {
initCatmullRom: function ( x0, x1, x2, x3, tension ) {
init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) );
},
initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) {
// compute tangents when parameterized in [t1,t2]
let t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1;
let t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2;
// rescale tangents for parametrization in [0,1]
t1 *= dt1;
t2 *= dt1;
init( x1, x2, t1, t2 );
},
calc: function ( t ) {
const t2 = t * t;
const t3 = t2 * t;
return c0 + c1 * t + c2 * t2 + c3 * t3;
}
};
}
//
const tmp = /*@__PURE__*/ new Vector3();
const px = /*@__PURE__*/ new CubicPoly();
const py = /*@__PURE__*/ new CubicPoly();
const pz = /*@__PURE__*/ new CubicPoly();
class CatmullRomCurve3 extends Curve {
constructor( points = [], closed = false, curveType = 'centripetal', tension = 0.5 ) {
super();
this.isCatmullRomCurve3 = true;
this.type = 'CatmullRomCurve3';
this.points = points;
this.closed = closed;
this.curveType = curveType;
this.tension = tension;
}
getPoint( t, optionalTarget = new Vector3() ) {
const point = optionalTarget;
const points = this.points;
const l = points.length;
const p = ( l - ( this.closed ? 0 : 1 ) ) * t;
let intPoint = Math.floor( p );
let weight = p - intPoint;
if ( this.closed ) {
intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / l ) + 1 ) * l;
} else if ( weight === 0 && intPoint === l - 1 ) {
intPoint = l - 2;
weight = 1;
}
let p0, p3; // 4 points (p1 & p2 defined below)
if ( this.closed || intPoint > 0 ) {
p0 = points[ ( intPoint - 1 ) % l ];
} else {
// extrapolate first point
tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] );
p0 = tmp;
}
const p1 = points[ intPoint % l ];
const p2 = points[ ( intPoint + 1 ) % l ];
if ( this.closed || intPoint + 2 < l ) {
p3 = points[ ( intPoint + 2 ) % l ];
} else {
// extrapolate last point
tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] );
p3 = tmp;
}
if ( this.curveType === 'centripetal' || this.curveType === 'chordal' ) {
// init Centripetal / Chordal Catmull-Rom
const pow = this.curveType === 'chordal' ? 0.5 : 0.25;
let dt0 = Math.pow( p0.distanceToSquared( p1 ), pow );
let dt1 = Math.pow( p1.distanceToSquared( p2 ), pow );
let dt2 = Math.pow( p2.distanceToSquared( p3 ), pow );
// safety check for repeated points
if ( dt1 < 1e-4 ) dt1 = 1.0;
if ( dt0 < 1e-4 ) dt0 = dt1;
if ( dt2 < 1e-4 ) dt2 = dt1;
px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 );
py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 );
pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 );
} else if ( this.curveType === 'catmullrom' ) {
px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, this.tension );
py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, this.tension );
pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, this.tension );
}
point.set(
px.calc( weight ),
py.calc( weight ),
pz.calc( weight )
);
return point;
}
copy( source ) {
super.copy( source );
this.points = [];
for ( let i = 0, l = source.points.length; i < l; i ++ ) {
const point = source.points[ i ];
this.points.push( point.clone() );
}
this.closed = source.closed;
this.curveType = source.curveType;
this.tension = source.tension;
return this;
}
toJSON() {
const data = super.toJSON();
data.points = [];
for ( let i = 0, l = this.points.length; i < l; i ++ ) {
const point = this.points[ i ];
data.points.push( point.toArray() );
}
data.closed = this.closed;
data.curveType = this.curveType;
data.tension = this.tension;
return data;
}
fromJSON( json ) {
super.fromJSON( json );
this.points = [];
for ( let i = 0, l = json.points.length; i < l; i ++ ) {
const point = json.points[ i ];
this.points.push( new Vector3().fromArray( point ) );
}
this.closed = json.closed;
this.curveType = json.curveType;
this.tension = json.tension;
return this;
}
}
/**
* Bezier Curves formulas obtained from
* https://en.wikipedia.org/wiki/B%C3%A9zier_curve
*/
function CatmullRom( t, p0, p1, p2, p3 ) {
const v0 = ( p2 - p0 ) * 0.5;
const v1 = ( p3 - p1 ) * 0.5;
const t2 = t * t;
const t3 = t * t2;
return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1;
}
//
function QuadraticBezierP0( t, p ) {
const k = 1 - t;
return k * k * p;
}
function QuadraticBezierP1( t, p ) {
return 2 * ( 1 - t ) * t * p;
}
function QuadraticBezierP2( t, p ) {
return t * t * p;
}
function QuadraticBezier( t, p0, p1, p2 ) {
return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) +
QuadraticBezierP2( t, p2 );
}
//
function CubicBezierP0( t, p ) {
const k = 1 - t;
return k * k * k * p;
}
function CubicBezierP1( t, p ) {
const k = 1 - t;
return 3 * k * k * t * p;
}
function CubicBezierP2( t, p ) {
return 3 * ( 1 - t ) * t * t * p;
}
function CubicBezierP3( t, p ) {
return t * t * t * p;
}
function CubicBezier( t, p0, p1, p2, p3 ) {
return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) +
CubicBezierP3( t, p3 );
}
class CubicBezierCurve extends Curve {
constructor( v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2() ) {
super();
this.isCubicBezierCurve = true;
this.type = 'CubicBezierCurve';
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
}
getPoint( t, optionalTarget = new Vector2() ) {
const point = optionalTarget;
const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;
point.set(
CubicBezier( t, v0.x, v1.x, v2.x, v3.x ),
CubicBezier( t, v0.y, v1.y, v2.y, v3.y )
);
return point;
}
copy( source ) {
super.copy( source );
this.v0.copy( source.v0 );
this.v1.copy( source.v1 );
this.v2.copy( source.v2 );
this.v3.copy( source.v3 );
return this;
}
toJSON() {
const data = super.toJSON();
data.v0 = this.v0.toArray();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
data.v3 = this.v3.toArray();
return data;
}
fromJSON( json ) {
super.fromJSON( json );
this.v0.fromArray( json.v0 );
this.v1.fromArray( json.v1 );
this.v2.fromArray( json.v2 );
this.v3.fromArray( json.v3 );
return this;
}
}
class CubicBezierCurve3 extends Curve {
constructor( v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3() ) {
super();
this.isCubicBezierCurve3 = true;
this.type = 'CubicBezierCurve3';
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
}
getPoint( t, optionalTarget = new Vector3() ) {
const point = optionalTarget;
const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;
point.set(
CubicBezier( t, v0.x, v1.x, v2.x, v3.x ),
CubicBezier( t, v0.y, v1.y, v2.y, v3.y ),
CubicBezier( t, v0.z, v1.z, v2.z, v3.z )
);
return point;
}
copy( source ) {
super.copy( source );
this.v0.copy( source.v0 );
this.v1.copy( source.v1 );
this.v2.copy( source.v2 );
this.v3.copy( source.v3 );
return this;
}
toJSON() {
const data = super.toJSON();
data.v0 = this.v0.toArray();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
data.v3 = this.v3.toArray();
return data;
}
fromJSON( json ) {
super.fromJSON( json );
this.v0.fromArray( json.v0 );
this.v1.fromArray( json.v1 );
this.v2.fromArray( json.v2 );
this.v3.fromArray( json.v3 );
return this;
}
}
class LineCurve extends Curve {
constructor( v1 = new Vector2(), v2 = new Vector2() ) {
super();
this.isLineCurve = true;
this.type = 'LineCurve';
this.v1 = v1;
this.v2 = v2;
}
getPoint( t, optionalTarget = new Vector2() ) {
const point = optionalTarget;
if ( t === 1 ) {
point.copy( this.v2 );
} else {
point.copy( this.v2 ).sub( this.v1 );
point.multiplyScalar( t ).add( this.v1 );
}
return point;
}
// Line curve is linear, so we can overwrite default getPointAt
getPointAt( u, optionalTarget ) {
return this.getPoint( u, optionalTarget );
}
getTangent( t, optionalTarget = new Vector2() ) {
return optionalTarget.subVectors( this.v2, this.v1 ).normalize();
}
getTangentAt( u, optionalTarget ) {
return this.getTangent( u, optionalTarget );
}
copy( source ) {
super.copy( source );
this.v1.copy( source.v1 );
this.v2.copy( source.v2 );
return this;
}
toJSON() {
const data = super.toJSON();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
return data;
}
fromJSON( json ) {
super.fromJSON( json );
this.v1.fromArray( json.v1 );
this.v2.fromArray( json.v2 );
return this;
}
}
class LineCurve3 extends Curve {
constructor( v1 = new Vector3(), v2 = new Vector3() ) {
super();
this.isLineCurve3 = true;
this.type = 'LineCurve3';
this.v1 = v1;
this.v2 = v2;
}
getPoint( t, optionalTarget = new Vector3() ) {
const point = optionalTarget;
if ( t === 1 ) {
point.copy( this.v2 );
} else {
point.copy( this.v2 ).sub( this.v1 );
point.multiplyScalar( t ).add( this.v1 );
}
return point;
}
// Line curve is linear, so we can overwrite default getPointAt
getPointAt( u, optionalTarget ) {
return this.getPoint( u, optionalTarget );
}
getTangent( t, optionalTarget = new Vector3() ) {
return optionalTarget.subVectors( this.v2, this.v1 ).normalize();
}
getTangentAt( u, optionalTarget ) {
return this.getTangent( u, optionalTarget );
}
copy( source ) {
super.copy( source );
this.v1.copy( source.v1 );
this.v2.copy( source.v2 );
return this;
}
toJSON() {
const data = super.toJSON();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
return data;
}
fromJSON( json ) {
super.fromJSON( json );
this.v1.fromArray( json.v1 );
this.v2.fromArray( json.v2 );
return this;
}
}
class QuadraticBezierCurve extends Curve {
constructor( v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2() ) {
super();
this.isQuadraticBezierCurve = true;
this.type = 'QuadraticBezierCurve';
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
}
getPoint( t, optionalTarget = new Vector2() ) {
const point = optionalTarget;
const v0 = this.v0, v1 = this.v1, v2 = this.v2;
point.set(
QuadraticBezier( t, v0.x, v1.x, v2.x ),
QuadraticBezier( t, v0.y, v1.y, v2.y )
);
return point;
}
copy( source ) {
super.copy( source );
this.v0.copy( source.v0 );
this.v1.copy( source.v1 );
this.v2.copy( source.v2 );
return this;
}
toJSON() {
const data = super.toJSON();
data.v0 = this.v0.toArray();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
return data;
}
fromJSON( json ) {
super.fromJSON( json );
this.v0.fromArray( json.v0 );
this.v1.fromArray( json.v1 );
this.v2.fromArray( json.v2 );
return this;
}
}
class QuadraticBezierCurve3 extends Curve {
constructor( v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3() ) {
super();
this.isQuadraticBezierCurve3 = true;
this.type = 'QuadraticBezierCurve3';
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
}
getPoint( t, optionalTarget = new Vector3() ) {
const point = optionalTarget;
const v0 = this.v0, v1 = this.v1, v2 = this.v2;
point.set(
QuadraticBezier( t, v0.x, v1.x, v2.x ),
QuadraticBezier( t, v0.y, v1.y, v2.y ),
QuadraticBezier( t, v0.z, v1.z, v2.z )
);
return point;
}
copy( source ) {
super.copy( source );
this.v0.copy( source.v0 );
this.v1.copy( source.v1 );
this.v2.copy( source.v2 );
return this;
}
toJSON() {
const data = super.toJSON();
data.v0 = this.v0.toArray();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
return data;
}
fromJSON( json ) {
super.fromJSON( json );
this.v0.fromArray( json.v0 );
this.v1.fromArray( json.v1 );
this.v2.fromArray( json.v2 );
return this;
}
}
class SplineCurve extends Curve {
constructor( points = [] ) {
super();
this.isSplineCurve = true;
this.type = 'SplineCurve';
this.points = points;
}
getPoint( t, optionalTarget = new Vector2() ) {
const point = optionalTarget;
const points = this.points;
const p = ( points.length - 1 ) * t;
const intPoint = Math.floor( p );
const weight = p - intPoint;
const p0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ];
const p1 = points[ intPoint ];
const p2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ];
const p3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ];
point.set(
CatmullRom( weight, p0.x, p1.x, p2.x, p3.x ),
CatmullRom( weight, p0.y, p1.y, p2.y, p3.y )
);
return point;
}
copy( source ) {
super.copy( source );
this.points = [];
for ( let i = 0, l = source.points.length; i < l; i ++ ) {
const point = source.points[ i ];
this.points.push( point.clone() );
}
return this;
}
toJSON() {
const data = super.toJSON();
data.points = [];
for ( let i = 0, l = this.points.length; i < l; i ++ ) {
const point = this.points[ i ];
data.points.push( point.toArray() );
}
return data;
}
fromJSON( json ) {
super.fromJSON( json );
this.points = [];
for ( let i = 0, l = json.points.length; i < l; i ++ ) {
const point = json.points[ i ];
this.points.push( new Vector2().fromArray( point ) );
}
return this;
}
}
var Curves = /*#__PURE__*/Object.freeze({
__proto__: null,
ArcCurve: ArcCurve,
CatmullRomCurve3: CatmullRomCurve3,
CubicBezierCurve: CubicBezierCurve,
CubicBezierCurve3: CubicBezierCurve3,
EllipseCurve: EllipseCurve,
LineCurve: LineCurve,
LineCurve3: LineCurve3,
QuadraticBezierCurve: QuadraticBezierCurve,
QuadraticBezierCurve3: QuadraticBezierCurve3,
SplineCurve: SplineCurve
});
/**************************************************************
* Curved Path - a curve path is simply a array of connected
* curves, but retains the api of a curve
**************************************************************/
class CurvePath extends Curve {
constructor() {
super();
this.type = 'CurvePath';
this.curves = [];
this.autoClose = false; // Automatically closes the path
}
add( curve ) {
this.curves.push( curve );
}
closePath() {
// Add a line curve if start and end of lines are not connected
const startPoint = this.curves[ 0 ].getPoint( 0 );
const endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 );
if ( ! startPoint.equals( endPoint ) ) {
const lineType = ( startPoint.isVector2 === true ) ? 'LineCurve' : 'LineCurve3';
this.curves.push( new Curves[ lineType ]( endPoint, startPoint ) );
}
return this;
}
// To get accurate point with reference to
// entire path distance at time t,
// following has to be done:
// 1. Length of each sub path have to be known
// 2. Locate and identify type of curve
// 3. Get t for the curve
// 4. Return curve.getPointAt(t')
getPoint( t, optionalTarget ) {
const d = t * this.getLength();
const curveLengths = this.getCurveLengths();
let i = 0;
// To think about boundaries points.
while ( i < curveLengths.length ) {
if ( curveLengths[ i ] >= d ) {
const diff = curveLengths[ i ] - d;
const curve = this.curves[ i ];
const segmentLength = curve.getLength();
const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;
return curve.getPointAt( u, optionalTarget );
}
i ++;
}
return null;
// loop where sum != 0, sum > d , sum+1 <d
}
// We cannot use the default THREE.Curve getPoint() with getLength() because in
// THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
// getPoint() depends on getLength
getLength() {
const lens = this.getCurveLengths();
return lens[ lens.length - 1 ];
}
// cacheLengths must be recalculated.
updateArcLengths() {
this.needsUpdate = true;
this.cacheLengths = null;
this.getCurveLengths();
}
// Compute lengths and cache them
// We cannot overwrite getLengths() because UtoT mapping uses it.
getCurveLengths() {
// We use cache values if curves and cache array are same length
if ( this.cacheLengths && this.cacheLengths.length === this.curves.length ) {
return this.cacheLengths;
}
// Get length of sub-curve
// Push sums into cached array
const lengths = [];
let sums = 0;
for ( let i = 0, l = this.curves.length; i < l; i ++ ) {
sums += this.curves[ i ].getLength();
lengths.push( sums );
}
this.cacheLengths = lengths;
return lengths;
}
getSpacedPoints( divisions = 40 ) {
const points = [];
for ( let i = 0; i <= divisions; i ++ ) {
points.push( this.getPoint( i / divisions ) );
}
if ( this.autoClose ) {
points.push( points[ 0 ] );
}
return points;
}
getPoints( divisions = 12 ) {
const points = [];
let last;
for ( let i = 0, curves = this.curves; i < curves.length; i ++ ) {
const curve = curves[ i ];
const resolution = curve.isEllipseCurve ? divisions * 2
: ( curve.isLineCurve || curve.isLineCurve3 ) ? 1
: curve.isSplineCurve ? divisions * curve.points.length
: divisions;
const pts = curve.getPoints( resolution );
for ( let j = 0; j < pts.length; j ++ ) {
const point = pts[ j ];
if ( last && last.equals( point ) ) continue; // ensures no consecutive points are duplicates
points.push( point );
last = point;
}
}
if ( this.autoClose && points.length > 1 && ! points[ points.length - 1 ].equals( points[ 0 ] ) ) {
points.push( points[ 0 ] );
}
return points;
}
copy( source ) {
super.copy( source );
this.curves = [];
for ( let i = 0, l = source.curves.length; i < l; i ++ ) {
const curve = source.curves[ i ];
this.curves.push( curve.clone() );
}
this.autoClose = source.autoClose;
return this;
}
toJSON() {
const data = super.toJSON();
data.autoClose = this.autoClose;
data.curves = [];
for ( let i = 0, l = this.curves.length; i < l; i ++ ) {
const curve = this.curves[ i ];
data.curves.push( curve.toJSON() );
}
return data;
}
fromJSON( json ) {
super.fromJSON( json );
this.autoClose = json.autoClose;
this.curves = [];
for ( let i = 0, l = json.curves.length; i < l; i ++ ) {
const curve = json.curves[ i ];
this.curves.push( new Curves[ curve.type ]().fromJSON( curve ) );
}
return this;
}
}
class Path extends CurvePath {
constructor( points ) {
super();
this.type = 'Path';
this.currentPoint = new Vector2();
if ( points ) {
this.setFromPoints( points );
}
}
setFromPoints( points ) {
this.moveTo( points[ 0 ].x, points[ 0 ].y );
for ( let i = 1, l = points.length; i < l; i ++ ) {
this.lineTo( points[ i ].x, points[ i ].y );
}
return this;
}
moveTo( x, y ) {
this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying?
return this;
}
lineTo( x, y ) {
const curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) );
this.curves.push( curve );
this.currentPoint.set( x, y );
return this;
}
quadraticCurveTo( aCPx, aCPy, aX, aY ) {
const curve = new QuadraticBezierCurve(
this.currentPoint.clone(),
new Vector2( aCPx, aCPy ),
new Vector2( aX, aY )
);
this.curves.push( curve );
this.currentPoint.set( aX, aY );
return this;
}
bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {
const curve = new CubicBezierCurve(
this.currentPoint.clone(),
new Vector2( aCP1x, aCP1y ),
new Vector2( aCP2x, aCP2y ),
new Vector2( aX, aY )
);
this.curves.push( curve );
this.currentPoint.set( aX, aY );
return this;
}
splineThru( pts /*Array of Vector*/ ) {
const npts = [ this.currentPoint.clone() ].concat( pts );
const curve = new SplineCurve( npts );
this.curves.push( curve );
this.currentPoint.copy( pts[ pts.length - 1 ] );
return this;
}
arc( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
const x0 = this.currentPoint.x;
const y0 = this.currentPoint.y;
this.absarc( aX + x0, aY + y0, aRadius,
aStartAngle, aEndAngle, aClockwise );
return this;
}
absarc( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {
this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );
return this;
}
ellipse( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
const x0 = this.currentPoint.x;
const y0 = this.currentPoint.y;
this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );
return this;
}
absellipse( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {
const curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );
if ( this.curves.length > 0 ) {
// if a previous curve is present, attempt to join
const firstPoint = curve.getPoint( 0 );
if ( ! firstPoint.equals( this.currentPoint ) ) {
this.lineTo( firstPoint.x, firstPoint.y );
}
}
this.curves.push( curve );
const lastPoint = curve.getPoint( 1 );
this.currentPoint.copy( lastPoint );
return this;
}
copy( source ) {
super.copy( source );
this.currentPoint.copy( source.currentPoint );
return this;
}
toJSON() {
const data = super.toJSON();
data.currentPoint = this.currentPoint.toArray();
return data;
}
fromJSON( json ) {
super.fromJSON( json );
this.currentPoint.fromArray( json.currentPoint );
return this;
}
}
class LatheGeometry extends BufferGeometry {
constructor( points = [ new Vector2( 0, - 0.5 ), new Vector2( 0.5, 0 ), new Vector2( 0, 0.5 ) ], segments = 12, phiStart = 0, phiLength = Math.PI * 2 ) {
super();
this.type = 'LatheGeometry';
this.parameters = {
points: points,
segments: segments,
phiStart: phiStart,
phiLength: phiLength
};
segments = Math.floor( segments );
// clamp phiLength so it's in range of [ 0, 2PI ]
phiLength = clamp$1( phiLength, 0, Math.PI * 2 );
// buffers
const indices = [];
const vertices = [];
const uvs = [];
const initNormals = [];
const normals = [];
// helper variables
const inverseSegments = 1.0 / segments;
const vertex = new Vector3();
const uv = new Vector2();
const normal = new Vector3();
const curNormal = new Vector3();
const prevNormal = new Vector3();
let dx = 0;
let dy = 0;
// pre-compute normals for initial "meridian"
for ( let j = 0; j <= ( points.length - 1 ); j ++ ) {
switch ( j ) {
case 0: // special handling for 1st vertex on path
dx = points[ j + 1 ].x - points[ j ].x;
dy = points[ j + 1 ].y - points[ j ].y;
normal.x = dy * 1.0;
normal.y = - dx;
normal.z = dy * 0.0;
prevNormal.copy( normal );
normal.normalize();
initNormals.push( normal.x, normal.y, normal.z );
break;
case ( points.length - 1 ): // special handling for last Vertex on path
initNormals.push( prevNormal.x, prevNormal.y, prevNormal.z );
break;
default: // default handling for all vertices in between
dx = points[ j + 1 ].x - points[ j ].x;
dy = points[ j + 1 ].y - points[ j ].y;
normal.x = dy * 1.0;
normal.y = - dx;
normal.z = dy * 0.0;
curNormal.copy( normal );
normal.x += prevNormal.x;
normal.y += prevNormal.y;
normal.z += prevNormal.z;
normal.normalize();
initNormals.push( normal.x, normal.y, normal.z );
prevNormal.copy( curNormal );
}
}
// generate vertices, uvs and normals
for ( let i = 0; i <= segments; i ++ ) {
const phi = phiStart + i * inverseSegments * phiLength;
const sin = Math.sin( phi );
const cos = Math.cos( phi );
for ( let j = 0; j <= ( points.length - 1 ); j ++ ) {
// vertex
vertex.x = points[ j ].x * sin;
vertex.y = points[ j ].y;
vertex.z = points[ j ].x * cos;
vertices.push( vertex.x, vertex.y, vertex.z );
// uv
uv.x = i / segments;
uv.y = j / ( points.length - 1 );
uvs.push( uv.x, uv.y );
// normal
const x = initNormals[ 3 * j + 0 ] * sin;
const y = initNormals[ 3 * j + 1 ];
const z = initNormals[ 3 * j + 0 ] * cos;
normals.push( x, y, z );
}
}
// indices
for ( let i = 0; i < segments; i ++ ) {
for ( let j = 0; j < ( points.length - 1 ); j ++ ) {
const base = j + i * points.length;
const a = base;
const b = base + points.length;
const c = base + points.length + 1;
const d = base + 1;
// faces
indices.push( a, b, d );
indices.push( c, d, b );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new LatheGeometry( data.points, data.segments, data.phiStart, data.phiLength );
}
}
class CapsuleGeometry extends LatheGeometry {
constructor( radius = 1, length = 1, capSegments = 4, radialSegments = 8 ) {
const path = new Path();
path.absarc( 0, - length / 2, radius, Math.PI * 1.5, 0 );
path.absarc( 0, length / 2, radius, 0, Math.PI * 0.5 );
super( path.getPoints( capSegments ), radialSegments );
this.type = 'CapsuleGeometry';
this.parameters = {
radius: radius,
length: length,
capSegments: capSegments,
radialSegments: radialSegments,
};
}
static fromJSON( data ) {
return new CapsuleGeometry( data.radius, data.length, data.capSegments, data.radialSegments );
}
}
class CircleGeometry extends BufferGeometry {
constructor( radius = 1, segments = 32, thetaStart = 0, thetaLength = Math.PI * 2 ) {
super();
this.type = 'CircleGeometry';
this.parameters = {
radius: radius,
segments: segments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
segments = Math.max( 3, segments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
const vertex = new Vector3();
const uv = new Vector2();
// center point
vertices.push( 0, 0, 0 );
normals.push( 0, 0, 1 );
uvs.push( 0.5, 0.5 );
for ( let s = 0, i = 3; s <= segments; s ++, i += 3 ) {
const segment = thetaStart + s / segments * thetaLength;
// vertex
vertex.x = radius * Math.cos( segment );
vertex.y = radius * Math.sin( segment );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normals.push( 0, 0, 1 );
// uvs
uv.x = ( vertices[ i ] / radius + 1 ) / 2;
uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2;
uvs.push( uv.x, uv.y );
}
// indices
for ( let i = 1; i <= segments; i ++ ) {
indices.push( i, i + 1, 0 );
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new CircleGeometry( data.radius, data.segments, data.thetaStart, data.thetaLength );
}
}
class CylinderGeometry extends BufferGeometry {
constructor( radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 32, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2 ) {
super();
this.type = 'CylinderGeometry';
this.parameters = {
radiusTop: radiusTop,
radiusBottom: radiusBottom,
height: height,
radialSegments: radialSegments,
heightSegments: heightSegments,
openEnded: openEnded,
thetaStart: thetaStart,
thetaLength: thetaLength
};
const scope = this;
radialSegments = Math.floor( radialSegments );
heightSegments = Math.floor( heightSegments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
let index = 0;
const indexArray = [];
const halfHeight = height / 2;
let groupStart = 0;
// generate geometry
generateTorso();
if ( openEnded === false ) {
if ( radiusTop > 0 ) generateCap( true );
if ( radiusBottom > 0 ) generateCap( false );
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
function generateTorso() {
const normal = new Vector3();
const vertex = new Vector3();
let groupCount = 0;
// this will be used to calculate the normal
const slope = ( radiusBottom - radiusTop ) / height;
// generate vertices, normals and uvs
for ( let y = 0; y <= heightSegments; y ++ ) {
const indexRow = [];
const v = y / heightSegments;
// calculate the radius of the current row
const radius = v * ( radiusBottom - radiusTop ) + radiusTop;
for ( let x = 0; x <= radialSegments; x ++ ) {
const u = x / radialSegments;
const theta = u * thetaLength + thetaStart;
const sinTheta = Math.sin( theta );
const cosTheta = Math.cos( theta );
// vertex
vertex.x = radius * sinTheta;
vertex.y = - v * height + halfHeight;
vertex.z = radius * cosTheta;
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normal.set( sinTheta, slope, cosTheta ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( u, 1 - v );
// save index of vertex in respective row
indexRow.push( index ++ );
}
// now save vertices of the row in our index array
indexArray.push( indexRow );
}
// generate indices
for ( let x = 0; x < radialSegments; x ++ ) {
for ( let y = 0; y < heightSegments; y ++ ) {
// we use the index array to access the correct indices
const a = indexArray[ y ][ x ];
const b = indexArray[ y + 1 ][ x ];
const c = indexArray[ y + 1 ][ x + 1 ];
const d = indexArray[ y ][ x + 1 ];
// faces
indices.push( a, b, d );
indices.push( b, c, d );
// update group counter
groupCount += 6;
}
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, 0 );
// calculate new start value for groups
groupStart += groupCount;
}
function generateCap( top ) {
// save the index of the first center vertex
const centerIndexStart = index;
const uv = new Vector2();
const vertex = new Vector3();
let groupCount = 0;
const radius = ( top === true ) ? radiusTop : radiusBottom;
const sign = ( top === true ) ? 1 : - 1;
// first we generate the center vertex data of the cap.
// because the geometry needs one set of uvs per face,
// we must generate a center vertex per face/segment
for ( let x = 1; x <= radialSegments; x ++ ) {
// vertex
vertices.push( 0, halfHeight * sign, 0 );
// normal
normals.push( 0, sign, 0 );
// uv
uvs.push( 0.5, 0.5 );
// increase index
index ++;
}
// save the index of the last center vertex
const centerIndexEnd = index;
// now we generate the surrounding vertices, normals and uvs
for ( let x = 0; x <= radialSegments; x ++ ) {
const u = x / radialSegments;
const theta = u * thetaLength + thetaStart;
const cosTheta = Math.cos( theta );
const sinTheta = Math.sin( theta );
// vertex
vertex.x = radius * sinTheta;
vertex.y = halfHeight * sign;
vertex.z = radius * cosTheta;
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normals.push( 0, sign, 0 );
// uv
uv.x = ( cosTheta * 0.5 ) + 0.5;
uv.y = ( sinTheta * 0.5 * sign ) + 0.5;
uvs.push( uv.x, uv.y );
// increase index
index ++;
}
// generate indices
for ( let x = 0; x < radialSegments; x ++ ) {
const c = centerIndexStart + x;
const i = centerIndexEnd + x;
if ( top === true ) {
// face top
indices.push( i, i + 1, c );
} else {
// face bottom
indices.push( i + 1, i, c );
}
groupCount += 3;
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 );
// calculate new start value for groups
groupStart += groupCount;
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new CylinderGeometry( data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength );
}
}
class ConeGeometry extends CylinderGeometry {
constructor( radius = 1, height = 1, radialSegments = 32, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2 ) {
super( 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );
this.type = 'ConeGeometry';
this.parameters = {
radius: radius,
height: height,
radialSegments: radialSegments,
heightSegments: heightSegments,
openEnded: openEnded,
thetaStart: thetaStart,
thetaLength: thetaLength
};
}
static fromJSON( data ) {
return new ConeGeometry( data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength );
}
}
class PolyhedronGeometry extends BufferGeometry {
constructor( vertices = [], indices = [], radius = 1, detail = 0 ) {
super();
this.type = 'PolyhedronGeometry';
this.parameters = {
vertices: vertices,
indices: indices,
radius: radius,
detail: detail
};
// default buffer data
const vertexBuffer = [];
const uvBuffer = [];
// the subdivision creates the vertex buffer data
subdivide( detail );
// all vertices should lie on a conceptual sphere with a given radius
applyRadius( radius );
// finally, create the uv data
generateUVs();
// build non-indexed geometry
this.setAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) );
if ( detail === 0 ) {
this.computeVertexNormals(); // flat normals
} else {
this.normalizeNormals(); // smooth normals
}
// helper functions
function subdivide( detail ) {
const a = new Vector3();
const b = new Vector3();
const c = new Vector3();
// iterate over all faces and apply a subdivision with the given detail value
for ( let i = 0; i < indices.length; i += 3 ) {
// get the vertices of the face
getVertexByIndex( indices[ i + 0 ], a );
getVertexByIndex( indices[ i + 1 ], b );
getVertexByIndex( indices[ i + 2 ], c );
// perform subdivision
subdivideFace( a, b, c, detail );
}
}
function subdivideFace( a, b, c, detail ) {
const cols = detail + 1;
// we use this multidimensional array as a data structure for creating the subdivision
const v = [];
// construct all of the vertices for this subdivision
for ( let i = 0; i <= cols; i ++ ) {
v[ i ] = [];
const aj = a.clone().lerp( c, i / cols );
const bj = b.clone().lerp( c, i / cols );
const rows = cols - i;
for ( let j = 0; j <= rows; j ++ ) {
if ( j === 0 && i === cols ) {
v[ i ][ j ] = aj;
} else {
v[ i ][ j ] = aj.clone().lerp( bj, j / rows );
}
}
}
// construct all of the faces
for ( let i = 0; i < cols; i ++ ) {
for ( let j = 0; j < 2 * ( cols - i ) - 1; j ++ ) {
const k = Math.floor( j / 2 );
if ( j % 2 === 0 ) {
pushVertex( v[ i ][ k + 1 ] );
pushVertex( v[ i + 1 ][ k ] );
pushVertex( v[ i ][ k ] );
} else {
pushVertex( v[ i ][ k + 1 ] );
pushVertex( v[ i + 1 ][ k + 1 ] );
pushVertex( v[ i + 1 ][ k ] );
}
}
}
}
function applyRadius( radius ) {
const vertex = new Vector3();
// iterate over the entire buffer and apply the radius to each vertex
for ( let i = 0; i < vertexBuffer.length; i += 3 ) {
vertex.x = vertexBuffer[ i + 0 ];
vertex.y = vertexBuffer[ i + 1 ];
vertex.z = vertexBuffer[ i + 2 ];
vertex.normalize().multiplyScalar( radius );
vertexBuffer[ i + 0 ] = vertex.x;
vertexBuffer[ i + 1 ] = vertex.y;
vertexBuffer[ i + 2 ] = vertex.z;
}
}
function generateUVs() {
const vertex = new Vector3();
for ( let i = 0; i < vertexBuffer.length; i += 3 ) {
vertex.x = vertexBuffer[ i + 0 ];
vertex.y = vertexBuffer[ i + 1 ];
vertex.z = vertexBuffer[ i + 2 ];
const u = azimuth( vertex ) / 2 / Math.PI + 0.5;
const v = inclination( vertex ) / Math.PI + 0.5;
uvBuffer.push( u, 1 - v );
}
correctUVs();
correctSeam();
}
function correctSeam() {
// handle case when face straddles the seam, see #3269
for ( let i = 0; i < uvBuffer.length; i += 6 ) {
// uv data of a single face
const x0 = uvBuffer[ i + 0 ];
const x1 = uvBuffer[ i + 2 ];
const x2 = uvBuffer[ i + 4 ];
const max = Math.max( x0, x1, x2 );
const min = Math.min( x0, x1, x2 );
// 0.9 is somewhat arbitrary
if ( max > 0.9 && min < 0.1 ) {
if ( x0 < 0.2 ) uvBuffer[ i + 0 ] += 1;
if ( x1 < 0.2 ) uvBuffer[ i + 2 ] += 1;
if ( x2 < 0.2 ) uvBuffer[ i + 4 ] += 1;
}
}
}
function pushVertex( vertex ) {
vertexBuffer.push( vertex.x, vertex.y, vertex.z );
}
function getVertexByIndex( index, vertex ) {
const stride = index * 3;
vertex.x = vertices[ stride + 0 ];
vertex.y = vertices[ stride + 1 ];
vertex.z = vertices[ stride + 2 ];
}
function correctUVs() {
const a = new Vector3();
const b = new Vector3();
const c = new Vector3();
const centroid = new Vector3();
const uvA = new Vector2();
const uvB = new Vector2();
const uvC = new Vector2();
for ( let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) {
a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] );
b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] );
c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] );
uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] );
uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] );
uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] );
centroid.copy( a ).add( b ).add( c ).divideScalar( 3 );
const azi = azimuth( centroid );
correctUV( uvA, j + 0, a, azi );
correctUV( uvB, j + 2, b, azi );
correctUV( uvC, j + 4, c, azi );
}
}
function correctUV( uv, stride, vector, azimuth ) {
if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) {
uvBuffer[ stride ] = uv.x - 1;
}
if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) {
uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5;
}
}
// Angle around the Y axis, counter-clockwise when looking from above.
function azimuth( vector ) {
return Math.atan2( vector.z, - vector.x );
}
// Angle above the XZ plane.
function inclination( vector ) {
return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) );
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new PolyhedronGeometry( data.vertices, data.indices, data.radius, data.details );
}
}
class DodecahedronGeometry extends PolyhedronGeometry {
constructor( radius = 1, detail = 0 ) {
const t = ( 1 + Math.sqrt( 5 ) ) / 2;
const r = 1 / t;
const vertices = [
// (±1, ±1, ±1)
- 1, - 1, - 1, - 1, - 1, 1,
- 1, 1, - 1, - 1, 1, 1,
1, - 1, - 1, 1, - 1, 1,
1, 1, - 1, 1, 1, 1,
// (0, ±1/φ, ±φ)
0, - r, - t, 0, - r, t,
0, r, - t, 0, r, t,
// (±1/φ, ±φ, 0)
- r, - t, 0, - r, t, 0,
r, - t, 0, r, t, 0,
// (±φ, 0, ±1/φ)
- t, 0, - r, t, 0, - r,
- t, 0, r, t, 0, r
];
const indices = [
3, 11, 7, 3, 7, 15, 3, 15, 13,
7, 19, 17, 7, 17, 6, 7, 6, 15,
17, 4, 8, 17, 8, 10, 17, 10, 6,
8, 0, 16, 8, 16, 2, 8, 2, 10,
0, 12, 1, 0, 1, 18, 0, 18, 16,
6, 10, 2, 6, 2, 13, 6, 13, 15,
2, 16, 18, 2, 18, 3, 2, 3, 13,
18, 1, 9, 18, 9, 11, 18, 11, 3,
4, 14, 12, 4, 12, 0, 4, 0, 8,
11, 9, 5, 11, 5, 19, 11, 19, 7,
19, 5, 14, 19, 14, 4, 19, 4, 17,
1, 12, 14, 1, 14, 5, 1, 5, 9
];
super( vertices, indices, radius, detail );
this.type = 'DodecahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
static fromJSON( data ) {
return new DodecahedronGeometry( data.radius, data.detail );
}
}
const _v0 = /*@__PURE__*/ new Vector3();
const _v1$1 = /*@__PURE__*/ new Vector3();
const _normal$1 = /*@__PURE__*/ new Vector3();
const _triangle = /*@__PURE__*/ new Triangle();
class EdgesGeometry extends BufferGeometry {
constructor( geometry = null, thresholdAngle = 1 ) {
super();
this.type = 'EdgesGeometry';
this.parameters = {
geometry: geometry,
thresholdAngle: thresholdAngle
};
if ( geometry !== null ) {
const precisionPoints = 4;
const precision = Math.pow( 10, precisionPoints );
const thresholdDot = Math.cos( DEG2RAD * thresholdAngle );
const indexAttr = geometry.getIndex();
const positionAttr = geometry.getAttribute( 'position' );
const indexCount = indexAttr ? indexAttr.count : positionAttr.count;
const indexArr = [ 0, 0, 0 ];
const vertKeys = [ 'a', 'b', 'c' ];
const hashes = new Array( 3 );
const edgeData = {};
const vertices = [];
for ( let i = 0; i < indexCount; i += 3 ) {
if ( indexAttr ) {
indexArr[ 0 ] = indexAttr.getX( i );
indexArr[ 1 ] = indexAttr.getX( i + 1 );
indexArr[ 2 ] = indexAttr.getX( i + 2 );
} else {
indexArr[ 0 ] = i;
indexArr[ 1 ] = i + 1;
indexArr[ 2 ] = i + 2;
}
const { a, b, c } = _triangle;
a.fromBufferAttribute( positionAttr, indexArr[ 0 ] );
b.fromBufferAttribute( positionAttr, indexArr[ 1 ] );
c.fromBufferAttribute( positionAttr, indexArr[ 2 ] );
_triangle.getNormal( _normal$1 );
// create hashes for the edge from the vertices
hashes[ 0 ] = `${ Math.round( a.x * precision ) },${ Math.round( a.y * precision ) },${ Math.round( a.z * precision ) }`;
hashes[ 1 ] = `${ Math.round( b.x * precision ) },${ Math.round( b.y * precision ) },${ Math.round( b.z * precision ) }`;
hashes[ 2 ] = `${ Math.round( c.x * precision ) },${ Math.round( c.y * precision ) },${ Math.round( c.z * precision ) }`;
// skip degenerate triangles
if ( hashes[ 0 ] === hashes[ 1 ] || hashes[ 1 ] === hashes[ 2 ] || hashes[ 2 ] === hashes[ 0 ] ) {
continue;
}
// iterate over every edge
for ( let j = 0; j < 3; j ++ ) {
// get the first and next vertex making up the edge
const jNext = ( j + 1 ) % 3;
const vecHash0 = hashes[ j ];
const vecHash1 = hashes[ jNext ];
const v0 = _triangle[ vertKeys[ j ] ];
const v1 = _triangle[ vertKeys[ jNext ] ];
const hash = `${ vecHash0 }_${ vecHash1 }`;
const reverseHash = `${ vecHash1 }_${ vecHash0 }`;
if ( reverseHash in edgeData && edgeData[ reverseHash ] ) {
// if we found a sibling edge add it into the vertex array if
// it meets the angle threshold and delete the edge from the map.
if ( _normal$1.dot( edgeData[ reverseHash ].normal ) <= thresholdDot ) {
vertices.push( v0.x, v0.y, v0.z );
vertices.push( v1.x, v1.y, v1.z );
}
edgeData[ reverseHash ] = null;
} else if ( ! ( hash in edgeData ) ) {
// if we've already got an edge here then skip adding a new one
edgeData[ hash ] = {
index0: indexArr[ j ],
index1: indexArr[ jNext ],
normal: _normal$1.clone(),
};
}
}
}
// iterate over all remaining, unmatched edges and add them to the vertex array
for ( const key in edgeData ) {
if ( edgeData[ key ] ) {
const { index0, index1 } = edgeData[ key ];
_v0.fromBufferAttribute( positionAttr, index0 );
_v1$1.fromBufferAttribute( positionAttr, index1 );
vertices.push( _v0.x, _v0.y, _v0.z );
vertices.push( _v1$1.x, _v1$1.y, _v1$1.z );
}
}
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
}
class Shape extends Path {
constructor( points ) {
super( points );
this.uuid = generateUUID();
this.type = 'Shape';
this.holes = [];
}
getPointsHoles( divisions ) {
const holesPts = [];
for ( let i = 0, l = this.holes.length; i < l; i ++ ) {
holesPts[ i ] = this.holes[ i ].getPoints( divisions );
}
return holesPts;
}
// get points of shape and holes (keypoints based on segments parameter)
extractPoints( divisions ) {
return {
shape: this.getPoints( divisions ),
holes: this.getPointsHoles( divisions )
};
}
copy( source ) {
super.copy( source );
this.holes = [];
for ( let i = 0, l = source.holes.length; i < l; i ++ ) {
const hole = source.holes[ i ];
this.holes.push( hole.clone() );
}
return this;
}
toJSON() {
const data = super.toJSON();
data.uuid = this.uuid;
data.holes = [];
for ( let i = 0, l = this.holes.length; i < l; i ++ ) {
const hole = this.holes[ i ];
data.holes.push( hole.toJSON() );
}
return data;
}
fromJSON( json ) {
super.fromJSON( json );
this.uuid = json.uuid;
this.holes = [];
for ( let i = 0, l = json.holes.length; i < l; i ++ ) {
const hole = json.holes[ i ];
this.holes.push( new Path().fromJSON( hole ) );
}
return this;
}
}
/**
* Port from https://github.com/mapbox/earcut (v2.2.4)
*/
const Earcut = {
triangulate: function ( data, holeIndices, dim = 2 ) {
const hasHoles = holeIndices && holeIndices.length;
const outerLen = hasHoles ? holeIndices[ 0 ] * dim : data.length;
let outerNode = linkedList( data, 0, outerLen, dim, true );
const triangles = [];
if ( ! outerNode || outerNode.next === outerNode.prev ) return triangles;
let minX, minY, maxX, maxY, x, y, invSize;
if ( hasHoles ) outerNode = eliminateHoles( data, holeIndices, outerNode, dim );
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
if ( data.length > 80 * dim ) {
minX = maxX = data[ 0 ];
minY = maxY = data[ 1 ];
for ( let i = dim; i < outerLen; i += dim ) {
x = data[ i ];
y = data[ i + 1 ];
if ( x < minX ) minX = x;
if ( y < minY ) minY = y;
if ( x > maxX ) maxX = x;
if ( y > maxY ) maxY = y;
}
// minX, minY and invSize are later used to transform coords into integers for z-order calculation
invSize = Math.max( maxX - minX, maxY - minY );
invSize = invSize !== 0 ? 32767 / invSize : 0;
}
earcutLinked( outerNode, triangles, dim, minX, minY, invSize, 0 );
return triangles;
}
};
// create a circular doubly linked list from polygon points in the specified winding order
function linkedList( data, start, end, dim, clockwise ) {
let i, last;
if ( clockwise === ( signedArea( data, start, end, dim ) > 0 ) ) {
for ( i = start; i < end; i += dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last );
} else {
for ( i = end - dim; i >= start; i -= dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last );
}
if ( last && equals$1( last, last.next ) ) {
removeNode( last );
last = last.next;
}
return last;
}
// eliminate colinear or duplicate points
function filterPoints( start, end ) {
if ( ! start ) return start;
if ( ! end ) end = start;
let p = start,
again;
do {
again = false;
if ( ! p.steiner && ( equals$1( p, p.next ) || area( p.prev, p, p.next ) === 0 ) ) {
removeNode( p );
p = end = p.prev;
if ( p === p.next ) break;
again = true;
} else {
p = p.next;
}
} while ( again || p !== end );
return end;
}
// main ear slicing loop which triangulates a polygon (given as a linked list)
function earcutLinked( ear, triangles, dim, minX, minY, invSize, pass ) {
if ( ! ear ) return;
// interlink polygon nodes in z-order
if ( ! pass && invSize ) indexCurve( ear, minX, minY, invSize );
let stop = ear,
prev, next;
// iterate through ears, slicing them one by one
while ( ear.prev !== ear.next ) {
prev = ear.prev;
next = ear.next;
if ( invSize ? isEarHashed( ear, minX, minY, invSize ) : isEar( ear ) ) {
// cut off the triangle
triangles.push( prev.i / dim | 0 );
triangles.push( ear.i / dim | 0 );
triangles.push( next.i / dim | 0 );
removeNode( ear );
// skipping the next vertex leads to less sliver triangles
ear = next.next;
stop = next.next;
continue;
}
ear = next;
// if we looped through the whole remaining polygon and can't find any more ears
if ( ear === stop ) {
// try filtering points and slicing again
if ( ! pass ) {
earcutLinked( filterPoints( ear ), triangles, dim, minX, minY, invSize, 1 );
// if this didn't work, try curing all small self-intersections locally
} else if ( pass === 1 ) {
ear = cureLocalIntersections( filterPoints( ear ), triangles, dim );
earcutLinked( ear, triangles, dim, minX, minY, invSize, 2 );
// as a last resort, try splitting the remaining polygon into two
} else if ( pass === 2 ) {
splitEarcut( ear, triangles, dim, minX, minY, invSize );
}
break;
}
}
}
// check whether a polygon node forms a valid ear with adjacent nodes
function isEar( ear ) {
const a = ear.prev,
b = ear,
c = ear.next;
if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear
// now make sure we don't have other points inside the potential ear
const ax = a.x, bx = b.x, cx = c.x, ay = a.y, by = b.y, cy = c.y;
// triangle bbox; min & max are calculated like this for speed
const x0 = ax < bx ? ( ax < cx ? ax : cx ) : ( bx < cx ? bx : cx ),
y0 = ay < by ? ( ay < cy ? ay : cy ) : ( by < cy ? by : cy ),
x1 = ax > bx ? ( ax > cx ? ax : cx ) : ( bx > cx ? bx : cx ),
y1 = ay > by ? ( ay > cy ? ay : cy ) : ( by > cy ? by : cy );
let p = c.next;
while ( p !== a ) {
if ( p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 &&
pointInTriangle( ax, ay, bx, by, cx, cy, p.x, p.y ) &&
area( p.prev, p, p.next ) >= 0 ) return false;
p = p.next;
}
return true;
}
function isEarHashed( ear, minX, minY, invSize ) {
const a = ear.prev,
b = ear,
c = ear.next;
if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear
const ax = a.x, bx = b.x, cx = c.x, ay = a.y, by = b.y, cy = c.y;
// triangle bbox; min & max are calculated like this for speed
const x0 = ax < bx ? ( ax < cx ? ax : cx ) : ( bx < cx ? bx : cx ),
y0 = ay < by ? ( ay < cy ? ay : cy ) : ( by < cy ? by : cy ),
x1 = ax > bx ? ( ax > cx ? ax : cx ) : ( bx > cx ? bx : cx ),
y1 = ay > by ? ( ay > cy ? ay : cy ) : ( by > cy ? by : cy );
// z-order range for the current triangle bbox;
const minZ = zOrder( x0, y0, minX, minY, invSize ),
maxZ = zOrder( x1, y1, minX, minY, invSize );
let p = ear.prevZ,
n = ear.nextZ;
// look for points inside the triangle in both directions
while ( p && p.z >= minZ && n && n.z <= maxZ ) {
if ( p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c &&
pointInTriangle( ax, ay, bx, by, cx, cy, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) return false;
p = p.prevZ;
if ( n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c &&
pointInTriangle( ax, ay, bx, by, cx, cy, n.x, n.y ) && area( n.prev, n, n.next ) >= 0 ) return false;
n = n.nextZ;
}
// look for remaining points in decreasing z-order
while ( p && p.z >= minZ ) {
if ( p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c &&
pointInTriangle( ax, ay, bx, by, cx, cy, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) return false;
p = p.prevZ;
}
// look for remaining points in increasing z-order
while ( n && n.z <= maxZ ) {
if ( n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c &&
pointInTriangle( ax, ay, bx, by, cx, cy, n.x, n.y ) && area( n.prev, n, n.next ) >= 0 ) return false;
n = n.nextZ;
}
return true;
}
// go through all polygon nodes and cure small local self-intersections
function cureLocalIntersections( start, triangles, dim ) {
let p = start;
do {
const a = p.prev,
b = p.next.next;
if ( ! equals$1( a, b ) && intersects( a, p, p.next, b ) && locallyInside( a, b ) && locallyInside( b, a ) ) {
triangles.push( a.i / dim | 0 );
triangles.push( p.i / dim | 0 );
triangles.push( b.i / dim | 0 );
// remove two nodes involved
removeNode( p );
removeNode( p.next );
p = start = b;
}
p = p.next;
} while ( p !== start );
return filterPoints( p );
}
// try splitting polygon into two and triangulate them independently
function splitEarcut( start, triangles, dim, minX, minY, invSize ) {
// look for a valid diagonal that divides the polygon into two
let a = start;
do {
let b = a.next.next;
while ( b !== a.prev ) {
if ( a.i !== b.i && isValidDiagonal( a, b ) ) {
// split the polygon in two by the diagonal
let c = splitPolygon( a, b );
// filter colinear points around the cuts
a = filterPoints( a, a.next );
c = filterPoints( c, c.next );
// run earcut on each half
earcutLinked( a, triangles, dim, minX, minY, invSize, 0 );
earcutLinked( c, triangles, dim, minX, minY, invSize, 0 );
return;
}
b = b.next;
}
a = a.next;
} while ( a !== start );
}
// link every hole into the outer loop, producing a single-ring polygon without holes
function eliminateHoles( data, holeIndices, outerNode, dim ) {
const queue = [];
let i, len, start, end, list;
for ( i = 0, len = holeIndices.length; i < len; i ++ ) {
start = holeIndices[ i ] * dim;
end = i < len - 1 ? holeIndices[ i + 1 ] * dim : data.length;
list = linkedList( data, start, end, dim, false );
if ( list === list.next ) list.steiner = true;
queue.push( getLeftmost( list ) );
}
queue.sort( compareX );
// process holes from left to right
for ( i = 0; i < queue.length; i ++ ) {
outerNode = eliminateHole( queue[ i ], outerNode );
}
return outerNode;
}
function compareX( a, b ) {
return a.x - b.x;
}
// find a bridge between vertices that connects hole with an outer ring and link it
function eliminateHole( hole, outerNode ) {
const bridge = findHoleBridge( hole, outerNode );
if ( ! bridge ) {
return outerNode;
}
const bridgeReverse = splitPolygon( bridge, hole );
// filter collinear points around the cuts
filterPoints( bridgeReverse, bridgeReverse.next );
return filterPoints( bridge, bridge.next );
}
// David Eberly's algorithm for finding a bridge between hole and outer polygon
function findHoleBridge( hole, outerNode ) {
let p = outerNode,
qx = - Infinity,
m;
const hx = hole.x, hy = hole.y;
// find a segment intersected by a ray from the hole's leftmost point to the left;
// segment's endpoint with lesser x will be potential connection point
do {
if ( hy <= p.y && hy >= p.next.y && p.next.y !== p.y ) {
const x = p.x + ( hy - p.y ) * ( p.next.x - p.x ) / ( p.next.y - p.y );
if ( x <= hx && x > qx ) {
qx = x;
m = p.x < p.next.x ? p : p.next;
if ( x === hx ) return m; // hole touches outer segment; pick leftmost endpoint
}
}
p = p.next;
} while ( p !== outerNode );
if ( ! m ) return null;
// look for points inside the triangle of hole point, segment intersection and endpoint;
// if there are no points found, we have a valid connection;
// otherwise choose the point of the minimum angle with the ray as connection point
const stop = m,
mx = m.x,
my = m.y;
let tanMin = Infinity, tan;
p = m;
do {
if ( hx >= p.x && p.x >= mx && hx !== p.x &&
pointInTriangle( hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y ) ) {
tan = Math.abs( hy - p.y ) / ( hx - p.x ); // tangential
if ( locallyInside( p, hole ) && ( tan < tanMin || ( tan === tanMin && ( p.x > m.x || ( p.x === m.x && sectorContainsSector( m, p ) ) ) ) ) ) {
m = p;
tanMin = tan;
}
}
p = p.next;
} while ( p !== stop );
return m;
}
// whether sector in vertex m contains sector in vertex p in the same coordinates
function sectorContainsSector( m, p ) {
return area( m.prev, m, p.prev ) < 0 && area( p.next, m, m.next ) < 0;
}
// interlink polygon nodes in z-order
function indexCurve( start, minX, minY, invSize ) {
let p = start;
do {
if ( p.z === 0 ) p.z = zOrder( p.x, p.y, minX, minY, invSize );
p.prevZ = p.prev;
p.nextZ = p.next;
p = p.next;
} while ( p !== start );
p.prevZ.nextZ = null;
p.prevZ = null;
sortLinked( p );
}
// Simon Tatham's linked list merge sort algorithm
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
function sortLinked( list ) {
let i, p, q, e, tail, numMerges, pSize, qSize,
inSize = 1;
do {
p = list;
list = null;
tail = null;
numMerges = 0;
while ( p ) {
numMerges ++;
q = p;
pSize = 0;
for ( i = 0; i < inSize; i ++ ) {
pSize ++;
q = q.nextZ;
if ( ! q ) break;
}
qSize = inSize;
while ( pSize > 0 || ( qSize > 0 && q ) ) {
if ( pSize !== 0 && ( qSize === 0 || ! q || p.z <= q.z ) ) {
e = p;
p = p.nextZ;
pSize --;
} else {
e = q;
q = q.nextZ;
qSize --;
}
if ( tail ) tail.nextZ = e;
else list = e;
e.prevZ = tail;
tail = e;
}
p = q;
}
tail.nextZ = null;
inSize *= 2;
} while ( numMerges > 1 );
return list;
}
// z-order of a point given coords and inverse of the longer side of data bbox
function zOrder( x, y, minX, minY, invSize ) {
// coords are transformed into non-negative 15-bit integer range
x = ( x - minX ) * invSize | 0;
y = ( y - minY ) * invSize | 0;
x = ( x | ( x << 8 ) ) & 0x00FF00FF;
x = ( x | ( x << 4 ) ) & 0x0F0F0F0F;
x = ( x | ( x << 2 ) ) & 0x33333333;
x = ( x | ( x << 1 ) ) & 0x55555555;
y = ( y | ( y << 8 ) ) & 0x00FF00FF;
y = ( y | ( y << 4 ) ) & 0x0F0F0F0F;
y = ( y | ( y << 2 ) ) & 0x33333333;
y = ( y | ( y << 1 ) ) & 0x55555555;
return x | ( y << 1 );
}
// find the leftmost node of a polygon ring
function getLeftmost( start ) {
let p = start,
leftmost = start;
do {
if ( p.x < leftmost.x || ( p.x === leftmost.x && p.y < leftmost.y ) ) leftmost = p;
p = p.next;
} while ( p !== start );
return leftmost;
}
// check if a point lies within a convex triangle
function pointInTriangle( ax, ay, bx, by, cx, cy, px, py ) {
return ( cx - px ) * ( ay - py ) >= ( ax - px ) * ( cy - py ) &&
( ax - px ) * ( by - py ) >= ( bx - px ) * ( ay - py ) &&
( bx - px ) * ( cy - py ) >= ( cx - px ) * ( by - py );
}
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
function isValidDiagonal( a, b ) {
return a.next.i !== b.i && a.prev.i !== b.i && ! intersectsPolygon( a, b ) && // dones't intersect other edges
( locallyInside( a, b ) && locallyInside( b, a ) && middleInside( a, b ) && // locally visible
( area( a.prev, a, b.prev ) || area( a, b.prev, b ) ) || // does not create opposite-facing sectors
equals$1( a, b ) && area( a.prev, a, a.next ) > 0 && area( b.prev, b, b.next ) > 0 ); // special zero-length case
}
// signed area of a triangle
function area( p, q, r ) {
return ( q.y - p.y ) * ( r.x - q.x ) - ( q.x - p.x ) * ( r.y - q.y );
}
// check if two points are equal
function equals$1( p1, p2 ) {
return p1.x === p2.x && p1.y === p2.y;
}
// check if two segments intersect
function intersects( p1, q1, p2, q2 ) {
const o1 = sign$1( area( p1, q1, p2 ) );
const o2 = sign$1( area( p1, q1, q2 ) );
const o3 = sign$1( area( p2, q2, p1 ) );
const o4 = sign$1( area( p2, q2, q1 ) );
if ( o1 !== o2 && o3 !== o4 ) return true; // general case
if ( o1 === 0 && onSegment( p1, p2, q1 ) ) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
if ( o2 === 0 && onSegment( p1, q2, q1 ) ) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
if ( o3 === 0 && onSegment( p2, p1, q2 ) ) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
if ( o4 === 0 && onSegment( p2, q1, q2 ) ) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
return false;
}
// for collinear points p, q, r, check if point q lies on segment pr
function onSegment( p, q, r ) {
return q.x <= Math.max( p.x, r.x ) && q.x >= Math.min( p.x, r.x ) && q.y <= Math.max( p.y, r.y ) && q.y >= Math.min( p.y, r.y );
}
function sign$1( num ) {
return num > 0 ? 1 : num < 0 ? - 1 : 0;
}
// check if a polygon diagonal intersects any polygon segments
function intersectsPolygon( a, b ) {
let p = a;
do {
if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i &&
intersects( p, p.next, a, b ) ) return true;
p = p.next;
} while ( p !== a );
return false;
}
// check if a polygon diagonal is locally inside the polygon
function locallyInside( a, b ) {
return area( a.prev, a, a.next ) < 0 ?
area( a, b, a.next ) >= 0 && area( a, a.prev, b ) >= 0 :
area( a, b, a.prev ) < 0 || area( a, a.next, b ) < 0;
}
// check if the middle point of a polygon diagonal is inside the polygon
function middleInside( a, b ) {
let p = a,
inside = false;
const px = ( a.x + b.x ) / 2,
py = ( a.y + b.y ) / 2;
do {
if ( ( ( p.y > py ) !== ( p.next.y > py ) ) && p.next.y !== p.y &&
( px < ( p.next.x - p.x ) * ( py - p.y ) / ( p.next.y - p.y ) + p.x ) )
inside = ! inside;
p = p.next;
} while ( p !== a );
return inside;
}
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
// if one belongs to the outer ring and another to a hole, it merges it into a single ring
function splitPolygon( a, b ) {
const a2 = new Node$1( a.i, a.x, a.y ),
b2 = new Node$1( b.i, b.x, b.y ),
an = a.next,
bp = b.prev;
a.next = b;
b.prev = a;
a2.next = an;
an.prev = a2;
b2.next = a2;
a2.prev = b2;
bp.next = b2;
b2.prev = bp;
return b2;
}
// create a node and optionally link it with previous one (in a circular doubly linked list)
function insertNode( i, x, y, last ) {
const p = new Node$1( i, x, y );
if ( ! last ) {
p.prev = p;
p.next = p;
} else {
p.next = last.next;
p.prev = last;
last.next.prev = p;
last.next = p;
}
return p;
}
function removeNode( p ) {
p.next.prev = p.prev;
p.prev.next = p.next;
if ( p.prevZ ) p.prevZ.nextZ = p.nextZ;
if ( p.nextZ ) p.nextZ.prevZ = p.prevZ;
}
function Node$1( i, x, y ) {
// vertex index in coordinates array
this.i = i;
// vertex coordinates
this.x = x;
this.y = y;
// previous and next vertex nodes in a polygon ring
this.prev = null;
this.next = null;
// z-order curve value
this.z = 0;
// previous and next nodes in z-order
this.prevZ = null;
this.nextZ = null;
// indicates whether this is a steiner point
this.steiner = false;
}
function signedArea( data, start, end, dim ) {
let sum = 0;
for ( let i = start, j = end - dim; i < end; i += dim ) {
sum += ( data[ j ] - data[ i ] ) * ( data[ i + 1 ] + data[ j + 1 ] );
j = i;
}
return sum;
}
class ShapeUtils {
// calculate area of the contour polygon
static area( contour ) {
const n = contour.length;
let a = 0.0;
for ( let p = n - 1, q = 0; q < n; p = q ++ ) {
a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y;
}
return a * 0.5;
}
static isClockWise( pts ) {
return ShapeUtils.area( pts ) < 0;
}
static triangulateShape( contour, holes ) {
const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ]
const holeIndices = []; // array of hole indices
const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]
removeDupEndPts( contour );
addContour( vertices, contour );
//
let holeIndex = contour.length;
holes.forEach( removeDupEndPts );
for ( let i = 0; i < holes.length; i ++ ) {
holeIndices.push( holeIndex );
holeIndex += holes[ i ].length;
addContour( vertices, holes[ i ] );
}
//
const triangles = Earcut.triangulate( vertices, holeIndices );
//
for ( let i = 0; i < triangles.length; i += 3 ) {
faces.push( triangles.slice( i, i + 3 ) );
}
return faces;
}
}
function removeDupEndPts( points ) {
const l = points.length;
if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) {
points.pop();
}
}
function addContour( vertices, contour ) {
for ( let i = 0; i < contour.length; i ++ ) {
vertices.push( contour[ i ].x );
vertices.push( contour[ i ].y );
}
}
/**
* Creates extruded geometry from a path shape.
*
* parameters = {
*
* curveSegments: <int>, // number of points on the curves
* steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
* depth: <float>, // Depth to extrude the shape
*
* bevelEnabled: <bool>, // turn on bevel
* bevelThickness: <float>, // how deep into the original shape bevel goes
* bevelSize: <float>, // how far from shape outline (including bevelOffset) is bevel
* bevelOffset: <float>, // how far from shape outline does bevel start
* bevelSegments: <int>, // number of bevel layers
*
* extrudePath: <THREE.Curve> // curve to extrude shape along
*
* UVGenerator: <Object> // object that provides UV generator functions
*
* }
*/
class ExtrudeGeometry extends BufferGeometry {
constructor( shapes = new Shape( [ new Vector2( 0.5, 0.5 ), new Vector2( - 0.5, 0.5 ), new Vector2( - 0.5, - 0.5 ), new Vector2( 0.5, - 0.5 ) ] ), options = {} ) {
super();
this.type = 'ExtrudeGeometry';
this.parameters = {
shapes: shapes,
options: options
};
shapes = Array.isArray( shapes ) ? shapes : [ shapes ];
const scope = this;
const verticesArray = [];
const uvArray = [];
for ( let i = 0, l = shapes.length; i < l; i ++ ) {
const shape = shapes[ i ];
addShape( shape );
}
// build geometry
this.setAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) );
this.computeVertexNormals();
// functions
function addShape( shape ) {
const placeholder = [];
// options
const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
const steps = options.steps !== undefined ? options.steps : 1;
const depth = options.depth !== undefined ? options.depth : 1;
let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true;
let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 0.2;
let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 0.1;
let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0;
let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;
const extrudePath = options.extrudePath;
const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator;
//
let extrudePts, extrudeByPath = false;
let splineTube, binormal, normal, position2;
if ( extrudePath ) {
extrudePts = extrudePath.getSpacedPoints( steps );
extrudeByPath = true;
bevelEnabled = false; // bevels not supported for path extrusion
// SETUP TNB variables
// TODO1 - have a .isClosed in spline?
splineTube = extrudePath.computeFrenetFrames( steps, false );
// console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);
binormal = new Vector3();
normal = new Vector3();
position2 = new Vector3();
}
// Safeguards if bevels are not enabled
if ( ! bevelEnabled ) {
bevelSegments = 0;
bevelThickness = 0;
bevelSize = 0;
bevelOffset = 0;
}
// Variables initialization
const shapePoints = shape.extractPoints( curveSegments );
let vertices = shapePoints.shape;
const holes = shapePoints.holes;
const reverse = ! ShapeUtils.isClockWise( vertices );
if ( reverse ) {
vertices = vertices.reverse();
// Maybe we should also check if holes are in the opposite direction, just to be safe ...
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
if ( ShapeUtils.isClockWise( ahole ) ) {
holes[ h ] = ahole.reverse();
}
}
}
const faces = ShapeUtils.triangulateShape( vertices, holes );
/* Vertices */
const contour = vertices; // vertices has all points but contour has only points of circumference
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
vertices = vertices.concat( ahole );
}
function scalePt2( pt, vec, size ) {
if ( ! vec ) console.error( 'THREE.ExtrudeGeometry: vec does not exist' );
return pt.clone().addScaledVector( vec, size );
}
const vlen = vertices.length, flen = faces.length;
// Find directions for point movement
function getBevelVec( inPt, inPrev, inNext ) {
// computes for inPt the corresponding point inPt' on a new contour
// shifted by 1 unit (length of normalized vector) to the left
// if we walk along contour clockwise, this new contour is outside the old one
//
// inPt' is the intersection of the two lines parallel to the two
// adjacent edges of inPt at a distance of 1 unit on the left side.
let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt
// good reading for geometry algorithms (here: line-line intersection)
// http://geomalgorithms.com/a05-_intersect-1.html
const v_prev_x = inPt.x - inPrev.x,
v_prev_y = inPt.y - inPrev.y;
const v_next_x = inNext.x - inPt.x,
v_next_y = inNext.y - inPt.y;
const v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y );
// check for collinear edges
const collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x );
if ( Math.abs( collinear0 ) > Number.EPSILON ) {
// not collinear
// length of vectors for normalizing
const v_prev_len = Math.sqrt( v_prev_lensq );
const v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y );
// shift adjacent points by unit vectors to the left
const ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len );
const ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len );
const ptNextShift_x = ( inNext.x - v_next_y / v_next_len );
const ptNextShift_y = ( inNext.y + v_next_x / v_next_len );
// scaling factor for v_prev to intersection point
const sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y -
( ptNextShift_y - ptPrevShift_y ) * v_next_x ) /
( v_prev_x * v_next_y - v_prev_y * v_next_x );
// vector from inPt to intersection point
v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x );
v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y );
// Don't normalize!, otherwise sharp corners become ugly
// but prevent crazy spikes
const v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y );
if ( v_trans_lensq <= 2 ) {
return new Vector2( v_trans_x, v_trans_y );
} else {
shrink_by = Math.sqrt( v_trans_lensq / 2 );
}
} else {
// handle special case of collinear edges
let direction_eq = false; // assumes: opposite
if ( v_prev_x > Number.EPSILON ) {
if ( v_next_x > Number.EPSILON ) {
direction_eq = true;
}
} else {
if ( v_prev_x < - Number.EPSILON ) {
if ( v_next_x < - Number.EPSILON ) {
direction_eq = true;
}
} else {
if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) {
direction_eq = true;
}
}
}
if ( direction_eq ) {
// console.log("Warning: lines are a straight sequence");
v_trans_x = - v_prev_y;
v_trans_y = v_prev_x;
shrink_by = Math.sqrt( v_prev_lensq );
} else {
// console.log("Warning: lines are a straight spike");
v_trans_x = v_prev_x;
v_trans_y = v_prev_y;
shrink_by = Math.sqrt( v_prev_lensq / 2 );
}
}
return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by );
}
const contourMovements = [];
for ( let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
if ( j === il ) j = 0;
if ( k === il ) k = 0;
// (j)---(i)---(k)
// console.log('i,j,k', i, j , k)
contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] );
}
const holesMovements = [];
let oneHoleMovements, verticesMovements = contourMovements.concat();
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
oneHoleMovements = [];
for ( let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
if ( j === il ) j = 0;
if ( k === il ) k = 0;
// (j)---(i)---(k)
oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] );
}
holesMovements.push( oneHoleMovements );
verticesMovements = verticesMovements.concat( oneHoleMovements );
}
// Loop bevelSegments, 1 for the front, 1 for the back
for ( let b = 0; b < bevelSegments; b ++ ) {
//for ( b = bevelSegments; b > 0; b -- ) {
const t = b / bevelSegments;
const z = bevelThickness * Math.cos( t * Math.PI / 2 );
const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset;
// contract shape
for ( let i = 0, il = contour.length; i < il; i ++ ) {
const vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
v( vert.x, vert.y, - z );
}
// expand holes
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
oneHoleMovements = holesMovements[ h ];
for ( let i = 0, il = ahole.length; i < il; i ++ ) {
const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
v( vert.x, vert.y, - z );
}
}
}
const bs = bevelSize + bevelOffset;
// Back facing vertices
for ( let i = 0; i < vlen; i ++ ) {
const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
if ( ! extrudeByPath ) {
v( vert.x, vert.y, 0 );
} else {
// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );
normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x );
binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y );
position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal );
v( position2.x, position2.y, position2.z );
}
}
// Add stepped vertices...
// Including front facing vertices
for ( let s = 1; s <= steps; s ++ ) {
for ( let i = 0; i < vlen; i ++ ) {
const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
if ( ! extrudeByPath ) {
v( vert.x, vert.y, depth / steps * s );
} else {
// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );
normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x );
binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y );
position2.copy( extrudePts[ s ] ).add( normal ).add( binormal );
v( position2.x, position2.y, position2.z );
}
}
}
// Add bevel segments planes
//for ( b = 1; b <= bevelSegments; b ++ ) {
for ( let b = bevelSegments - 1; b >= 0; b -- ) {
const t = b / bevelSegments;
const z = bevelThickness * Math.cos( t * Math.PI / 2 );
const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset;
// contract shape
for ( let i = 0, il = contour.length; i < il; i ++ ) {
const vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
v( vert.x, vert.y, depth + z );
}
// expand holes
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
oneHoleMovements = holesMovements[ h ];
for ( let i = 0, il = ahole.length; i < il; i ++ ) {
const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
if ( ! extrudeByPath ) {
v( vert.x, vert.y, depth + z );
} else {
v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z );
}
}
}
}
/* Faces */
// Top and bottom faces
buildLidFaces();
// Sides faces
buildSideFaces();
///// Internal functions
function buildLidFaces() {
const start = verticesArray.length / 3;
if ( bevelEnabled ) {
let layer = 0; // steps + 1
let offset = vlen * layer;
// Bottom faces
for ( let i = 0; i < flen; i ++ ) {
const face = faces[ i ];
f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset );
}
layer = steps + bevelSegments * 2;
offset = vlen * layer;
// Top faces
for ( let i = 0; i < flen; i ++ ) {
const face = faces[ i ];
f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset );
}
} else {
// Bottom faces
for ( let i = 0; i < flen; i ++ ) {
const face = faces[ i ];
f3( face[ 2 ], face[ 1 ], face[ 0 ] );
}
// Top faces
for ( let i = 0; i < flen; i ++ ) {
const face = faces[ i ];
f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps );
}
}
scope.addGroup( start, verticesArray.length / 3 - start, 0 );
}
// Create faces for the z-sides of the shape
function buildSideFaces() {
const start = verticesArray.length / 3;
let layeroffset = 0;
sidewalls( contour, layeroffset );
layeroffset += contour.length;
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
sidewalls( ahole, layeroffset );
//, true
layeroffset += ahole.length;
}
scope.addGroup( start, verticesArray.length / 3 - start, 1 );
}
function sidewalls( contour, layeroffset ) {
let i = contour.length;
while ( -- i >= 0 ) {
const j = i;
let k = i - 1;
if ( k < 0 ) k = contour.length - 1;
//console.log('b', i,j, i-1, k,vertices.length);
for ( let s = 0, sl = ( steps + bevelSegments * 2 ); s < sl; s ++ ) {
const slen1 = vlen * s;
const slen2 = vlen * ( s + 1 );
const a = layeroffset + j + slen1,
b = layeroffset + k + slen1,
c = layeroffset + k + slen2,
d = layeroffset + j + slen2;
f4( a, b, c, d );
}
}
}
function v( x, y, z ) {
placeholder.push( x );
placeholder.push( y );
placeholder.push( z );
}
function f3( a, b, c ) {
addVertex( a );
addVertex( b );
addVertex( c );
const nextIndex = verticesArray.length / 3;
const uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 );
addUV( uvs[ 0 ] );
addUV( uvs[ 1 ] );
addUV( uvs[ 2 ] );
}
function f4( a, b, c, d ) {
addVertex( a );
addVertex( b );
addVertex( d );
addVertex( b );
addVertex( c );
addVertex( d );
const nextIndex = verticesArray.length / 3;
const uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 );
addUV( uvs[ 0 ] );
addUV( uvs[ 1 ] );
addUV( uvs[ 3 ] );
addUV( uvs[ 1 ] );
addUV( uvs[ 2 ] );
addUV( uvs[ 3 ] );
}
function addVertex( index ) {
verticesArray.push( placeholder[ index * 3 + 0 ] );
verticesArray.push( placeholder[ index * 3 + 1 ] );
verticesArray.push( placeholder[ index * 3 + 2 ] );
}
function addUV( vector2 ) {
uvArray.push( vector2.x );
uvArray.push( vector2.y );
}
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
toJSON() {
const data = super.toJSON();
const shapes = this.parameters.shapes;
const options = this.parameters.options;
return toJSON$1( shapes, options, data );
}
static fromJSON( data, shapes ) {
const geometryShapes = [];
for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) {
const shape = shapes[ data.shapes[ j ] ];
geometryShapes.push( shape );
}
const extrudePath = data.options.extrudePath;
if ( extrudePath !== undefined ) {
data.options.extrudePath = new Curves[ extrudePath.type ]().fromJSON( extrudePath );
}
return new ExtrudeGeometry( geometryShapes, data.options );
}
}
const WorldUVGenerator = {
generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) {
const a_x = vertices[ indexA * 3 ];
const a_y = vertices[ indexA * 3 + 1 ];
const b_x = vertices[ indexB * 3 ];
const b_y = vertices[ indexB * 3 + 1 ];
const c_x = vertices[ indexC * 3 ];
const c_y = vertices[ indexC * 3 + 1 ];
return [
new Vector2( a_x, a_y ),
new Vector2( b_x, b_y ),
new Vector2( c_x, c_y )
];
},
generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) {
const a_x = vertices[ indexA * 3 ];
const a_y = vertices[ indexA * 3 + 1 ];
const a_z = vertices[ indexA * 3 + 2 ];
const b_x = vertices[ indexB * 3 ];
const b_y = vertices[ indexB * 3 + 1 ];
const b_z = vertices[ indexB * 3 + 2 ];
const c_x = vertices[ indexC * 3 ];
const c_y = vertices[ indexC * 3 + 1 ];
const c_z = vertices[ indexC * 3 + 2 ];
const d_x = vertices[ indexD * 3 ];
const d_y = vertices[ indexD * 3 + 1 ];
const d_z = vertices[ indexD * 3 + 2 ];
if ( Math.abs( a_y - b_y ) < Math.abs( a_x - b_x ) ) {
return [
new Vector2( a_x, 1 - a_z ),
new Vector2( b_x, 1 - b_z ),
new Vector2( c_x, 1 - c_z ),
new Vector2( d_x, 1 - d_z )
];
} else {
return [
new Vector2( a_y, 1 - a_z ),
new Vector2( b_y, 1 - b_z ),
new Vector2( c_y, 1 - c_z ),
new Vector2( d_y, 1 - d_z )
];
}
}
};
function toJSON$1( shapes, options, data ) {
data.shapes = [];
if ( Array.isArray( shapes ) ) {
for ( let i = 0, l = shapes.length; i < l; i ++ ) {
const shape = shapes[ i ];
data.shapes.push( shape.uuid );
}
} else {
data.shapes.push( shapes.uuid );
}
data.options = Object.assign( {}, options );
if ( options.extrudePath !== undefined ) data.options.extrudePath = options.extrudePath.toJSON();
return data;
}
class IcosahedronGeometry extends PolyhedronGeometry {
constructor( radius = 1, detail = 0 ) {
const t = ( 1 + Math.sqrt( 5 ) ) / 2;
const vertices = [
- 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, 0,
0, - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t,
t, 0, - 1, t, 0, 1, - t, 0, - 1, - t, 0, 1
];
const indices = [
0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11,
1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8,
3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9,
4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1
];
super( vertices, indices, radius, detail );
this.type = 'IcosahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
static fromJSON( data ) {
return new IcosahedronGeometry( data.radius, data.detail );
}
}
class OctahedronGeometry extends PolyhedronGeometry {
constructor( radius = 1, detail = 0 ) {
const vertices = [
1, 0, 0, - 1, 0, 0, 0, 1, 0,
0, - 1, 0, 0, 0, 1, 0, 0, - 1
];
const indices = [
0, 2, 4, 0, 4, 3, 0, 3, 5,
0, 5, 2, 1, 2, 5, 1, 5, 3,
1, 3, 4, 1, 4, 2
];
super( vertices, indices, radius, detail );
this.type = 'OctahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
static fromJSON( data ) {
return new OctahedronGeometry( data.radius, data.detail );
}
}
class PlaneGeometry extends BufferGeometry {
constructor( width = 1, height = 1, widthSegments = 1, heightSegments = 1 ) {
super();
this.type = 'PlaneGeometry';
this.parameters = {
width: width,
height: height,
widthSegments: widthSegments,
heightSegments: heightSegments
};
const width_half = width / 2;
const height_half = height / 2;
const gridX = Math.floor( widthSegments );
const gridY = Math.floor( heightSegments );
const gridX1 = gridX + 1;
const gridY1 = gridY + 1;
const segment_width = width / gridX;
const segment_height = height / gridY;
//
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
for ( let iy = 0; iy < gridY1; iy ++ ) {
const y = iy * segment_height - height_half;
for ( let ix = 0; ix < gridX1; ix ++ ) {
const x = ix * segment_width - width_half;
vertices.push( x, - y, 0 );
normals.push( 0, 0, 1 );
uvs.push( ix / gridX );
uvs.push( 1 - ( iy / gridY ) );
}
}
for ( let iy = 0; iy < gridY; iy ++ ) {
for ( let ix = 0; ix < gridX; ix ++ ) {
const a = ix + gridX1 * iy;
const b = ix + gridX1 * ( iy + 1 );
const c = ( ix + 1 ) + gridX1 * ( iy + 1 );
const d = ( ix + 1 ) + gridX1 * iy;
indices.push( a, b, d );
indices.push( b, c, d );
}
}
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new PlaneGeometry( data.width, data.height, data.widthSegments, data.heightSegments );
}
}
class RingGeometry extends BufferGeometry {
constructor( innerRadius = 0.5, outerRadius = 1, thetaSegments = 32, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2 ) {
super();
this.type = 'RingGeometry';
this.parameters = {
innerRadius: innerRadius,
outerRadius: outerRadius,
thetaSegments: thetaSegments,
phiSegments: phiSegments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
thetaSegments = Math.max( 3, thetaSegments );
phiSegments = Math.max( 1, phiSegments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// some helper variables
let radius = innerRadius;
const radiusStep = ( ( outerRadius - innerRadius ) / phiSegments );
const vertex = new Vector3();
const uv = new Vector2();
// generate vertices, normals and uvs
for ( let j = 0; j <= phiSegments; j ++ ) {
for ( let i = 0; i <= thetaSegments; i ++ ) {
// values are generate from the inside of the ring to the outside
const segment = thetaStart + i / thetaSegments * thetaLength;
// vertex
vertex.x = radius * Math.cos( segment );
vertex.y = radius * Math.sin( segment );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normals.push( 0, 0, 1 );
// uv
uv.x = ( vertex.x / outerRadius + 1 ) / 2;
uv.y = ( vertex.y / outerRadius + 1 ) / 2;
uvs.push( uv.x, uv.y );
}
// increase the radius for next row of vertices
radius += radiusStep;
}
// indices
for ( let j = 0; j < phiSegments; j ++ ) {
const thetaSegmentLevel = j * ( thetaSegments + 1 );
for ( let i = 0; i < thetaSegments; i ++ ) {
const segment = i + thetaSegmentLevel;
const a = segment;
const b = segment + thetaSegments + 1;
const c = segment + thetaSegments + 2;
const d = segment + 1;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new RingGeometry( data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength );
}
}
class ShapeGeometry extends BufferGeometry {
constructor( shapes = new Shape( [ new Vector2( 0, 0.5 ), new Vector2( - 0.5, - 0.5 ), new Vector2( 0.5, - 0.5 ) ] ), curveSegments = 12 ) {
super();
this.type = 'ShapeGeometry';
this.parameters = {
shapes: shapes,
curveSegments: curveSegments
};
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
let groupStart = 0;
let groupCount = 0;
// allow single and array values for "shapes" parameter
if ( Array.isArray( shapes ) === false ) {
addShape( shapes );
} else {
for ( let i = 0; i < shapes.length; i ++ ) {
addShape( shapes[ i ] );
this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support
groupStart += groupCount;
groupCount = 0;
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
// helper functions
function addShape( shape ) {
const indexOffset = vertices.length / 3;
const points = shape.extractPoints( curveSegments );
let shapeVertices = points.shape;
const shapeHoles = points.holes;
// check direction of vertices
if ( ShapeUtils.isClockWise( shapeVertices ) === false ) {
shapeVertices = shapeVertices.reverse();
}
for ( let i = 0, l = shapeHoles.length; i < l; i ++ ) {
const shapeHole = shapeHoles[ i ];
if ( ShapeUtils.isClockWise( shapeHole ) === true ) {
shapeHoles[ i ] = shapeHole.reverse();
}
}
const faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles );
// join vertices of inner and outer paths to a single array
for ( let i = 0, l = shapeHoles.length; i < l; i ++ ) {
const shapeHole = shapeHoles[ i ];
shapeVertices = shapeVertices.concat( shapeHole );
}
// vertices, normals, uvs
for ( let i = 0, l = shapeVertices.length; i < l; i ++ ) {
const vertex = shapeVertices[ i ];
vertices.push( vertex.x, vertex.y, 0 );
normals.push( 0, 0, 1 );
uvs.push( vertex.x, vertex.y ); // world uvs
}
// indices
for ( let i = 0, l = faces.length; i < l; i ++ ) {
const face = faces[ i ];
const a = face[ 0 ] + indexOffset;
const b = face[ 1 ] + indexOffset;
const c = face[ 2 ] + indexOffset;
indices.push( a, b, c );
groupCount += 3;
}
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
toJSON() {
const data = super.toJSON();
const shapes = this.parameters.shapes;
return toJSON( shapes, data );
}
static fromJSON( data, shapes ) {
const geometryShapes = [];
for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) {
const shape = shapes[ data.shapes[ j ] ];
geometryShapes.push( shape );
}
return new ShapeGeometry( geometryShapes, data.curveSegments );
}
}
function toJSON( shapes, data ) {
data.shapes = [];
if ( Array.isArray( shapes ) ) {
for ( let i = 0, l = shapes.length; i < l; i ++ ) {
const shape = shapes[ i ];
data.shapes.push( shape.uuid );
}
} else {
data.shapes.push( shapes.uuid );
}
return data;
}
class SphereGeometry extends BufferGeometry {
constructor( radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI ) {
super();
this.type = 'SphereGeometry';
this.parameters = {
radius: radius,
widthSegments: widthSegments,
heightSegments: heightSegments,
phiStart: phiStart,
phiLength: phiLength,
thetaStart: thetaStart,
thetaLength: thetaLength
};
widthSegments = Math.max( 3, Math.floor( widthSegments ) );
heightSegments = Math.max( 2, Math.floor( heightSegments ) );
const thetaEnd = Math.min( thetaStart + thetaLength, Math.PI );
let index = 0;
const grid = [];
const vertex = new Vector3();
const normal = new Vector3();
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// generate vertices, normals and uvs
for ( let iy = 0; iy <= heightSegments; iy ++ ) {
const verticesRow = [];
const v = iy / heightSegments;
// special case for the poles
let uOffset = 0;
if ( iy === 0 && thetaStart === 0 ) {
uOffset = 0.5 / widthSegments;
} else if ( iy === heightSegments && thetaEnd === Math.PI ) {
uOffset = - 0.5 / widthSegments;
}
for ( let ix = 0; ix <= widthSegments; ix ++ ) {
const u = ix / widthSegments;
// vertex
vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
vertex.y = radius * Math.cos( thetaStart + v * thetaLength );
vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normal.copy( vertex ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( u + uOffset, 1 - v );
verticesRow.push( index ++ );
}
grid.push( verticesRow );
}
// indices
for ( let iy = 0; iy < heightSegments; iy ++ ) {
for ( let ix = 0; ix < widthSegments; ix ++ ) {
const a = grid[ iy ][ ix + 1 ];
const b = grid[ iy ][ ix ];
const c = grid[ iy + 1 ][ ix ];
const d = grid[ iy + 1 ][ ix + 1 ];
if ( iy !== 0 || thetaStart > 0 ) indices.push( a, b, d );
if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new SphereGeometry( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength );
}
}
class TetrahedronGeometry extends PolyhedronGeometry {
constructor( radius = 1, detail = 0 ) {
const vertices = [
1, 1, 1, - 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1
];
const indices = [
2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1
];
super( vertices, indices, radius, detail );
this.type = 'TetrahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
static fromJSON( data ) {
return new TetrahedronGeometry( data.radius, data.detail );
}
}
class TorusGeometry extends BufferGeometry {
constructor( radius = 1, tube = 0.4, radialSegments = 12, tubularSegments = 48, arc = Math.PI * 2 ) {
super();
this.type = 'TorusGeometry';
this.parameters = {
radius: radius,
tube: tube,
radialSegments: radialSegments,
tubularSegments: tubularSegments,
arc: arc
};
radialSegments = Math.floor( radialSegments );
tubularSegments = Math.floor( tubularSegments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
const center = new Vector3();
const vertex = new Vector3();
const normal = new Vector3();
// generate vertices, normals and uvs
for ( let j = 0; j <= radialSegments; j ++ ) {
for ( let i = 0; i <= tubularSegments; i ++ ) {
const u = i / tubularSegments * arc;
const v = j / radialSegments * Math.PI * 2;
// vertex
vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u );
vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u );
vertex.z = tube * Math.sin( v );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
center.x = radius * Math.cos( u );
center.y = radius * Math.sin( u );
normal.subVectors( vertex, center ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( i / tubularSegments );
uvs.push( j / radialSegments );
}
}
// generate indices
for ( let j = 1; j <= radialSegments; j ++ ) {
for ( let i = 1; i <= tubularSegments; i ++ ) {
// indices
const a = ( tubularSegments + 1 ) * j + i - 1;
const b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1;
const c = ( tubularSegments + 1 ) * ( j - 1 ) + i;
const d = ( tubularSegments + 1 ) * j + i;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new TorusGeometry( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc );
}
}
class TorusKnotGeometry extends BufferGeometry {
constructor( radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3 ) {
super();
this.type = 'TorusKnotGeometry';
this.parameters = {
radius: radius,
tube: tube,
tubularSegments: tubularSegments,
radialSegments: radialSegments,
p: p,
q: q
};
tubularSegments = Math.floor( tubularSegments );
radialSegments = Math.floor( radialSegments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
const vertex = new Vector3();
const normal = new Vector3();
const P1 = new Vector3();
const P2 = new Vector3();
const B = new Vector3();
const T = new Vector3();
const N = new Vector3();
// generate vertices, normals and uvs
for ( let i = 0; i <= tubularSegments; ++ i ) {
// the radian "u" is used to calculate the position on the torus curve of the current tubular segment
const u = i / tubularSegments * p * Math.PI * 2;
// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
calculatePositionOnCurve( u, p, q, radius, P1 );
calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );
// calculate orthonormal basis
T.subVectors( P2, P1 );
N.addVectors( P2, P1 );
B.crossVectors( T, N );
N.crossVectors( B, T );
// normalize B, N. T can be ignored, we don't use it
B.normalize();
N.normalize();
for ( let j = 0; j <= radialSegments; ++ j ) {
// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
const v = j / radialSegments * Math.PI * 2;
const cx = - tube * Math.cos( v );
const cy = tube * Math.sin( v );
// now calculate the final vertex position.
// first we orient the extrusion with our basis vectors, then we add it to the current position on the curve
vertex.x = P1.x + ( cx * N.x + cy * B.x );
vertex.y = P1.y + ( cx * N.y + cy * B.y );
vertex.z = P1.z + ( cx * N.z + cy * B.z );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
normal.subVectors( vertex, P1 ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( i / tubularSegments );
uvs.push( j / radialSegments );
}
}
// generate indices
for ( let j = 1; j <= tubularSegments; j ++ ) {
for ( let i = 1; i <= radialSegments; i ++ ) {
// indices
const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
const b = ( radialSegments + 1 ) * j + ( i - 1 );
const c = ( radialSegments + 1 ) * j + i;
const d = ( radialSegments + 1 ) * ( j - 1 ) + i;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
// this function calculates the current position on the torus curve
function calculatePositionOnCurve( u, p, q, radius, position ) {
const cu = Math.cos( u );
const su = Math.sin( u );
const quOverP = q / p * u;
const cs = Math.cos( quOverP );
position.x = radius * ( 2 + cs ) * 0.5 * cu;
position.y = radius * ( 2 + cs ) * su * 0.5;
position.z = radius * Math.sin( quOverP ) * 0.5;
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new TorusKnotGeometry( data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q );
}
}
class TubeGeometry extends BufferGeometry {
constructor( path = new QuadraticBezierCurve3( new Vector3( - 1, - 1, 0 ), new Vector3( - 1, 1, 0 ), new Vector3( 1, 1, 0 ) ), tubularSegments = 64, radius = 1, radialSegments = 8, closed = false ) {
super();
this.type = 'TubeGeometry';
this.parameters = {
path: path,
tubularSegments: tubularSegments,
radius: radius,
radialSegments: radialSegments,
closed: closed
};
const frames = path.computeFrenetFrames( tubularSegments, closed );
// expose internals
this.tangents = frames.tangents;
this.normals = frames.normals;
this.binormals = frames.binormals;
// helper variables
const vertex = new Vector3();
const normal = new Vector3();
const uv = new Vector2();
let P = new Vector3();
// buffer
const vertices = [];
const normals = [];
const uvs = [];
const indices = [];
// create buffer data
generateBufferData();
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
// functions
function generateBufferData() {
for ( let i = 0; i < tubularSegments; i ++ ) {
generateSegment( i );
}
// if the geometry is not closed, generate the last row of vertices and normals
// at the regular position on the given path
//
// if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)
generateSegment( ( closed === false ) ? tubularSegments : 0 );
// uvs are generated in a separate function.
// this makes it easy compute correct values for closed geometries
generateUVs();
// finally create faces
generateIndices();
}
function generateSegment( i ) {
// we use getPointAt to sample evenly distributed points from the given path
P = path.getPointAt( i / tubularSegments, P );
// retrieve corresponding normal and binormal
const N = frames.normals[ i ];
const B = frames.binormals[ i ];
// generate normals and vertices for the current segment
for ( let j = 0; j <= radialSegments; j ++ ) {
const v = j / radialSegments * Math.PI * 2;
const sin = Math.sin( v );
const cos = - Math.cos( v );
// normal
normal.x = ( cos * N.x + sin * B.x );
normal.y = ( cos * N.y + sin * B.y );
normal.z = ( cos * N.z + sin * B.z );
normal.normalize();
normals.push( normal.x, normal.y, normal.z );
// vertex
vertex.x = P.x + radius * normal.x;
vertex.y = P.y + radius * normal.y;
vertex.z = P.z + radius * normal.z;
vertices.push( vertex.x, vertex.y, vertex.z );
}
}
function generateIndices() {
for ( let j = 1; j <= tubularSegments; j ++ ) {
for ( let i = 1; i <= radialSegments; i ++ ) {
const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
const b = ( radialSegments + 1 ) * j + ( i - 1 );
const c = ( radialSegments + 1 ) * j + i;
const d = ( radialSegments + 1 ) * ( j - 1 ) + i;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
}
function generateUVs() {
for ( let i = 0; i <= tubularSegments; i ++ ) {
for ( let j = 0; j <= radialSegments; j ++ ) {
uv.x = i / tubularSegments;
uv.y = j / radialSegments;
uvs.push( uv.x, uv.y );
}
}
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
toJSON() {
const data = super.toJSON();
data.path = this.parameters.path.toJSON();
return data;
}
static fromJSON( data ) {
// This only works for built-in curves (e.g. CatmullRomCurve3).
// User defined curves or instances of CurvePath will not be deserialized.
return new TubeGeometry(
new Curves[ data.path.type ]().fromJSON( data.path ),
data.tubularSegments,
data.radius,
data.radialSegments,
data.closed
);
}
}
class WireframeGeometry extends BufferGeometry {
constructor( geometry = null ) {
super();
this.type = 'WireframeGeometry';
this.parameters = {
geometry: geometry
};
if ( geometry !== null ) {
// buffer
const vertices = [];
const edges = new Set();
// helper variables
const start = new Vector3();
const end = new Vector3();
if ( geometry.index !== null ) {
// indexed BufferGeometry
const position = geometry.attributes.position;
const indices = geometry.index;
let groups = geometry.groups;
if ( groups.length === 0 ) {
groups = [ { start: 0, count: indices.count, materialIndex: 0 } ];
}
// create a data structure that contains all edges without duplicates
for ( let o = 0, ol = groups.length; o < ol; ++ o ) {
const group = groups[ o ];
const groupStart = group.start;
const groupCount = group.count;
for ( let i = groupStart, l = ( groupStart + groupCount ); i < l; i += 3 ) {
for ( let j = 0; j < 3; j ++ ) {
const index1 = indices.getX( i + j );
const index2 = indices.getX( i + ( j + 1 ) % 3 );
start.fromBufferAttribute( position, index1 );
end.fromBufferAttribute( position, index2 );
if ( isUniqueEdge( start, end, edges ) === true ) {
vertices.push( start.x, start.y, start.z );
vertices.push( end.x, end.y, end.z );
}
}
}
}
} else {
// non-indexed BufferGeometry
const position = geometry.attributes.position;
for ( let i = 0, l = ( position.count / 3 ); i < l; i ++ ) {
for ( let j = 0; j < 3; j ++ ) {
// three edges per triangle, an edge is represented as (index1, index2)
// e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)
const index1 = 3 * i + j;
const index2 = 3 * i + ( ( j + 1 ) % 3 );
start.fromBufferAttribute( position, index1 );
end.fromBufferAttribute( position, index2 );
if ( isUniqueEdge( start, end, edges ) === true ) {
vertices.push( start.x, start.y, start.z );
vertices.push( end.x, end.y, end.z );
}
}
}
}
// build geometry
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
}
function isUniqueEdge( start, end, edges ) {
const hash1 = `${start.x},${start.y},${start.z}-${end.x},${end.y},${end.z}`;
const hash2 = `${end.x},${end.y},${end.z}-${start.x},${start.y},${start.z}`; // coincident edge
if ( edges.has( hash1 ) === true || edges.has( hash2 ) === true ) {
return false;
} else {
edges.add( hash1 );
edges.add( hash2 );
return true;
}
}
var Geometries$1 = /*#__PURE__*/Object.freeze({
__proto__: null,
BoxGeometry: BoxGeometry,
CapsuleGeometry: CapsuleGeometry,
CircleGeometry: CircleGeometry,
ConeGeometry: ConeGeometry,
CylinderGeometry: CylinderGeometry,
DodecahedronGeometry: DodecahedronGeometry,
EdgesGeometry: EdgesGeometry,
ExtrudeGeometry: ExtrudeGeometry,
IcosahedronGeometry: IcosahedronGeometry,
LatheGeometry: LatheGeometry,
OctahedronGeometry: OctahedronGeometry,
PlaneGeometry: PlaneGeometry,
PolyhedronGeometry: PolyhedronGeometry,
RingGeometry: RingGeometry,
ShapeGeometry: ShapeGeometry,
SphereGeometry: SphereGeometry,
TetrahedronGeometry: TetrahedronGeometry,
TorusGeometry: TorusGeometry,
TorusKnotGeometry: TorusKnotGeometry,
TubeGeometry: TubeGeometry,
WireframeGeometry: WireframeGeometry
});
class ShadowMaterial extends Material {
constructor( parameters ) {
super();
this.isShadowMaterial = true;
this.type = 'ShadowMaterial';
this.color = new Color( 0x000000 );
this.transparent = true;
this.fog = true;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.color.copy( source.color );
this.fog = source.fog;
return this;
}
}
class RawShaderMaterial extends ShaderMaterial {
constructor( parameters ) {
super( parameters );
this.isRawShaderMaterial = true;
this.type = 'RawShaderMaterial';
}
}
class MeshStandardMaterial extends Material {
constructor( parameters ) {
super();
this.isMeshStandardMaterial = true;
this.defines = { 'STANDARD': '' };
this.type = 'MeshStandardMaterial';
this.color = new Color( 0xffffff ); // diffuse
this.roughness = 1.0;
this.metalness = 0.0;
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.roughnessMap = null;
this.metalnessMap = null;
this.alphaMap = null;
this.envMap = null;
this.envMapRotation = new Euler();
this.envMapIntensity = 1.0;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.flatShading = false;
this.fog = true;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.defines = { 'STANDARD': '' };
this.color.copy( source.color );
this.roughness = source.roughness;
this.metalness = source.metalness;
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.roughnessMap = source.roughnessMap;
this.metalnessMap = source.metalnessMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.envMapRotation.copy( source.envMapRotation );
this.envMapIntensity = source.envMapIntensity;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.flatShading = source.flatShading;
this.fog = source.fog;
return this;
}
}
class MeshPhysicalMaterial extends MeshStandardMaterial {
constructor( parameters ) {
super();
this.isMeshPhysicalMaterial = true;
this.defines = {
'STANDARD': '',
'PHYSICAL': ''
};
this.type = 'MeshPhysicalMaterial';
this.anisotropyRotation = 0;
this.anisotropyMap = null;
this.clearcoatMap = null;
this.clearcoatRoughness = 0.0;
this.clearcoatRoughnessMap = null;
this.clearcoatNormalScale = new Vector2( 1, 1 );
this.clearcoatNormalMap = null;
this.ior = 1.5;
Object.defineProperty( this, 'reflectivity', {
get: function () {
return ( clamp$1( 2.5 * ( this.ior - 1 ) / ( this.ior + 1 ), 0, 1 ) );
},
set: function ( reflectivity ) {
this.ior = ( 1 + 0.4 * reflectivity ) / ( 1 - 0.4 * reflectivity );
}
} );
this.iridescenceMap = null;
this.iridescenceIOR = 1.3;
this.iridescenceThicknessRange = [ 100, 400 ];
this.iridescenceThicknessMap = null;
this.sheenColor = new Color( 0x000000 );
this.sheenColorMap = null;
this.sheenRoughness = 1.0;
this.sheenRoughnessMap = null;
this.transmissionMap = null;
this.thickness = 0;
this.thicknessMap = null;
this.attenuationDistance = Infinity;
this.attenuationColor = new Color( 1, 1, 1 );
this.specularIntensity = 1.0;
this.specularIntensityMap = null;
this.specularColor = new Color( 1, 1, 1 );
this.specularColorMap = null;
this._anisotropy = 0;
this._clearcoat = 0;
this._dispersion = 0;
this._iridescence = 0;
this._sheen = 0.0;
this._transmission = 0;
this.setValues( parameters );
}
get anisotropy() {
return this._anisotropy;
}
set anisotropy( value ) {
if ( this._anisotropy > 0 !== value > 0 ) {
this.version ++;
}
this._anisotropy = value;
}
get clearcoat() {
return this._clearcoat;
}
set clearcoat( value ) {
if ( this._clearcoat > 0 !== value > 0 ) {
this.version ++;
}
this._clearcoat = value;
}
get iridescence() {
return this._iridescence;
}
set iridescence( value ) {
if ( this._iridescence > 0 !== value > 0 ) {
this.version ++;
}
this._iridescence = value;
}
get dispersion() {
return this._dispersion;
}
set dispersion( value ) {
if ( this._dispersion > 0 !== value > 0 ) {
this.version ++;
}
this._dispersion = value;
}
get sheen() {
return this._sheen;
}
set sheen( value ) {
if ( this._sheen > 0 !== value > 0 ) {
this.version ++;
}
this._sheen = value;
}
get transmission() {
return this._transmission;
}
set transmission( value ) {
if ( this._transmission > 0 !== value > 0 ) {
this.version ++;
}
this._transmission = value;
}
copy( source ) {
super.copy( source );
this.defines = {
'STANDARD': '',
'PHYSICAL': ''
};
this.anisotropy = source.anisotropy;
this.anisotropyRotation = source.anisotropyRotation;
this.anisotropyMap = source.anisotropyMap;
this.clearcoat = source.clearcoat;
this.clearcoatMap = source.clearcoatMap;
this.clearcoatRoughness = source.clearcoatRoughness;
this.clearcoatRoughnessMap = source.clearcoatRoughnessMap;
this.clearcoatNormalMap = source.clearcoatNormalMap;
this.clearcoatNormalScale.copy( source.clearcoatNormalScale );
this.dispersion = source.dispersion;
this.ior = source.ior;
this.iridescence = source.iridescence;
this.iridescenceMap = source.iridescenceMap;
this.iridescenceIOR = source.iridescenceIOR;
this.iridescenceThicknessRange = [ ...source.iridescenceThicknessRange ];
this.iridescenceThicknessMap = source.iridescenceThicknessMap;
this.sheen = source.sheen;
this.sheenColor.copy( source.sheenColor );
this.sheenColorMap = source.sheenColorMap;
this.sheenRoughness = source.sheenRoughness;
this.sheenRoughnessMap = source.sheenRoughnessMap;
this.transmission = source.transmission;
this.transmissionMap = source.transmissionMap;
this.thickness = source.thickness;
this.thicknessMap = source.thicknessMap;
this.attenuationDistance = source.attenuationDistance;
this.attenuationColor.copy( source.attenuationColor );
this.specularIntensity = source.specularIntensity;
this.specularIntensityMap = source.specularIntensityMap;
this.specularColor.copy( source.specularColor );
this.specularColorMap = source.specularColorMap;
return this;
}
}
class MeshPhongMaterial extends Material {
constructor( parameters ) {
super();
this.isMeshPhongMaterial = true;
this.type = 'MeshPhongMaterial';
this.color = new Color( 0xffffff ); // diffuse
this.specular = new Color( 0x111111 );
this.shininess = 30;
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.envMapRotation = new Euler();
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.flatShading = false;
this.fog = true;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.color.copy( source.color );
this.specular.copy( source.specular );
this.shininess = source.shininess;
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.envMapRotation.copy( source.envMapRotation );
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.flatShading = source.flatShading;
this.fog = source.fog;
return this;
}
}
class MeshToonMaterial extends Material {
constructor( parameters ) {
super();
this.isMeshToonMaterial = true;
this.defines = { 'TOON': '' };
this.type = 'MeshToonMaterial';
this.color = new Color( 0xffffff );
this.map = null;
this.gradientMap = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.alphaMap = null;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.fog = true;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.color.copy( source.color );
this.map = source.map;
this.gradientMap = source.gradientMap;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.alphaMap = source.alphaMap;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.fog = source.fog;
return this;
}
}
class MeshNormalMaterial extends Material {
constructor( parameters ) {
super();
this.isMeshNormalMaterial = true;
this.type = 'MeshNormalMaterial';
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.flatShading = false;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.flatShading = source.flatShading;
return this;
}
}
class MeshLambertMaterial extends Material {
constructor( parameters ) {
super();
this.isMeshLambertMaterial = true;
this.type = 'MeshLambertMaterial';
this.color = new Color( 0xffffff ); // diffuse
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color( 0x000000 );
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.envMapRotation = new Euler();
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.flatShading = false;
this.fog = true;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.color.copy( source.color );
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy( source.emissive );
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.envMapRotation.copy( source.envMapRotation );
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.flatShading = source.flatShading;
this.fog = source.fog;
return this;
}
}
class MeshDepthMaterial extends Material {
constructor( parameters ) {
super();
this.isMeshDepthMaterial = true;
this.type = 'MeshDepthMaterial';
this.depthPacking = BasicDepthPacking;
this.map = null;
this.alphaMap = null;
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.depthPacking = source.depthPacking;
this.map = source.map;
this.alphaMap = source.alphaMap;
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
return this;
}
}
class MeshDistanceMaterial extends Material {
constructor( parameters ) {
super();
this.isMeshDistanceMaterial = true;
this.type = 'MeshDistanceMaterial';
this.map = null;
this.alphaMap = null;
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.map = source.map;
this.alphaMap = source.alphaMap;
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
return this;
}
}
class MeshMatcapMaterial extends Material {
constructor( parameters ) {
super();
this.isMeshMatcapMaterial = true;
this.defines = { 'MATCAP': '' };
this.type = 'MeshMatcapMaterial';
this.color = new Color( 0xffffff ); // diffuse
this.matcap = null;
this.map = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2( 1, 1 );
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.alphaMap = null;
this.flatShading = false;
this.fog = true;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.defines = { 'MATCAP': '' };
this.color.copy( source.color );
this.matcap = source.matcap;
this.map = source.map;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy( source.normalScale );
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.alphaMap = source.alphaMap;
this.flatShading = source.flatShading;
this.fog = source.fog;
return this;
}
}
class LineDashedMaterial extends LineBasicMaterial {
constructor( parameters ) {
super();
this.isLineDashedMaterial = true;
this.type = 'LineDashedMaterial';
this.scale = 1;
this.dashSize = 3;
this.gapSize = 1;
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.scale = source.scale;
this.dashSize = source.dashSize;
this.gapSize = source.gapSize;
return this;
}
}
// converts an array to a specific type
function convertArray( array, type, forceClone ) {
if ( ! array || // let 'undefined' and 'null' pass
! forceClone && array.constructor === type ) return array;
if ( typeof type.BYTES_PER_ELEMENT === 'number' ) {
return new type( array ); // create typed array
}
return Array.prototype.slice.call( array ); // create Array
}
function isTypedArray( object ) {
return ArrayBuffer.isView( object ) &&
! ( object instanceof DataView );
}
// returns an array by which times and values can be sorted
function getKeyframeOrder( times ) {
function compareTime( i, j ) {
return times[ i ] - times[ j ];
}
const n = times.length;
const result = new Array( n );
for ( let i = 0; i !== n; ++ i ) result[ i ] = i;
result.sort( compareTime );
return result;
}
// uses the array previously returned by 'getKeyframeOrder' to sort data
function sortedArray( values, stride, order ) {
const nValues = values.length;
const result = new values.constructor( nValues );
for ( let i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) {
const srcOffset = order[ i ] * stride;
for ( let j = 0; j !== stride; ++ j ) {
result[ dstOffset ++ ] = values[ srcOffset + j ];
}
}
return result;
}
// function for parsing AOS keyframe formats
function flattenJSON( jsonKeys, times, values, valuePropertyName ) {
let i = 1, key = jsonKeys[ 0 ];
while ( key !== undefined && key[ valuePropertyName ] === undefined ) {
key = jsonKeys[ i ++ ];
}
if ( key === undefined ) return; // no data
let value = key[ valuePropertyName ];
if ( value === undefined ) return; // no data
if ( Array.isArray( value ) ) {
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
values.push.apply( values, value ); // push all elements
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
} else if ( value.toArray !== undefined ) {
// ...assume THREE.Math-ish
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
value.toArray( values, values.length );
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
} else {
// otherwise push as-is
do {
value = key[ valuePropertyName ];
if ( value !== undefined ) {
times.push( key.time );
values.push( value );
}
key = jsonKeys[ i ++ ];
} while ( key !== undefined );
}
}
function subclip( sourceClip, name, startFrame, endFrame, fps = 30 ) {
const clip = sourceClip.clone();
clip.name = name;
const tracks = [];
for ( let i = 0; i < clip.tracks.length; ++ i ) {
const track = clip.tracks[ i ];
const valueSize = track.getValueSize();
const times = [];
const values = [];
for ( let j = 0; j < track.times.length; ++ j ) {
const frame = track.times[ j ] * fps;
if ( frame < startFrame || frame >= endFrame ) continue;
times.push( track.times[ j ] );
for ( let k = 0; k < valueSize; ++ k ) {
values.push( track.values[ j * valueSize + k ] );
}
}
if ( times.length === 0 ) continue;
track.times = convertArray( times, track.times.constructor );
track.values = convertArray( values, track.values.constructor );
tracks.push( track );
}
clip.tracks = tracks;
// find minimum .times value across all tracks in the trimmed clip
let minStartTime = Infinity;
for ( let i = 0; i < clip.tracks.length; ++ i ) {
if ( minStartTime > clip.tracks[ i ].times[ 0 ] ) {
minStartTime = clip.tracks[ i ].times[ 0 ];
}
}
// shift all tracks such that clip begins at t=0
for ( let i = 0; i < clip.tracks.length; ++ i ) {
clip.tracks[ i ].shift( - 1 * minStartTime );
}
clip.resetDuration();
return clip;
}
function makeClipAdditive( targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30 ) {
if ( fps <= 0 ) fps = 30;
const numTracks = referenceClip.tracks.length;
const referenceTime = referenceFrame / fps;
// Make each track's values relative to the values at the reference frame
for ( let i = 0; i < numTracks; ++ i ) {
const referenceTrack = referenceClip.tracks[ i ];
const referenceTrackType = referenceTrack.ValueTypeName;
// Skip this track if it's non-numeric
if ( referenceTrackType === 'bool' || referenceTrackType === 'string' ) continue;
// Find the track in the target clip whose name and type matches the reference track
const targetTrack = targetClip.tracks.find( function ( track ) {
return track.name === referenceTrack.name
&& track.ValueTypeName === referenceTrackType;
} );
if ( targetTrack === undefined ) continue;
let referenceOffset = 0;
const referenceValueSize = referenceTrack.getValueSize();
if ( referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline ) {
referenceOffset = referenceValueSize / 3;
}
let targetOffset = 0;
const targetValueSize = targetTrack.getValueSize();
if ( targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline ) {
targetOffset = targetValueSize / 3;
}
const lastIndex = referenceTrack.times.length - 1;
let referenceValue;
// Find the value to subtract out of the track
if ( referenceTime <= referenceTrack.times[ 0 ] ) {
// Reference frame is earlier than the first keyframe, so just use the first keyframe
const startIndex = referenceOffset;
const endIndex = referenceValueSize - referenceOffset;
referenceValue = referenceTrack.values.slice( startIndex, endIndex );
} else if ( referenceTime >= referenceTrack.times[ lastIndex ] ) {
// Reference frame is after the last keyframe, so just use the last keyframe
const startIndex = lastIndex * referenceValueSize + referenceOffset;
const endIndex = startIndex + referenceValueSize - referenceOffset;
referenceValue = referenceTrack.values.slice( startIndex, endIndex );
} else {
// Interpolate to the reference value
const interpolant = referenceTrack.createInterpolant();
const startIndex = referenceOffset;
const endIndex = referenceValueSize - referenceOffset;
interpolant.evaluate( referenceTime );
referenceValue = interpolant.resultBuffer.slice( startIndex, endIndex );
}
// Conjugate the quaternion
if ( referenceTrackType === 'quaternion' ) {
const referenceQuat = new Quaternion().fromArray( referenceValue ).normalize().conjugate();
referenceQuat.toArray( referenceValue );
}
// Subtract the reference value from all of the track values
const numTimes = targetTrack.times.length;
for ( let j = 0; j < numTimes; ++ j ) {
const valueStart = j * targetValueSize + targetOffset;
if ( referenceTrackType === 'quaternion' ) {
// Multiply the conjugate for quaternion track types
Quaternion.multiplyQuaternionsFlat(
targetTrack.values,
valueStart,
referenceValue,
0,
targetTrack.values,
valueStart
);
} else {
const valueEnd = targetValueSize - targetOffset * 2;
// Subtract each value for all other numeric track types
for ( let k = 0; k < valueEnd; ++ k ) {
targetTrack.values[ valueStart + k ] -= referenceValue[ k ];
}
}
}
}
targetClip.blendMode = AdditiveAnimationBlendMode;
return targetClip;
}
const AnimationUtils = {
convertArray: convertArray,
isTypedArray: isTypedArray,
getKeyframeOrder: getKeyframeOrder,
sortedArray: sortedArray,
flattenJSON: flattenJSON,
subclip: subclip,
makeClipAdditive: makeClipAdditive
};
/**
* Abstract base class of interpolants over parametric samples.
*
* The parameter domain is one dimensional, typically the time or a path
* along a curve defined by the data.
*
* The sample values can have any dimensionality and derived classes may
* apply special interpretations to the data.
*
* This class provides the interval seek in a Template Method, deferring
* the actual interpolation to derived classes.
*
* Time complexity is O(1) for linear access crossing at most two points
* and O(log N) for random access, where N is the number of positions.
*
* References:
*
* http://www.oodesign.com/template-method-pattern.html
*
*/
class Interpolant {
constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
this.parameterPositions = parameterPositions;
this._cachedIndex = 0;
this.resultBuffer = resultBuffer !== undefined ?
resultBuffer : new sampleValues.constructor( sampleSize );
this.sampleValues = sampleValues;
this.valueSize = sampleSize;
this.settings = null;
this.DefaultSettings_ = {};
}
evaluate( t ) {
const pp = this.parameterPositions;
let i1 = this._cachedIndex,
t1 = pp[ i1 ],
t0 = pp[ i1 - 1 ];
validate_interval: {
seek: {
let right;
linear_scan: {
//- See http://jsperf.com/comparison-to-undefined/3
//- slower code:
//-
//- if ( t >= t1 || t1 === undefined ) {
forward_scan: if ( ! ( t < t1 ) ) {
for ( let giveUpAt = i1 + 2; ; ) {
if ( t1 === undefined ) {
if ( t < t0 ) break forward_scan;
// after end
i1 = pp.length;
this._cachedIndex = i1;
return this.copySampleValue_( i1 - 1 );
}
if ( i1 === giveUpAt ) break; // this loop
t0 = t1;
t1 = pp[ ++ i1 ];
if ( t < t1 ) {
// we have arrived at the sought interval
break seek;
}
}
// prepare binary search on the right side of the index
right = pp.length;
break linear_scan;
}
//- slower code:
//- if ( t < t0 || t0 === undefined ) {
if ( ! ( t >= t0 ) ) {
// looping?
const t1global = pp[ 1 ];
if ( t < t1global ) {
i1 = 2; // + 1, using the scan for the details
t0 = t1global;
}
// linear reverse scan
for ( let giveUpAt = i1 - 2; ; ) {
if ( t0 === undefined ) {
// before start
this._cachedIndex = 0;
return this.copySampleValue_( 0 );
}
if ( i1 === giveUpAt ) break; // this loop
t1 = t0;
t0 = pp[ -- i1 - 1 ];
if ( t >= t0 ) {
// we have arrived at the sought interval
break seek;
}
}
// prepare binary search on the left side of the index
right = i1;
i1 = 0;
break linear_scan;
}
// the interval is valid
break validate_interval;
} // linear scan
// binary search
while ( i1 < right ) {
const mid = ( i1 + right ) >>> 1;
if ( t < pp[ mid ] ) {
right = mid;
} else {
i1 = mid + 1;
}
}
t1 = pp[ i1 ];
t0 = pp[ i1 - 1 ];
// check boundary cases, again
if ( t0 === undefined ) {
this._cachedIndex = 0;
return this.copySampleValue_( 0 );
}
if ( t1 === undefined ) {
i1 = pp.length;
this._cachedIndex = i1;
return this.copySampleValue_( i1 - 1 );
}
} // seek
this._cachedIndex = i1;
this.intervalChanged_( i1, t0, t1 );
} // validate_interval
return this.interpolate_( i1, t0, t, t1 );
}
getSettings_() {
return this.settings || this.DefaultSettings_;
}
copySampleValue_( index ) {
// copies a sample value to the result buffer
const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset = index * stride;
for ( let i = 0; i !== stride; ++ i ) {
result[ i ] = values[ offset + i ];
}
return result;
}
// Template methods for derived classes:
interpolate_( /* i1, t0, t, t1 */ ) {
throw new Error( 'call to abstract method' );
// implementations shall return this.resultBuffer
}
intervalChanged_( /* i1, t0, t1 */ ) {
// empty
}
}
/**
* Fast and simple cubic spline interpolant.
*
* It was derived from a Hermitian construction setting the first derivative
* at each sample position to the linear slope between neighboring positions
* over their parameter interval.
*/
class CubicInterpolant extends Interpolant {
constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
super( parameterPositions, sampleValues, sampleSize, resultBuffer );
this._weightPrev = - 0;
this._offsetPrev = - 0;
this._weightNext = - 0;
this._offsetNext = - 0;
this.DefaultSettings_ = {
endingStart: ZeroCurvatureEnding,
endingEnd: ZeroCurvatureEnding
};
}
intervalChanged_( i1, t0, t1 ) {
const pp = this.parameterPositions;
let iPrev = i1 - 2,
iNext = i1 + 1,
tPrev = pp[ iPrev ],
tNext = pp[ iNext ];
if ( tPrev === undefined ) {
switch ( this.getSettings_().endingStart ) {
case ZeroSlopeEnding:
// f'(t0) = 0
iPrev = i1;
tPrev = 2 * t0 - t1;
break;
case WrapAroundEnding:
// use the other end of the curve
iPrev = pp.length - 2;
tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ];
break;
default: // ZeroCurvatureEnding
// f''(t0) = 0 a.k.a. Natural Spline
iPrev = i1;
tPrev = t1;
}
}
if ( tNext === undefined ) {
switch ( this.getSettings_().endingEnd ) {
case ZeroSlopeEnding:
// f'(tN) = 0
iNext = i1;
tNext = 2 * t1 - t0;
break;
case WrapAroundEnding:
// use the other end of the curve
iNext = 1;
tNext = t1 + pp[ 1 ] - pp[ 0 ];
break;
default: // ZeroCurvatureEnding
// f''(tN) = 0, a.k.a. Natural Spline
iNext = i1 - 1;
tNext = t0;
}
}
const halfDt = ( t1 - t0 ) * 0.5,
stride = this.valueSize;
this._weightPrev = halfDt / ( t0 - tPrev );
this._weightNext = halfDt / ( tNext - t1 );
this._offsetPrev = iPrev * stride;
this._offsetNext = iNext * stride;
}
interpolate_( i1, t0, t, t1 ) {
const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
o1 = i1 * stride, o0 = o1 - stride,
oP = this._offsetPrev, oN = this._offsetNext,
wP = this._weightPrev, wN = this._weightNext,
p = ( t - t0 ) / ( t1 - t0 ),
pp = p * p,
ppp = pp * p;
// evaluate polynomials
const sP = - wP * ppp + 2 * wP * pp - wP * p;
const s0 = ( 1 + wP ) * ppp + ( - 1.5 - 2 * wP ) * pp + ( - 0.5 + wP ) * p + 1;
const s1 = ( - 1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p;
const sN = wN * ppp - wN * pp;
// combine data linearly
for ( let i = 0; i !== stride; ++ i ) {
result[ i ] =
sP * values[ oP + i ] +
s0 * values[ o0 + i ] +
s1 * values[ o1 + i ] +
sN * values[ oN + i ];
}
return result;
}
}
class LinearInterpolant extends Interpolant {
constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
super( parameterPositions, sampleValues, sampleSize, resultBuffer );
}
interpolate_( i1, t0, t, t1 ) {
const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset1 = i1 * stride,
offset0 = offset1 - stride,
weight1 = ( t - t0 ) / ( t1 - t0 ),
weight0 = 1 - weight1;
for ( let i = 0; i !== stride; ++ i ) {
result[ i ] =
values[ offset0 + i ] * weight0 +
values[ offset1 + i ] * weight1;
}
return result;
}
}
/**
*
* Interpolant that evaluates to the sample value at the position preceding
* the parameter.
*/
class DiscreteInterpolant extends Interpolant {
constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
super( parameterPositions, sampleValues, sampleSize, resultBuffer );
}
interpolate_( i1 /*, t0, t, t1 */ ) {
return this.copySampleValue_( i1 - 1 );
}
}
class KeyframeTrack {
constructor( name, times, values, interpolation ) {
if ( name === undefined ) throw new Error( 'THREE.KeyframeTrack: track name is undefined' );
if ( times === undefined || times.length === 0 ) throw new Error( 'THREE.KeyframeTrack: no keyframes in track named ' + name );
this.name = name;
this.times = convertArray( times, this.TimeBufferType );
this.values = convertArray( values, this.ValueBufferType );
this.setInterpolation( interpolation || this.DefaultInterpolation );
}
// Serialization (in static context, because of constructor invocation
// and automatic invocation of .toJSON):
static toJSON( track ) {
const trackType = track.constructor;
let json;
// derived classes can define a static toJSON method
if ( trackType.toJSON !== this.toJSON ) {
json = trackType.toJSON( track );
} else {
// by default, we assume the data can be serialized as-is
json = {
'name': track.name,
'times': convertArray( track.times, Array ),
'values': convertArray( track.values, Array )
};
const interpolation = track.getInterpolation();
if ( interpolation !== track.DefaultInterpolation ) {
json.interpolation = interpolation;
}
}
json.type = track.ValueTypeName; // mandatory
return json;
}
InterpolantFactoryMethodDiscrete( result ) {
return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result );
}
InterpolantFactoryMethodLinear( result ) {
return new LinearInterpolant( this.times, this.values, this.getValueSize(), result );
}
InterpolantFactoryMethodSmooth( result ) {
return new CubicInterpolant( this.times, this.values, this.getValueSize(), result );
}
setInterpolation( interpolation ) {
let factoryMethod;
switch ( interpolation ) {
case InterpolateDiscrete:
factoryMethod = this.InterpolantFactoryMethodDiscrete;
break;
case InterpolateLinear:
factoryMethod = this.InterpolantFactoryMethodLinear;
break;
case InterpolateSmooth:
factoryMethod = this.InterpolantFactoryMethodSmooth;
break;
}
if ( factoryMethod === undefined ) {
const message = 'unsupported interpolation for ' +
this.ValueTypeName + ' keyframe track named ' + this.name;
if ( this.createInterpolant === undefined ) {
// fall back to default, unless the default itself is messed up
if ( interpolation !== this.DefaultInterpolation ) {
this.setInterpolation( this.DefaultInterpolation );
} else {
throw new Error( message ); // fatal, in this case
}
}
console.warn( 'THREE.KeyframeTrack:', message );
return this;
}
this.createInterpolant = factoryMethod;
return this;
}
getInterpolation() {
switch ( this.createInterpolant ) {
case this.InterpolantFactoryMethodDiscrete:
return InterpolateDiscrete;
case this.InterpolantFactoryMethodLinear:
return InterpolateLinear;
case this.InterpolantFactoryMethodSmooth:
return InterpolateSmooth;
}
}
getValueSize() {
return this.values.length / this.times.length;
}
// move all keyframes either forwards or backwards in time
shift( timeOffset ) {
if ( timeOffset !== 0.0 ) {
const times = this.times;
for ( let i = 0, n = times.length; i !== n; ++ i ) {
times[ i ] += timeOffset;
}
}
return this;
}
// scale all keyframe times by a factor (useful for frame <-> seconds conversions)
scale( timeScale ) {
if ( timeScale !== 1.0 ) {
const times = this.times;
for ( let i = 0, n = times.length; i !== n; ++ i ) {
times[ i ] *= timeScale;
}
}
return this;
}
// removes keyframes before and after animation without changing any values within the range [startTime, endTime].
// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
trim( startTime, endTime ) {
const times = this.times,
nKeys = times.length;
let from = 0,
to = nKeys - 1;
while ( from !== nKeys && times[ from ] < startTime ) {
++ from;
}
while ( to !== - 1 && times[ to ] > endTime ) {
-- to;
}
++ to; // inclusive -> exclusive bound
if ( from !== 0 || to !== nKeys ) {
// empty tracks are forbidden, so keep at least one keyframe
if ( from >= to ) {
to = Math.max( to, 1 );
from = to - 1;
}
const stride = this.getValueSize();
this.times = times.slice( from, to );
this.values = this.values.slice( from * stride, to * stride );
}
return this;
}
// ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
validate() {
let valid = true;
const valueSize = this.getValueSize();
if ( valueSize - Math.floor( valueSize ) !== 0 ) {
console.error( 'THREE.KeyframeTrack: Invalid value size in track.', this );
valid = false;
}
const times = this.times,
values = this.values,
nKeys = times.length;
if ( nKeys === 0 ) {
console.error( 'THREE.KeyframeTrack: Track is empty.', this );
valid = false;
}
let prevTime = null;
for ( let i = 0; i !== nKeys; i ++ ) {
const currTime = times[ i ];
if ( typeof currTime === 'number' && isNaN( currTime ) ) {
console.error( 'THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime );
valid = false;
break;
}
if ( prevTime !== null && prevTime > currTime ) {
console.error( 'THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime );
valid = false;
break;
}
prevTime = currTime;
}
if ( values !== undefined ) {
if ( isTypedArray( values ) ) {
for ( let i = 0, n = values.length; i !== n; ++ i ) {
const value = values[ i ];
if ( isNaN( value ) ) {
console.error( 'THREE.KeyframeTrack: Value is not a valid number.', this, i, value );
valid = false;
break;
}
}
}
}
return valid;
}
// removes equivalent sequential keys as common in morph target sequences
// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
optimize() {
// times or values may be shared with other tracks, so overwriting is unsafe
const times = this.times.slice(),
values = this.values.slice(),
stride = this.getValueSize(),
smoothInterpolation = this.getInterpolation() === InterpolateSmooth,
lastIndex = times.length - 1;
let writeIndex = 1;
for ( let i = 1; i < lastIndex; ++ i ) {
let keep = false;
const time = times[ i ];
const timeNext = times[ i + 1 ];
// remove adjacent keyframes scheduled at the same time
if ( time !== timeNext && ( i !== 1 || time !== times[ 0 ] ) ) {
if ( ! smoothInterpolation ) {
// remove unnecessary keyframes same as their neighbors
const offset = i * stride,
offsetP = offset - stride,
offsetN = offset + stride;
for ( let j = 0; j !== stride; ++ j ) {
const value = values[ offset + j ];
if ( value !== values[ offsetP + j ] ||
value !== values[ offsetN + j ] ) {
keep = true;
break;
}
}
} else {
keep = true;
}
}
// in-place compaction
if ( keep ) {
if ( i !== writeIndex ) {
times[ writeIndex ] = times[ i ];
const readOffset = i * stride,
writeOffset = writeIndex * stride;
for ( let j = 0; j !== stride; ++ j ) {
values[ writeOffset + j ] = values[ readOffset + j ];
}
}
++ writeIndex;
}
}
// flush last keyframe (compaction looks ahead)
if ( lastIndex > 0 ) {
times[ writeIndex ] = times[ lastIndex ];
for ( let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j ) {
values[ writeOffset + j ] = values[ readOffset + j ];
}
++ writeIndex;
}
if ( writeIndex !== times.length ) {
this.times = times.slice( 0, writeIndex );
this.values = values.slice( 0, writeIndex * stride );
} else {
this.times = times;
this.values = values;
}
return this;
}
clone() {
const times = this.times.slice();
const values = this.values.slice();
const TypedKeyframeTrack = this.constructor;
const track = new TypedKeyframeTrack( this.name, times, values );
// Interpolant argument to constructor is not saved, so copy the factory method directly.
track.createInterpolant = this.createInterpolant;
return track;
}
}
KeyframeTrack.prototype.TimeBufferType = Float32Array;
KeyframeTrack.prototype.ValueBufferType = Float32Array;
KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear;
/**
* A Track of Boolean keyframe values.
*/
class BooleanKeyframeTrack extends KeyframeTrack {
// No interpolation parameter because only InterpolateDiscrete is valid.
constructor( name, times, values ) {
super( name, times, values );
}
}
BooleanKeyframeTrack.prototype.ValueTypeName = 'bool';
BooleanKeyframeTrack.prototype.ValueBufferType = Array;
BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete;
BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined;
BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;
/**
* A Track of keyframe values that represent color.
*/
class ColorKeyframeTrack extends KeyframeTrack {}
ColorKeyframeTrack.prototype.ValueTypeName = 'color';
/**
* A Track of numeric keyframe values.
*/
class NumberKeyframeTrack extends KeyframeTrack {}
NumberKeyframeTrack.prototype.ValueTypeName = 'number';
/**
* Spherical linear unit quaternion interpolant.
*/
class QuaternionLinearInterpolant extends Interpolant {
constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) {
super( parameterPositions, sampleValues, sampleSize, resultBuffer );
}
interpolate_( i1, t0, t, t1 ) {
const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
alpha = ( t - t0 ) / ( t1 - t0 );
let offset = i1 * stride;
for ( let end = offset + stride; offset !== end; offset += 4 ) {
Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha );
}
return result;
}
}
/**
* A Track of quaternion keyframe values.
*/
class QuaternionKeyframeTrack extends KeyframeTrack {
InterpolantFactoryMethodLinear( result ) {
return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result );
}
}
QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion';
// ValueBufferType is inherited
// DefaultInterpolation is inherited;
QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;
/**
* A Track that interpolates Strings
*/
class StringKeyframeTrack extends KeyframeTrack {
// No interpolation parameter because only InterpolateDiscrete is valid.
constructor( name, times, values ) {
super( name, times, values );
}
}
StringKeyframeTrack.prototype.ValueTypeName = 'string';
StringKeyframeTrack.prototype.ValueBufferType = Array;
StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete;
StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined;
StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;
/**
* A Track of vectored keyframe values.
*/
class VectorKeyframeTrack extends KeyframeTrack {}
VectorKeyframeTrack.prototype.ValueTypeName = 'vector';
class AnimationClip {
constructor( name = '', duration = - 1, tracks = [], blendMode = NormalAnimationBlendMode ) {
this.name = name;
this.tracks = tracks;
this.duration = duration;
this.blendMode = blendMode;
this.uuid = generateUUID();
// this means it should figure out its duration by scanning the tracks
if ( this.duration < 0 ) {
this.resetDuration();
}
}
static parse( json ) {
const tracks = [],
jsonTracks = json.tracks,
frameTime = 1.0 / ( json.fps || 1.0 );
for ( let i = 0, n = jsonTracks.length; i !== n; ++ i ) {
tracks.push( parseKeyframeTrack( jsonTracks[ i ] ).scale( frameTime ) );
}
const clip = new this( json.name, json.duration, tracks, json.blendMode );
clip.uuid = json.uuid;
return clip;
}
static toJSON( clip ) {
const tracks = [],
clipTracks = clip.tracks;
const json = {
'name': clip.name,
'duration': clip.duration,
'tracks': tracks,
'uuid': clip.uuid,
'blendMode': clip.blendMode
};
for ( let i = 0, n = clipTracks.length; i !== n; ++ i ) {
tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) );
}
return json;
}
static CreateFromMorphTargetSequence( name, morphTargetSequence, fps, noLoop ) {
const numMorphTargets = morphTargetSequence.length;
const tracks = [];
for ( let i = 0; i < numMorphTargets; i ++ ) {
let times = [];
let values = [];
times.push(
( i + numMorphTargets - 1 ) % numMorphTargets,
i,
( i + 1 ) % numMorphTargets );
values.push( 0, 1, 0 );
const order = getKeyframeOrder( times );
times = sortedArray( times, 1, order );
values = sortedArray( values, 1, order );
// if there is a key at the first frame, duplicate it as the
// last frame as well for perfect loop.
if ( ! noLoop && times[ 0 ] === 0 ) {
times.push( numMorphTargets );
values.push( values[ 0 ] );
}
tracks.push(
new NumberKeyframeTrack(
'.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']',
times, values
).scale( 1.0 / fps ) );
}
return new this( name, - 1, tracks );
}
static findByName( objectOrClipArray, name ) {
let clipArray = objectOrClipArray;
if ( ! Array.isArray( objectOrClipArray ) ) {
const o = objectOrClipArray;
clipArray = o.geometry && o.geometry.animations || o.animations;
}
for ( let i = 0; i < clipArray.length; i ++ ) {
if ( clipArray[ i ].name === name ) {
return clipArray[ i ];
}
}
return null;
}
static CreateClipsFromMorphTargetSequences( morphTargets, fps, noLoop ) {
const animationToMorphTargets = {};
// tested with https://regex101.com/ on trick sequences
// such flamingo_flyA_003, flamingo_run1_003, crdeath0059
const pattern = /^([\w-]*?)([\d]+)$/;
// sort morph target names into animation groups based
// patterns like Walk_001, Walk_002, Run_001, Run_002
for ( let i = 0, il = morphTargets.length; i < il; i ++ ) {
const morphTarget = morphTargets[ i ];
const parts = morphTarget.name.match( pattern );
if ( parts && parts.length > 1 ) {
const name = parts[ 1 ];
let animationMorphTargets = animationToMorphTargets[ name ];
if ( ! animationMorphTargets ) {
animationToMorphTargets[ name ] = animationMorphTargets = [];
}
animationMorphTargets.push( morphTarget );
}
}
const clips = [];
for ( const name in animationToMorphTargets ) {
clips.push( this.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) );
}
return clips;
}
// parse the animation.hierarchy format
static parseAnimation( animation, bones ) {
if ( ! animation ) {
console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' );
return null;
}
const addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) {
// only return track if there are actually keys.
if ( animationKeys.length !== 0 ) {
const times = [];
const values = [];
flattenJSON( animationKeys, times, values, propertyName );
// empty keys are filtered out, so check again
if ( times.length !== 0 ) {
destTracks.push( new trackType( trackName, times, values ) );
}
}
};
const tracks = [];
const clipName = animation.name || 'default';
const fps = animation.fps || 30;
const blendMode = animation.blendMode;
// automatic length determination in AnimationClip.
let duration = animation.length || - 1;
const hierarchyTracks = animation.hierarchy || [];
for ( let h = 0; h < hierarchyTracks.length; h ++ ) {
const animationKeys = hierarchyTracks[ h ].keys;
// skip empty tracks
if ( ! animationKeys || animationKeys.length === 0 ) continue;
// process morph targets
if ( animationKeys[ 0 ].morphTargets ) {
// figure out all morph targets used in this track
const morphTargetNames = {};
let k;
for ( k = 0; k < animationKeys.length; k ++ ) {
if ( animationKeys[ k ].morphTargets ) {
for ( let m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) {
morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1;
}
}
}
// create a track for each morph target with all zero
// morphTargetInfluences except for the keys in which
// the morphTarget is named.
for ( const morphTargetName in morphTargetNames ) {
const times = [];
const values = [];
for ( let m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) {
const animationKey = animationKeys[ k ];
times.push( animationKey.time );
values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 );
}
tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) );
}
duration = morphTargetNames.length * fps;
} else {
// ...assume skeletal animation
const boneName = '.bones[' + bones[ h ].name + ']';
addNonemptyTrack(
VectorKeyframeTrack, boneName + '.position',
animationKeys, 'pos', tracks );
addNonemptyTrack(
QuaternionKeyframeTrack, boneName + '.quaternion',
animationKeys, 'rot', tracks );
addNonemptyTrack(
VectorKeyframeTrack, boneName + '.scale',
animationKeys, 'scl', tracks );
}
}
if ( tracks.length === 0 ) {
return null;
}
const clip = new this( clipName, duration, tracks, blendMode );
return clip;
}
resetDuration() {
const tracks = this.tracks;
let duration = 0;
for ( let i = 0, n = tracks.length; i !== n; ++ i ) {
const track = this.tracks[ i ];
duration = Math.max( duration, track.times[ track.times.length - 1 ] );
}
this.duration = duration;
return this;
}
trim() {
for ( let i = 0; i < this.tracks.length; i ++ ) {
this.tracks[ i ].trim( 0, this.duration );
}
return this;
}
validate() {
let valid = true;
for ( let i = 0; i < this.tracks.length; i ++ ) {
valid = valid && this.tracks[ i ].validate();
}
return valid;
}
optimize() {
for ( let i = 0; i < this.tracks.length; i ++ ) {
this.tracks[ i ].optimize();
}
return this;
}
clone() {
const tracks = [];
for ( let i = 0; i < this.tracks.length; i ++ ) {
tracks.push( this.tracks[ i ].clone() );
}
return new this.constructor( this.name, this.duration, tracks, this.blendMode );
}
toJSON() {
return this.constructor.toJSON( this );
}
}
function getTrackTypeForValueTypeName( typeName ) {
switch ( typeName.toLowerCase() ) {
case 'scalar':
case 'double':
case 'float':
case 'number':
case 'integer':
return NumberKeyframeTrack;
case 'vector':
case 'vector2':
case 'vector3':
case 'vector4':
return VectorKeyframeTrack;
case 'color':
return ColorKeyframeTrack;
case 'quaternion':
return QuaternionKeyframeTrack;
case 'bool':
case 'boolean':
return BooleanKeyframeTrack;
case 'string':
return StringKeyframeTrack;
}
throw new Error( 'THREE.KeyframeTrack: Unsupported typeName: ' + typeName );
}
function parseKeyframeTrack( json ) {
if ( json.type === undefined ) {
throw new Error( 'THREE.KeyframeTrack: track type undefined, can not parse' );
}
const trackType = getTrackTypeForValueTypeName( json.type );
if ( json.times === undefined ) {
const times = [], values = [];
flattenJSON( json.keys, times, values, 'value' );
json.times = times;
json.values = values;
}
// derived classes can define a static parse method
if ( trackType.parse !== undefined ) {
return trackType.parse( json );
} else {
// by default, we assume a constructor compatible with the base
return new trackType( json.name, json.times, json.values, json.interpolation );
}
}
const Cache = {
enabled: false,
files: {},
add: function ( key, file ) {
if ( this.enabled === false ) return;
// console.log( 'THREE.Cache', 'Adding key:', key );
this.files[ key ] = file;
},
get: function ( key ) {
if ( this.enabled === false ) return;
// console.log( 'THREE.Cache', 'Checking key:', key );
return this.files[ key ];
},
remove: function ( key ) {
delete this.files[ key ];
},
clear: function () {
this.files = {};
}
};
class LoadingManager {
constructor( onLoad, onProgress, onError ) {
const scope = this;
let isLoading = false;
let itemsLoaded = 0;
let itemsTotal = 0;
let urlModifier = undefined;
const handlers = [];
// Refer to #5689 for the reason why we don't set .onStart
// in the constructor
this.onStart = undefined;
this.onLoad = onLoad;
this.onProgress = onProgress;
this.onError = onError;
this.itemStart = function ( url ) {
itemsTotal ++;
if ( isLoading === false ) {
if ( scope.onStart !== undefined ) {
scope.onStart( url, itemsLoaded, itemsTotal );
}
}
isLoading = true;
};
this.itemEnd = function ( url ) {
itemsLoaded ++;
if ( scope.onProgress !== undefined ) {
scope.onProgress( url, itemsLoaded, itemsTotal );
}
if ( itemsLoaded === itemsTotal ) {
isLoading = false;
if ( scope.onLoad !== undefined ) {
scope.onLoad();
}
}
};
this.itemError = function ( url ) {
if ( scope.onError !== undefined ) {
scope.onError( url );
}
};
this.resolveURL = function ( url ) {
if ( urlModifier ) {
return urlModifier( url );
}
return url;
};
this.setURLModifier = function ( transform ) {
urlModifier = transform;
return this;
};
this.addHandler = function ( regex, loader ) {
handlers.push( regex, loader );
return this;
};
this.removeHandler = function ( regex ) {
const index = handlers.indexOf( regex );
if ( index !== - 1 ) {
handlers.splice( index, 2 );
}
return this;
};
this.getHandler = function ( file ) {
for ( let i = 0, l = handlers.length; i < l; i += 2 ) {
const regex = handlers[ i ];
const loader = handlers[ i + 1 ];
if ( regex.global ) regex.lastIndex = 0; // see #17920
if ( regex.test( file ) ) {
return loader;
}
}
return null;
};
}
}
const DefaultLoadingManager = /*@__PURE__*/ new LoadingManager();
class Loader {
constructor( manager ) {
this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
this.crossOrigin = 'anonymous';
this.withCredentials = false;
this.path = '';
this.resourcePath = '';
this.requestHeader = {};
}
load( /* url, onLoad, onProgress, onError */ ) {}
loadAsync( url, onProgress ) {
const scope = this;
return new Promise( function ( resolve, reject ) {
scope.load( url, resolve, onProgress, reject );
} );
}
parse( /* data */ ) {}
setCrossOrigin( crossOrigin ) {
this.crossOrigin = crossOrigin;
return this;
}
setWithCredentials( value ) {
this.withCredentials = value;
return this;
}
setPath( path ) {
this.path = path;
return this;
}
setResourcePath( resourcePath ) {
this.resourcePath = resourcePath;
return this;
}
setRequestHeader( requestHeader ) {
this.requestHeader = requestHeader;
return this;
}
}
Loader.DEFAULT_MATERIAL_NAME = '__DEFAULT';
const loading = {};
class HttpError extends Error {
constructor( message, response ) {
super( message );
this.response = response;
}
}
class FileLoader extends Loader {
constructor( manager ) {
super( manager );
}
load( url, onLoad, onProgress, onError ) {
if ( url === undefined ) url = '';
if ( this.path !== undefined ) url = this.path + url;
url = this.manager.resolveURL( url );
const cached = Cache.get( url );
if ( cached !== undefined ) {
this.manager.itemStart( url );
setTimeout( () => {
if ( onLoad ) onLoad( cached );
this.manager.itemEnd( url );
}, 0 );
return cached;
}
// Check if request is duplicate
if ( loading[ url ] !== undefined ) {
loading[ url ].push( {
onLoad: onLoad,
onProgress: onProgress,
onError: onError
} );
return;
}
// Initialise array for duplicate requests
loading[ url ] = [];
loading[ url ].push( {
onLoad: onLoad,
onProgress: onProgress,
onError: onError,
} );
// create request
const req = new Request( url, {
headers: new Headers( this.requestHeader ),
credentials: this.withCredentials ? 'include' : 'same-origin',
// An abort controller could be added within a future PR
} );
// record states ( avoid data race )
const mimeType = this.mimeType;
const responseType = this.responseType;
// start the fetch
fetch( req )
.then( response => {
if ( response.status === 200 || response.status === 0 ) {
// Some browsers return HTTP Status 0 when using non-http protocol
// e.g. 'file://' or 'data://'. Handle as success.
if ( response.status === 0 ) {
console.warn( 'THREE.FileLoader: HTTP Status 0 received.' );
}
// Workaround: Checking if response.body === undefined for Alipay browser #23548
if ( typeof ReadableStream === 'undefined' || response.body === undefined || response.body.getReader === undefined ) {
return response;
}
const callbacks = loading[ url ];
const reader = response.body.getReader();
// Nginx needs X-File-Size check
// https://serverfault.com/questions/482875/why-does-nginx-remove-content-length-header-for-chunked-content
const contentLength = response.headers.get( 'X-File-Size' ) || response.headers.get( 'Content-Length' );
const total = contentLength ? parseInt( contentLength ) : 0;
const lengthComputable = total !== 0;
let loaded = 0;
// periodically read data into the new stream tracking while download progress
const stream = new ReadableStream( {
start( controller ) {
readData();
function readData() {
reader.read().then( ( { done, value } ) => {
if ( done ) {
controller.close();
} else {
loaded += value.byteLength;
const event = new ProgressEvent( 'progress', { lengthComputable, loaded, total } );
for ( let i = 0, il = callbacks.length; i < il; i ++ ) {
const callback = callbacks[ i ];
if ( callback.onProgress ) callback.onProgress( event );
}
controller.enqueue( value );
readData();
}
}, ( e ) => {
controller.error( e );
} );
}
}
} );
return new Response( stream );
} else {
throw new HttpError( `fetch for "${response.url}" responded with ${response.status}: ${response.statusText}`, response );
}
} )
.then( response => {
switch ( responseType ) {
case 'arraybuffer':
return response.arrayBuffer();
case 'blob':
return response.blob();
case 'document':
return response.text()
.then( text => {
const parser = new DOMParser();
return parser.parseFromString( text, mimeType );
} );
case 'json':
return response.json();
default:
if ( mimeType === undefined ) {
return response.text();
} else {
// sniff encoding
const re = /charset="?([^;"\s]*)"?/i;
const exec = re.exec( mimeType );
const label = exec && exec[ 1 ] ? exec[ 1 ].toLowerCase() : undefined;
const decoder = new TextDecoder( label );
return response.arrayBuffer().then( ab => decoder.decode( ab ) );
}
}
} )
.then( data => {
// Add to cache only on HTTP success, so that we do not cache
// error response bodies as proper responses to requests.
Cache.add( url, data );
const callbacks = loading[ url ];
delete loading[ url ];
for ( let i = 0, il = callbacks.length; i < il; i ++ ) {
const callback = callbacks[ i ];
if ( callback.onLoad ) callback.onLoad( data );
}
} )
.catch( err => {
// Abort errors and other errors are handled the same
const callbacks = loading[ url ];
if ( callbacks === undefined ) {
// When onLoad was called and url was deleted in `loading`
this.manager.itemError( url );
throw err;
}
delete loading[ url ];
for ( let i = 0, il = callbacks.length; i < il; i ++ ) {
const callback = callbacks[ i ];
if ( callback.onError ) callback.onError( err );
}
this.manager.itemError( url );
} )
.finally( () => {
this.manager.itemEnd( url );
} );
this.manager.itemStart( url );
}
setResponseType( value ) {
this.responseType = value;
return this;
}
setMimeType( value ) {
this.mimeType = value;
return this;
}
}
class AnimationLoader extends Loader {
constructor( manager ) {
super( manager );
}
load( url, onLoad, onProgress, onError ) {
const scope = this;
const loader = new FileLoader( this.manager );
loader.setPath( this.path );
loader.setRequestHeader( this.requestHeader );
loader.setWithCredentials( this.withCredentials );
loader.load( url, function ( text ) {
try {
onLoad( scope.parse( JSON.parse( text ) ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
}
parse( json ) {
const animations = [];
for ( let i = 0; i < json.length; i ++ ) {
const clip = AnimationClip.parse( json[ i ] );
animations.push( clip );
}
return animations;
}
}
/**
* Abstract Base class to block based textures loader (dds, pvr, ...)
*
* Sub classes have to implement the parse() method which will be used in load().
*/
class CompressedTextureLoader extends Loader {
constructor( manager ) {
super( manager );
}
load( url, onLoad, onProgress, onError ) {
const scope = this;
const images = [];
const texture = new CompressedTexture();
const loader = new FileLoader( this.manager );
loader.setPath( this.path );
loader.setResponseType( 'arraybuffer' );
loader.setRequestHeader( this.requestHeader );
loader.setWithCredentials( scope.withCredentials );
let loaded = 0;
function loadTexture( i ) {
loader.load( url[ i ], function ( buffer ) {
const texDatas = scope.parse( buffer, true );
images[ i ] = {
width: texDatas.width,
height: texDatas.height,
format: texDatas.format,
mipmaps: texDatas.mipmaps
};
loaded += 1;
if ( loaded === 6 ) {
if ( texDatas.mipmapCount === 1 ) texture.minFilter = LinearFilter;
texture.image = images;
texture.format = texDatas.format;
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture );
}
}, onProgress, onError );
}
if ( Array.isArray( url ) ) {
for ( let i = 0, il = url.length; i < il; ++ i ) {
loadTexture( i );
}
} else {
// compressed cubemap texture stored in a single DDS file
loader.load( url, function ( buffer ) {
const texDatas = scope.parse( buffer, true );
if ( texDatas.isCubemap ) {
const faces = texDatas.mipmaps.length / texDatas.mipmapCount;
for ( let f = 0; f < faces; f ++ ) {
images[ f ] = { mipmaps: [] };
for ( let i = 0; i < texDatas.mipmapCount; i ++ ) {
images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] );
images[ f ].format = texDatas.format;
images[ f ].width = texDatas.width;
images[ f ].height = texDatas.height;
}
}
texture.image = images;
} else {
texture.image.width = texDatas.width;
texture.image.height = texDatas.height;
texture.mipmaps = texDatas.mipmaps;
}
if ( texDatas.mipmapCount === 1 ) {
texture.minFilter = LinearFilter;
}
texture.format = texDatas.format;
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture );
}, onProgress, onError );
}
return texture;
}
}
class ImageLoader extends Loader {
constructor( manager ) {
super( manager );
}
load( url, onLoad, onProgress, onError ) {
if ( this.path !== undefined ) url = this.path + url;
url = this.manager.resolveURL( url );
const scope = this;
const cached = Cache.get( url );
if ( cached !== undefined ) {
scope.manager.itemStart( url );
setTimeout( function () {
if ( onLoad ) onLoad( cached );
scope.manager.itemEnd( url );
}, 0 );
return cached;
}
const image = createElementNS( 'img' );
function onImageLoad() {
removeEventListeners();
Cache.add( url, this );
if ( onLoad ) onLoad( this );
scope.manager.itemEnd( url );
}
function onImageError( event ) {
removeEventListeners();
if ( onError ) onError( event );
scope.manager.itemError( url );
scope.manager.itemEnd( url );
}
function removeEventListeners() {
image.removeEventListener( 'load', onImageLoad, false );
image.removeEventListener( 'error', onImageError, false );
}
image.addEventListener( 'load', onImageLoad, false );
image.addEventListener( 'error', onImageError, false );
if ( url.slice( 0, 5 ) !== 'data:' ) {
if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin;
}
scope.manager.itemStart( url );
image.src = url;
return image;
}
}
class CubeTextureLoader extends Loader {
constructor( manager ) {
super( manager );
}
load( urls, onLoad, onProgress, onError ) {
const texture = new CubeTexture();
texture.colorSpace = SRGBColorSpace;
const loader = new ImageLoader( this.manager );
loader.setCrossOrigin( this.crossOrigin );
loader.setPath( this.path );
let loaded = 0;
function loadTexture( i ) {
loader.load( urls[ i ], function ( image ) {
texture.images[ i ] = image;
loaded ++;
if ( loaded === 6 ) {
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture );
}
}, undefined, onError );
}
for ( let i = 0; i < urls.length; ++ i ) {
loadTexture( i );
}
return texture;
}
}
/**
* Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
*
* Sub classes have to implement the parse() method which will be used in load().
*/
class DataTextureLoader extends Loader {
constructor( manager ) {
super( manager );
}
load( url, onLoad, onProgress, onError ) {
const scope = this;
const texture = new DataTexture();
const loader = new FileLoader( this.manager );
loader.setResponseType( 'arraybuffer' );
loader.setRequestHeader( this.requestHeader );
loader.setPath( this.path );
loader.setWithCredentials( scope.withCredentials );
loader.load( url, function ( buffer ) {
let texData;
try {
texData = scope.parse( buffer );
} catch ( error ) {
if ( onError !== undefined ) {
onError( error );
} else {
console.error( error );
return;
}
}
if ( texData.image !== undefined ) {
texture.image = texData.image;
} else if ( texData.data !== undefined ) {
texture.image.width = texData.width;
texture.image.height = texData.height;
texture.image.data = texData.data;
}
texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping;
texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping;
texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter;
texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter;
texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1;
if ( texData.colorSpace !== undefined ) {
texture.colorSpace = texData.colorSpace;
}
if ( texData.flipY !== undefined ) {
texture.flipY = texData.flipY;
}
if ( texData.format !== undefined ) {
texture.format = texData.format;
}
if ( texData.type !== undefined ) {
texture.type = texData.type;
}
if ( texData.mipmaps !== undefined ) {
texture.mipmaps = texData.mipmaps;
texture.minFilter = LinearMipmapLinearFilter; // presumably...
}
if ( texData.mipmapCount === 1 ) {
texture.minFilter = LinearFilter;
}
if ( texData.generateMipmaps !== undefined ) {
texture.generateMipmaps = texData.generateMipmaps;
}
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture, texData );
}, onProgress, onError );
return texture;
}
}
class TextureLoader extends Loader {
constructor( manager ) {
super( manager );
}
load( url, onLoad, onProgress, onError ) {
const texture = new Texture();
const loader = new ImageLoader( this.manager );
loader.setCrossOrigin( this.crossOrigin );
loader.setPath( this.path );
loader.load( url, function ( image ) {
texture.image = image;
texture.needsUpdate = true;
if ( onLoad !== undefined ) {
onLoad( texture );
}
}, onProgress, onError );
return texture;
}
}
class Light extends Object3D {
constructor( color, intensity = 1 ) {
super();
this.isLight = true;
this.type = 'Light';
this.color = new Color( color );
this.intensity = intensity;
}
dispose() {
// Empty here in base class; some subclasses override.
}
copy( source, recursive ) {
super.copy( source, recursive );
this.color.copy( source.color );
this.intensity = source.intensity;
return this;
}
toJSON( meta ) {
const data = super.toJSON( meta );
data.object.color = this.color.getHex();
data.object.intensity = this.intensity;
if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex();
if ( this.distance !== undefined ) data.object.distance = this.distance;
if ( this.angle !== undefined ) data.object.angle = this.angle;
if ( this.decay !== undefined ) data.object.decay = this.decay;
if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra;
if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON();
if ( this.target !== undefined ) data.object.target = this.target.uuid;
return data;
}
}
class HemisphereLight extends Light {
constructor( skyColor, groundColor, intensity ) {
super( skyColor, intensity );
this.isHemisphereLight = true;
this.type = 'HemisphereLight';
this.position.copy( Object3D.DEFAULT_UP );
this.updateMatrix();
this.groundColor = new Color( groundColor );
}
copy( source, recursive ) {
super.copy( source, recursive );
this.groundColor.copy( source.groundColor );
return this;
}
}
const _projScreenMatrix$2 = /*@__PURE__*/ new Matrix4();
const _lightPositionWorld$1 = /*@__PURE__*/ new Vector3();
const _lookTarget$1 = /*@__PURE__*/ new Vector3();
class LightShadow {
constructor( camera ) {
this.camera = camera;
this.intensity = 1;
this.bias = 0;
this.normalBias = 0;
this.radius = 1;
this.blurSamples = 8;
this.mapSize = new Vector2( 512, 512 );
this.map = null;
this.mapPass = null;
this.matrix = new Matrix4();
this.autoUpdate = true;
this.needsUpdate = false;
this._frustum = new Frustum();
this._frameExtents = new Vector2( 1, 1 );
this._viewportCount = 1;
this._viewports = [
new Vector4( 0, 0, 1, 1 )
];
}
getViewportCount() {
return this._viewportCount;
}
getFrustum() {
return this._frustum;
}
updateMatrices( light ) {
const shadowCamera = this.camera;
const shadowMatrix = this.matrix;
_lightPositionWorld$1.setFromMatrixPosition( light.matrixWorld );
shadowCamera.position.copy( _lightPositionWorld$1 );
_lookTarget$1.setFromMatrixPosition( light.target.matrixWorld );
shadowCamera.lookAt( _lookTarget$1 );
shadowCamera.updateMatrixWorld();
_projScreenMatrix$2.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse );
this._frustum.setFromProjectionMatrix( _projScreenMatrix$2 );
shadowMatrix.set(
0.5, 0.0, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0
);
shadowMatrix.multiply( _projScreenMatrix$2 );
}
getViewport( viewportIndex ) {
return this._viewports[ viewportIndex ];
}
getFrameExtents() {
return this._frameExtents;
}
dispose() {
if ( this.map ) {
this.map.dispose();
}
if ( this.mapPass ) {
this.mapPass.dispose();
}
}
copy( source ) {
this.camera = source.camera.clone();
this.intensity = source.intensity;
this.bias = source.bias;
this.radius = source.radius;
this.mapSize.copy( source.mapSize );
return this;
}
clone() {
return new this.constructor().copy( this );
}
toJSON() {
const object = {};
if ( this.intensity !== 1 ) object.intensity = this.intensity;
if ( this.bias !== 0 ) object.bias = this.bias;
if ( this.normalBias !== 0 ) object.normalBias = this.normalBias;
if ( this.radius !== 1 ) object.radius = this.radius;
if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray();
object.camera = this.camera.toJSON( false ).object;
delete object.camera.matrix;
return object;
}
}
class SpotLightShadow extends LightShadow {
constructor() {
super( new PerspectiveCamera( 50, 1, 0.5, 500 ) );
this.isSpotLightShadow = true;
this.focus = 1;
}
updateMatrices( light ) {
const camera = this.camera;
const fov = RAD2DEG * 2 * light.angle * this.focus;
const aspect = this.mapSize.width / this.mapSize.height;
const far = light.distance || camera.far;
if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) {
camera.fov = fov;
camera.aspect = aspect;
camera.far = far;
camera.updateProjectionMatrix();
}
super.updateMatrices( light );
}
copy( source ) {
super.copy( source );
this.focus = source.focus;
return this;
}
}
class SpotLight extends Light {
constructor( color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 2 ) {
super( color, intensity );
this.isSpotLight = true;
this.type = 'SpotLight';
this.position.copy( Object3D.DEFAULT_UP );
this.updateMatrix();
this.target = new Object3D();
this.distance = distance;
this.angle = angle;
this.penumbra = penumbra;
this.decay = decay;
this.map = null;
this.shadow = new SpotLightShadow();
}
get power() {
// compute the light's luminous power (in lumens) from its intensity (in candela)
// by convention for a spotlight, luminous power (lm) = π * luminous intensity (cd)
return this.intensity * Math.PI;
}
set power( power ) {
// set the light's intensity (in candela) from the desired luminous power (in lumens)
this.intensity = power / Math.PI;
}
dispose() {
this.shadow.dispose();
}
copy( source, recursive ) {
super.copy( source, recursive );
this.distance = source.distance;
this.angle = source.angle;
this.penumbra = source.penumbra;
this.decay = source.decay;
this.target = source.target.clone();
this.shadow = source.shadow.clone();
return this;
}
}
const _projScreenMatrix$1 = /*@__PURE__*/ new Matrix4();
const _lightPositionWorld = /*@__PURE__*/ new Vector3();
const _lookTarget = /*@__PURE__*/ new Vector3();
class PointLightShadow extends LightShadow {
constructor() {
super( new PerspectiveCamera( 90, 1, 0.5, 500 ) );
this.isPointLightShadow = true;
this._frameExtents = new Vector2( 4, 2 );
this._viewportCount = 6;
this._viewports = [
// These viewports map a cube-map onto a 2D texture with the
// following orientation:
//
// xzXZ
// y Y
//
// X - Positive x direction
// x - Negative x direction
// Y - Positive y direction
// y - Negative y direction
// Z - Positive z direction
// z - Negative z direction
// positive X
new Vector4( 2, 1, 1, 1 ),
// negative X
new Vector4( 0, 1, 1, 1 ),
// positive Z
new Vector4( 3, 1, 1, 1 ),
// negative Z
new Vector4( 1, 1, 1, 1 ),
// positive Y
new Vector4( 3, 0, 1, 1 ),
// negative Y
new Vector4( 1, 0, 1, 1 )
];
this._cubeDirections = [
new Vector3( 1, 0, 0 ), new Vector3( - 1, 0, 0 ), new Vector3( 0, 0, 1 ),
new Vector3( 0, 0, - 1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, - 1, 0 )
];
this._cubeUps = [
new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ),
new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 )
];
}
updateMatrices( light, viewportIndex = 0 ) {
const camera = this.camera;
const shadowMatrix = this.matrix;
const far = light.distance || camera.far;
if ( far !== camera.far ) {
camera.far = far;
camera.updateProjectionMatrix();
}
_lightPositionWorld.setFromMatrixPosition( light.matrixWorld );
camera.position.copy( _lightPositionWorld );
_lookTarget.copy( camera.position );
_lookTarget.add( this._cubeDirections[ viewportIndex ] );
camera.up.copy( this._cubeUps[ viewportIndex ] );
camera.lookAt( _lookTarget );
camera.updateMatrixWorld();
shadowMatrix.makeTranslation( - _lightPositionWorld.x, - _lightPositionWorld.y, - _lightPositionWorld.z );
_projScreenMatrix$1.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
this._frustum.setFromProjectionMatrix( _projScreenMatrix$1 );
}
}
class PointLight extends Light {
constructor( color, intensity, distance = 0, decay = 2 ) {
super( color, intensity );
this.isPointLight = true;
this.type = 'PointLight';
this.distance = distance;
this.decay = decay;
this.shadow = new PointLightShadow();
}
get power() {
// compute the light's luminous power (in lumens) from its intensity (in candela)
// for an isotropic light source, luminous power (lm) = 4 π luminous intensity (cd)
return this.intensity * 4 * Math.PI;
}
set power( power ) {
// set the light's intensity (in candela) from the desired luminous power (in lumens)
this.intensity = power / ( 4 * Math.PI );
}
dispose() {
this.shadow.dispose();
}
copy( source, recursive ) {
super.copy( source, recursive );
this.distance = source.distance;
this.decay = source.decay;
this.shadow = source.shadow.clone();
return this;
}
}
class OrthographicCamera extends Camera {
constructor( left = - 1, right = 1, top = 1, bottom = - 1, near = 0.1, far = 2000 ) {
super();
this.isOrthographicCamera = true;
this.type = 'OrthographicCamera';
this.zoom = 1;
this.view = null;
this.left = left;
this.right = right;
this.top = top;
this.bottom = bottom;
this.near = near;
this.far = far;
this.updateProjectionMatrix();
}
copy( source, recursive ) {
super.copy( source, recursive );
this.left = source.left;
this.right = source.right;
this.top = source.top;
this.bottom = source.bottom;
this.near = source.near;
this.far = source.far;
this.zoom = source.zoom;
this.view = source.view === null ? null : Object.assign( {}, source.view );
return this;
}
setViewOffset( fullWidth, fullHeight, x, y, width, height ) {
if ( this.view === null ) {
this.view = {
enabled: true,
fullWidth: 1,
fullHeight: 1,
offsetX: 0,
offsetY: 0,
width: 1,
height: 1
};
}
this.view.enabled = true;
this.view.fullWidth = fullWidth;
this.view.fullHeight = fullHeight;
this.view.offsetX = x;
this.view.offsetY = y;
this.view.width = width;
this.view.height = height;
this.updateProjectionMatrix();
}
clearViewOffset() {
if ( this.view !== null ) {
this.view.enabled = false;
}
this.updateProjectionMatrix();
}
updateProjectionMatrix() {
const dx = ( this.right - this.left ) / ( 2 * this.zoom );
const dy = ( this.top - this.bottom ) / ( 2 * this.zoom );
const cx = ( this.right + this.left ) / 2;
const cy = ( this.top + this.bottom ) / 2;
let left = cx - dx;
let right = cx + dx;
let top = cy + dy;
let bottom = cy - dy;
if ( this.view !== null && this.view.enabled ) {
const scaleW = ( this.right - this.left ) / this.view.fullWidth / this.zoom;
const scaleH = ( this.top - this.bottom ) / this.view.fullHeight / this.zoom;
left += scaleW * this.view.offsetX;
right = left + scaleW * this.view.width;
top -= scaleH * this.view.offsetY;
bottom = top - scaleH * this.view.height;
}
this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far, this.coordinateSystem );
this.projectionMatrixInverse.copy( this.projectionMatrix ).invert();
}
toJSON( meta ) {
const data = super.toJSON( meta );
data.object.zoom = this.zoom;
data.object.left = this.left;
data.object.right = this.right;
data.object.top = this.top;
data.object.bottom = this.bottom;
data.object.near = this.near;
data.object.far = this.far;
if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );
return data;
}
}
class DirectionalLightShadow extends LightShadow {
constructor() {
super( new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) );
this.isDirectionalLightShadow = true;
}
}
class DirectionalLight extends Light {
constructor( color, intensity ) {
super( color, intensity );
this.isDirectionalLight = true;
this.type = 'DirectionalLight';
this.position.copy( Object3D.DEFAULT_UP );
this.updateMatrix();
this.target = new Object3D();
this.shadow = new DirectionalLightShadow();
}
dispose() {
this.shadow.dispose();
}
copy( source ) {
super.copy( source );
this.target = source.target.clone();
this.shadow = source.shadow.clone();
return this;
}
}
class AmbientLight extends Light {
constructor( color, intensity ) {
super( color, intensity );
this.isAmbientLight = true;
this.type = 'AmbientLight';
}
}
class RectAreaLight extends Light {
constructor( color, intensity, width = 10, height = 10 ) {
super( color, intensity );
this.isRectAreaLight = true;
this.type = 'RectAreaLight';
this.width = width;
this.height = height;
}
get power() {
// compute the light's luminous power (in lumens) from its intensity (in nits)
return this.intensity * this.width * this.height * Math.PI;
}
set power( power ) {
// set the light's intensity (in nits) from the desired luminous power (in lumens)
this.intensity = power / ( this.width * this.height * Math.PI );
}
copy( source ) {
super.copy( source );
this.width = source.width;
this.height = source.height;
return this;
}
toJSON( meta ) {
const data = super.toJSON( meta );
data.object.width = this.width;
data.object.height = this.height;
return data;
}
}
/**
* Primary reference:
* https://graphics.stanford.edu/papers/envmap/envmap.pdf
*
* Secondary reference:
* https://www.ppsloan.org/publications/StupidSH36.pdf
*/
// 3-band SH defined by 9 coefficients
class SphericalHarmonics3 {
constructor() {
this.isSphericalHarmonics3 = true;
this.coefficients = [];
for ( let i = 0; i < 9; i ++ ) {
this.coefficients.push( new Vector3() );
}
}
set( coefficients ) {
for ( let i = 0; i < 9; i ++ ) {
this.coefficients[ i ].copy( coefficients[ i ] );
}
return this;
}
zero() {
for ( let i = 0; i < 9; i ++ ) {
this.coefficients[ i ].set( 0, 0, 0 );
}
return this;
}
// get the radiance in the direction of the normal
// target is a Vector3
getAt( normal, target ) {
// normal is assumed to be unit length
const x = normal.x, y = normal.y, z = normal.z;
const coeff = this.coefficients;
// band 0
target.copy( coeff[ 0 ] ).multiplyScalar( 0.282095 );
// band 1
target.addScaledVector( coeff[ 1 ], 0.488603 * y );
target.addScaledVector( coeff[ 2 ], 0.488603 * z );
target.addScaledVector( coeff[ 3 ], 0.488603 * x );
// band 2
target.addScaledVector( coeff[ 4 ], 1.092548 * ( x * y ) );
target.addScaledVector( coeff[ 5 ], 1.092548 * ( y * z ) );
target.addScaledVector( coeff[ 6 ], 0.315392 * ( 3.0 * z * z - 1.0 ) );
target.addScaledVector( coeff[ 7 ], 1.092548 * ( x * z ) );
target.addScaledVector( coeff[ 8 ], 0.546274 * ( x * x - y * y ) );
return target;
}
// get the irradiance (radiance convolved with cosine lobe) in the direction of the normal
// target is a Vector3
// https://graphics.stanford.edu/papers/envmap/envmap.pdf
getIrradianceAt( normal, target ) {
// normal is assumed to be unit length
const x = normal.x, y = normal.y, z = normal.z;
const coeff = this.coefficients;
// band 0
target.copy( coeff[ 0 ] ).multiplyScalar( 0.886227 ); // π * 0.282095
// band 1
target.addScaledVector( coeff[ 1 ], 2.0 * 0.511664 * y ); // ( 2 * π / 3 ) * 0.488603
target.addScaledVector( coeff[ 2 ], 2.0 * 0.511664 * z );
target.addScaledVector( coeff[ 3 ], 2.0 * 0.511664 * x );
// band 2
target.addScaledVector( coeff[ 4 ], 2.0 * 0.429043 * x * y ); // ( π / 4 ) * 1.092548
target.addScaledVector( coeff[ 5 ], 2.0 * 0.429043 * y * z );
target.addScaledVector( coeff[ 6 ], 0.743125 * z * z - 0.247708 ); // ( π / 4 ) * 0.315392 * 3
target.addScaledVector( coeff[ 7 ], 2.0 * 0.429043 * x * z );
target.addScaledVector( coeff[ 8 ], 0.429043 * ( x * x - y * y ) ); // ( π / 4 ) * 0.546274
return target;
}
add( sh ) {
for ( let i = 0; i < 9; i ++ ) {
this.coefficients[ i ].add( sh.coefficients[ i ] );
}
return this;
}
addScaledSH( sh, s ) {
for ( let i = 0; i < 9; i ++ ) {
this.coefficients[ i ].addScaledVector( sh.coefficients[ i ], s );
}
return this;
}
scale( s ) {
for ( let i = 0; i < 9; i ++ ) {
this.coefficients[ i ].multiplyScalar( s );
}
return this;
}
lerp( sh, alpha ) {
for ( let i = 0; i < 9; i ++ ) {
this.coefficients[ i ].lerp( sh.coefficients[ i ], alpha );
}
return this;
}
equals( sh ) {
for ( let i = 0; i < 9; i ++ ) {
if ( ! this.coefficients[ i ].equals( sh.coefficients[ i ] ) ) {
return false;
}
}
return true;
}
copy( sh ) {
return this.set( sh.coefficients );
}
clone() {
return new this.constructor().copy( this );
}
fromArray( array, offset = 0 ) {
const coefficients = this.coefficients;
for ( let i = 0; i < 9; i ++ ) {
coefficients[ i ].fromArray( array, offset + ( i * 3 ) );
}
return this;
}
toArray( array = [], offset = 0 ) {
const coefficients = this.coefficients;
for ( let i = 0; i < 9; i ++ ) {
coefficients[ i ].toArray( array, offset + ( i * 3 ) );
}
return array;
}
// evaluate the basis functions
// shBasis is an Array[ 9 ]
static getBasisAt( normal, shBasis ) {
// normal is assumed to be unit length
const x = normal.x, y = normal.y, z = normal.z;
// band 0
shBasis[ 0 ] = 0.282095;
// band 1
shBasis[ 1 ] = 0.488603 * y;
shBasis[ 2 ] = 0.488603 * z;
shBasis[ 3 ] = 0.488603 * x;
// band 2
shBasis[ 4 ] = 1.092548 * x * y;
shBasis[ 5 ] = 1.092548 * y * z;
shBasis[ 6 ] = 0.315392 * ( 3 * z * z - 1 );
shBasis[ 7 ] = 1.092548 * x * z;
shBasis[ 8 ] = 0.546274 * ( x * x - y * y );
}
}
class LightProbe extends Light {
constructor( sh = new SphericalHarmonics3(), intensity = 1 ) {
super( undefined, intensity );
this.isLightProbe = true;
this.sh = sh;
}
copy( source ) {
super.copy( source );
this.sh.copy( source.sh );
return this;
}
fromJSON( json ) {
this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON();
this.sh.fromArray( json.sh );
return this;
}
toJSON( meta ) {
const data = super.toJSON( meta );
data.object.sh = this.sh.toArray();
return data;
}
}
class MaterialLoader extends Loader {
constructor( manager ) {
super( manager );
this.textures = {};
}
load( url, onLoad, onProgress, onError ) {
const scope = this;
const loader = new FileLoader( scope.manager );
loader.setPath( scope.path );
loader.setRequestHeader( scope.requestHeader );
loader.setWithCredentials( scope.withCredentials );
loader.load( url, function ( text ) {
try {
onLoad( scope.parse( JSON.parse( text ) ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
}
parse( json ) {
const textures = this.textures;
function getTexture( name ) {
if ( textures[ name ] === undefined ) {
console.warn( 'THREE.MaterialLoader: Undefined texture', name );
}
return textures[ name ];
}
const material = MaterialLoader.createMaterialFromType( json.type );
if ( json.uuid !== undefined ) material.uuid = json.uuid;
if ( json.name !== undefined ) material.name = json.name;
if ( json.color !== undefined && material.color !== undefined ) material.color.setHex( json.color );
if ( json.roughness !== undefined ) material.roughness = json.roughness;
if ( json.metalness !== undefined ) material.metalness = json.metalness;
if ( json.sheen !== undefined ) material.sheen = json.sheen;
if ( json.sheenColor !== undefined ) material.sheenColor = new Color().setHex( json.sheenColor );
if ( json.sheenRoughness !== undefined ) material.sheenRoughness = json.sheenRoughness;
if ( json.emissive !== undefined && material.emissive !== undefined ) material.emissive.setHex( json.emissive );
if ( json.specular !== undefined && material.specular !== undefined ) material.specular.setHex( json.specular );
if ( json.specularIntensity !== undefined ) material.specularIntensity = json.specularIntensity;
if ( json.specularColor !== undefined && material.specularColor !== undefined ) material.specularColor.setHex( json.specularColor );
if ( json.shininess !== undefined ) material.shininess = json.shininess;
if ( json.clearcoat !== undefined ) material.clearcoat = json.clearcoat;
if ( json.clearcoatRoughness !== undefined ) material.clearcoatRoughness = json.clearcoatRoughness;
if ( json.dispersion !== undefined ) material.dispersion = json.dispersion;
if ( json.iridescence !== undefined ) material.iridescence = json.iridescence;
if ( json.iridescenceIOR !== undefined ) material.iridescenceIOR = json.iridescenceIOR;
if ( json.iridescenceThicknessRange !== undefined ) material.iridescenceThicknessRange = json.iridescenceThicknessRange;
if ( json.transmission !== undefined ) material.transmission = json.transmission;
if ( json.thickness !== undefined ) material.thickness = json.thickness;
if ( json.attenuationDistance !== undefined ) material.attenuationDistance = json.attenuationDistance;
if ( json.attenuationColor !== undefined && material.attenuationColor !== undefined ) material.attenuationColor.setHex( json.attenuationColor );
if ( json.anisotropy !== undefined ) material.anisotropy = json.anisotropy;
if ( json.anisotropyRotation !== undefined ) material.anisotropyRotation = json.anisotropyRotation;
if ( json.fog !== undefined ) material.fog = json.fog;
if ( json.flatShading !== undefined ) material.flatShading = json.flatShading;
if ( json.blending !== undefined ) material.blending = json.blending;
if ( json.combine !== undefined ) material.combine = json.combine;
if ( json.side !== undefined ) material.side = json.side;
if ( json.shadowSide !== undefined ) material.shadowSide = json.shadowSide;
if ( json.opacity !== undefined ) material.opacity = json.opacity;
if ( json.transparent !== undefined ) material.transparent = json.transparent;
if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest;
if ( json.alphaHash !== undefined ) material.alphaHash = json.alphaHash;
if ( json.depthFunc !== undefined ) material.depthFunc = json.depthFunc;
if ( json.depthTest !== undefined ) material.depthTest = json.depthTest;
if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite;
if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite;
if ( json.blendSrc !== undefined ) material.blendSrc = json.blendSrc;
if ( json.blendDst !== undefined ) material.blendDst = json.blendDst;
if ( json.blendEquation !== undefined ) material.blendEquation = json.blendEquation;
if ( json.blendSrcAlpha !== undefined ) material.blendSrcAlpha = json.blendSrcAlpha;
if ( json.blendDstAlpha !== undefined ) material.blendDstAlpha = json.blendDstAlpha;
if ( json.blendEquationAlpha !== undefined ) material.blendEquationAlpha = json.blendEquationAlpha;
if ( json.blendColor !== undefined && material.blendColor !== undefined ) material.blendColor.setHex( json.blendColor );
if ( json.blendAlpha !== undefined ) material.blendAlpha = json.blendAlpha;
if ( json.stencilWriteMask !== undefined ) material.stencilWriteMask = json.stencilWriteMask;
if ( json.stencilFunc !== undefined ) material.stencilFunc = json.stencilFunc;
if ( json.stencilRef !== undefined ) material.stencilRef = json.stencilRef;
if ( json.stencilFuncMask !== undefined ) material.stencilFuncMask = json.stencilFuncMask;
if ( json.stencilFail !== undefined ) material.stencilFail = json.stencilFail;
if ( json.stencilZFail !== undefined ) material.stencilZFail = json.stencilZFail;
if ( json.stencilZPass !== undefined ) material.stencilZPass = json.stencilZPass;
if ( json.stencilWrite !== undefined ) material.stencilWrite = json.stencilWrite;
if ( json.wireframe !== undefined ) material.wireframe = json.wireframe;
if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth;
if ( json.wireframeLinecap !== undefined ) material.wireframeLinecap = json.wireframeLinecap;
if ( json.wireframeLinejoin !== undefined ) material.wireframeLinejoin = json.wireframeLinejoin;
if ( json.rotation !== undefined ) material.rotation = json.rotation;
if ( json.linewidth !== undefined ) material.linewidth = json.linewidth;
if ( json.dashSize !== undefined ) material.dashSize = json.dashSize;
if ( json.gapSize !== undefined ) material.gapSize = json.gapSize;
if ( json.scale !== undefined ) material.scale = json.scale;
if ( json.polygonOffset !== undefined ) material.polygonOffset = json.polygonOffset;
if ( json.polygonOffsetFactor !== undefined ) material.polygonOffsetFactor = json.polygonOffsetFactor;
if ( json.polygonOffsetUnits !== undefined ) material.polygonOffsetUnits = json.polygonOffsetUnits;
if ( json.dithering !== undefined ) material.dithering = json.dithering;
if ( json.alphaToCoverage !== undefined ) material.alphaToCoverage = json.alphaToCoverage;
if ( json.premultipliedAlpha !== undefined ) material.premultipliedAlpha = json.premultipliedAlpha;
if ( json.forceSinglePass !== undefined ) material.forceSinglePass = json.forceSinglePass;
if ( json.visible !== undefined ) material.visible = json.visible;
if ( json.toneMapped !== undefined ) material.toneMapped = json.toneMapped;
if ( json.userData !== undefined ) material.userData = json.userData;
if ( json.vertexColors !== undefined ) {
if ( typeof json.vertexColors === 'number' ) {
material.vertexColors = ( json.vertexColors > 0 ) ? true : false;
} else {
material.vertexColors = json.vertexColors;
}
}
// Shader Material
if ( json.uniforms !== undefined ) {
for ( const name in json.uniforms ) {
const uniform = json.uniforms[ name ];
material.uniforms[ name ] = {};
switch ( uniform.type ) {
case 't':
material.uniforms[ name ].value = getTexture( uniform.value );
break;
case 'c':
material.uniforms[ name ].value = new Color().setHex( uniform.value );
break;
case 'v2':
material.uniforms[ name ].value = new Vector2().fromArray( uniform.value );
break;
case 'v3':
material.uniforms[ name ].value = new Vector3().fromArray( uniform.value );
break;
case 'v4':
material.uniforms[ name ].value = new Vector4().fromArray( uniform.value );
break;
case 'm3':
material.uniforms[ name ].value = new Matrix3().fromArray( uniform.value );
break;
case 'm4':
material.uniforms[ name ].value = new Matrix4().fromArray( uniform.value );
break;
default:
material.uniforms[ name ].value = uniform.value;
}
}
}
if ( json.defines !== undefined ) material.defines = json.defines;
if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader;
if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader;
if ( json.glslVersion !== undefined ) material.glslVersion = json.glslVersion;
if ( json.extensions !== undefined ) {
for ( const key in json.extensions ) {
material.extensions[ key ] = json.extensions[ key ];
}
}
if ( json.lights !== undefined ) material.lights = json.lights;
if ( json.clipping !== undefined ) material.clipping = json.clipping;
// for PointsMaterial
if ( json.size !== undefined ) material.size = json.size;
if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation;
// maps
if ( json.map !== undefined ) material.map = getTexture( json.map );
if ( json.matcap !== undefined ) material.matcap = getTexture( json.matcap );
if ( json.alphaMap !== undefined ) material.alphaMap = getTexture( json.alphaMap );
if ( json.bumpMap !== undefined ) material.bumpMap = getTexture( json.bumpMap );
if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale;
if ( json.normalMap !== undefined ) material.normalMap = getTexture( json.normalMap );
if ( json.normalMapType !== undefined ) material.normalMapType = json.normalMapType;
if ( json.normalScale !== undefined ) {
let normalScale = json.normalScale;
if ( Array.isArray( normalScale ) === false ) {
// Blender exporter used to export a scalar. See #7459
normalScale = [ normalScale, normalScale ];
}
material.normalScale = new Vector2().fromArray( normalScale );
}
if ( json.displacementMap !== undefined ) material.displacementMap = getTexture( json.displacementMap );
if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale;
if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias;
if ( json.roughnessMap !== undefined ) material.roughnessMap = getTexture( json.roughnessMap );
if ( json.metalnessMap !== undefined ) material.metalnessMap = getTexture( json.metalnessMap );
if ( json.emissiveMap !== undefined ) material.emissiveMap = getTexture( json.emissiveMap );
if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity;
if ( json.specularMap !== undefined ) material.specularMap = getTexture( json.specularMap );
if ( json.specularIntensityMap !== undefined ) material.specularIntensityMap = getTexture( json.specularIntensityMap );
if ( json.specularColorMap !== undefined ) material.specularColorMap = getTexture( json.specularColorMap );
if ( json.envMap !== undefined ) material.envMap = getTexture( json.envMap );
if ( json.envMapRotation !== undefined ) material.envMapRotation.fromArray( json.envMapRotation );
if ( json.envMapIntensity !== undefined ) material.envMapIntensity = json.envMapIntensity;
if ( json.reflectivity !== undefined ) material.reflectivity = json.reflectivity;
if ( json.refractionRatio !== undefined ) material.refractionRatio = json.refractionRatio;
if ( json.lightMap !== undefined ) material.lightMap = getTexture( json.lightMap );
if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity;
if ( json.aoMap !== undefined ) material.aoMap = getTexture( json.aoMap );
if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity;
if ( json.gradientMap !== undefined ) material.gradientMap = getTexture( json.gradientMap );
if ( json.clearcoatMap !== undefined ) material.clearcoatMap = getTexture( json.clearcoatMap );
if ( json.clearcoatRoughnessMap !== undefined ) material.clearcoatRoughnessMap = getTexture( json.clearcoatRoughnessMap );
if ( json.clearcoatNormalMap !== undefined ) material.clearcoatNormalMap = getTexture( json.clearcoatNormalMap );
if ( json.clearcoatNormalScale !== undefined ) material.clearcoatNormalScale = new Vector2().fromArray( json.clearcoatNormalScale );
if ( json.iridescenceMap !== undefined ) material.iridescenceMap = getTexture( json.iridescenceMap );
if ( json.iridescenceThicknessMap !== undefined ) material.iridescenceThicknessMap = getTexture( json.iridescenceThicknessMap );
if ( json.transmissionMap !== undefined ) material.transmissionMap = getTexture( json.transmissionMap );
if ( json.thicknessMap !== undefined ) material.thicknessMap = getTexture( json.thicknessMap );
if ( json.anisotropyMap !== undefined ) material.anisotropyMap = getTexture( json.anisotropyMap );
if ( json.sheenColorMap !== undefined ) material.sheenColorMap = getTexture( json.sheenColorMap );
if ( json.sheenRoughnessMap !== undefined ) material.sheenRoughnessMap = getTexture( json.sheenRoughnessMap );
return material;
}
setTextures( value ) {
this.textures = value;
return this;
}
static createMaterialFromType( type ) {
const materialLib = {
ShadowMaterial,
SpriteMaterial,
RawShaderMaterial,
ShaderMaterial,
PointsMaterial,
MeshPhysicalMaterial,
MeshStandardMaterial,
MeshPhongMaterial,
MeshToonMaterial,
MeshNormalMaterial,
MeshLambertMaterial,
MeshDepthMaterial,
MeshDistanceMaterial,
MeshBasicMaterial,
MeshMatcapMaterial,
LineDashedMaterial,
LineBasicMaterial,
Material
};
return new materialLib[ type ]();
}
}
class LoaderUtils {
static decodeText( array ) { // @deprecated, r165
console.warn( 'THREE.LoaderUtils: decodeText() has been deprecated with r165 and will be removed with r175. Use TextDecoder instead.' );
if ( typeof TextDecoder !== 'undefined' ) {
return new TextDecoder().decode( array );
}
// Avoid the String.fromCharCode.apply(null, array) shortcut, which
// throws a "maximum call stack size exceeded" error for large arrays.
let s = '';
for ( let i = 0, il = array.length; i < il; i ++ ) {
// Implicitly assumes little-endian.
s += String.fromCharCode( array[ i ] );
}
try {
// merges multi-byte utf-8 characters.
return decodeURIComponent( escape( s ) );
} catch ( e ) { // see #16358
return s;
}
}
static extractUrlBase( url ) {
const index = url.lastIndexOf( '/' );
if ( index === - 1 ) return './';
return url.slice( 0, index + 1 );
}
static resolveURL( url, path ) {
// Invalid URL
if ( typeof url !== 'string' || url === '' ) return '';
// Host Relative URL
if ( /^https?:\/\//i.test( path ) && /^\//.test( url ) ) {
path = path.replace( /(^https?:\/\/[^\/]+).*/i, '$1' );
}
// Absolute URL http://,https://,//
if ( /^(https?:)?\/\//i.test( url ) ) return url;
// Data URI
if ( /^data:.*,.*$/i.test( url ) ) return url;
// Blob URL
if ( /^blob:.*$/i.test( url ) ) return url;
// Relative URL
return path + url;
}
}
class InstancedBufferGeometry extends BufferGeometry {
constructor() {
super();
this.isInstancedBufferGeometry = true;
this.type = 'InstancedBufferGeometry';
this.instanceCount = Infinity;
}
copy( source ) {
super.copy( source );
this.instanceCount = source.instanceCount;
return this;
}
toJSON() {
const data = super.toJSON();
data.instanceCount = this.instanceCount;
data.isInstancedBufferGeometry = true;
return data;
}
}
class BufferGeometryLoader extends Loader {
constructor( manager ) {
super( manager );
}
load( url, onLoad, onProgress, onError ) {
const scope = this;
const loader = new FileLoader( scope.manager );
loader.setPath( scope.path );
loader.setRequestHeader( scope.requestHeader );
loader.setWithCredentials( scope.withCredentials );
loader.load( url, function ( text ) {
try {
onLoad( scope.parse( JSON.parse( text ) ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
}
parse( json ) {
const interleavedBufferMap = {};
const arrayBufferMap = {};
function getInterleavedBuffer( json, uuid ) {
if ( interleavedBufferMap[ uuid ] !== undefined ) return interleavedBufferMap[ uuid ];
const interleavedBuffers = json.interleavedBuffers;
const interleavedBuffer = interleavedBuffers[ uuid ];
const buffer = getArrayBuffer( json, interleavedBuffer.buffer );
const array = getTypedArray( interleavedBuffer.type, buffer );
const ib = new InterleavedBuffer( array, interleavedBuffer.stride );
ib.uuid = interleavedBuffer.uuid;
interleavedBufferMap[ uuid ] = ib;
return ib;
}
function getArrayBuffer( json, uuid ) {
if ( arrayBufferMap[ uuid ] !== undefined ) return arrayBufferMap[ uuid ];
const arrayBuffers = json.arrayBuffers;
const arrayBuffer = arrayBuffers[ uuid ];
const ab = new Uint32Array( arrayBuffer ).buffer;
arrayBufferMap[ uuid ] = ab;
return ab;
}
const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry();
const index = json.data.index;
if ( index !== undefined ) {
const typedArray = getTypedArray( index.type, index.array );
geometry.setIndex( new BufferAttribute( typedArray, 1 ) );
}
const attributes = json.data.attributes;
for ( const key in attributes ) {
const attribute = attributes[ key ];
let bufferAttribute;
if ( attribute.isInterleavedBufferAttribute ) {
const interleavedBuffer = getInterleavedBuffer( json.data, attribute.data );
bufferAttribute = new InterleavedBufferAttribute( interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized );
} else {
const typedArray = getTypedArray( attribute.type, attribute.array );
const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute;
bufferAttribute = new bufferAttributeConstr( typedArray, attribute.itemSize, attribute.normalized );
}
if ( attribute.name !== undefined ) bufferAttribute.name = attribute.name;
if ( attribute.usage !== undefined ) bufferAttribute.setUsage( attribute.usage );
geometry.setAttribute( key, bufferAttribute );
}
const morphAttributes = json.data.morphAttributes;
if ( morphAttributes ) {
for ( const key in morphAttributes ) {
const attributeArray = morphAttributes[ key ];
const array = [];
for ( let i = 0, il = attributeArray.length; i < il; i ++ ) {
const attribute = attributeArray[ i ];
let bufferAttribute;
if ( attribute.isInterleavedBufferAttribute ) {
const interleavedBuffer = getInterleavedBuffer( json.data, attribute.data );
bufferAttribute = new InterleavedBufferAttribute( interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized );
} else {
const typedArray = getTypedArray( attribute.type, attribute.array );
bufferAttribute = new BufferAttribute( typedArray, attribute.itemSize, attribute.normalized );
}
if ( attribute.name !== undefined ) bufferAttribute.name = attribute.name;
array.push( bufferAttribute );
}
geometry.morphAttributes[ key ] = array;
}
}
const morphTargetsRelative = json.data.morphTargetsRelative;
if ( morphTargetsRelative ) {
geometry.morphTargetsRelative = true;
}
const groups = json.data.groups || json.data.drawcalls || json.data.offsets;
if ( groups !== undefined ) {
for ( let i = 0, n = groups.length; i !== n; ++ i ) {
const group = groups[ i ];
geometry.addGroup( group.start, group.count, group.materialIndex );
}
}
const boundingSphere = json.data.boundingSphere;
if ( boundingSphere !== undefined ) {
const center = new Vector3();
if ( boundingSphere.center !== undefined ) {
center.fromArray( boundingSphere.center );
}
geometry.boundingSphere = new Sphere( center, boundingSphere.radius );
}
if ( json.name ) geometry.name = json.name;
if ( json.userData ) geometry.userData = json.userData;
return geometry;
}
}
class ObjectLoader extends Loader {
constructor( manager ) {
super( manager );
}
load( url, onLoad, onProgress, onError ) {
const scope = this;
const path = ( this.path === '' ) ? LoaderUtils.extractUrlBase( url ) : this.path;
this.resourcePath = this.resourcePath || path;
const loader = new FileLoader( this.manager );
loader.setPath( this.path );
loader.setRequestHeader( this.requestHeader );
loader.setWithCredentials( this.withCredentials );
loader.load( url, function ( text ) {
let json = null;
try {
json = JSON.parse( text );
} catch ( error ) {
if ( onError !== undefined ) onError( error );
console.error( 'THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message );
return;
}
const metadata = json.metadata;
if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) {
if ( onError !== undefined ) onError( new Error( 'THREE.ObjectLoader: Can\'t load ' + url ) );
console.error( 'THREE.ObjectLoader: Can\'t load ' + url );
return;
}
scope.parse( json, onLoad );
}, onProgress, onError );
}
async loadAsync( url, onProgress ) {
const scope = this;
const path = ( this.path === '' ) ? LoaderUtils.extractUrlBase( url ) : this.path;
this.resourcePath = this.resourcePath || path;
const loader = new FileLoader( this.manager );
loader.setPath( this.path );
loader.setRequestHeader( this.requestHeader );
loader.setWithCredentials( this.withCredentials );
const text = await loader.loadAsync( url, onProgress );
const json = JSON.parse( text );
const metadata = json.metadata;
if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) {
throw new Error( 'THREE.ObjectLoader: Can\'t load ' + url );
}
return await scope.parseAsync( json );
}
parse( json, onLoad ) {
const animations = this.parseAnimations( json.animations );
const shapes = this.parseShapes( json.shapes );
const geometries = this.parseGeometries( json.geometries, shapes );
const images = this.parseImages( json.images, function () {
if ( onLoad !== undefined ) onLoad( object );
} );
const textures = this.parseTextures( json.textures, images );
const materials = this.parseMaterials( json.materials, textures );
const object = this.parseObject( json.object, geometries, materials, textures, animations );
const skeletons = this.parseSkeletons( json.skeletons, object );
this.bindSkeletons( object, skeletons );
this.bindLightTargets( object );
//
if ( onLoad !== undefined ) {
let hasImages = false;
for ( const uuid in images ) {
if ( images[ uuid ].data instanceof HTMLImageElement ) {
hasImages = true;
break;
}
}
if ( hasImages === false ) onLoad( object );
}
return object;
}
async parseAsync( json ) {
const animations = this.parseAnimations( json.animations );
const shapes = this.parseShapes( json.shapes );
const geometries = this.parseGeometries( json.geometries, shapes );
const images = await this.parseImagesAsync( json.images );
const textures = this.parseTextures( json.textures, images );
const materials = this.parseMaterials( json.materials, textures );
const object = this.parseObject( json.object, geometries, materials, textures, animations );
const skeletons = this.parseSkeletons( json.skeletons, object );
this.bindSkeletons( object, skeletons );
this.bindLightTargets( object );
return object;
}
parseShapes( json ) {
const shapes = {};
if ( json !== undefined ) {
for ( let i = 0, l = json.length; i < l; i ++ ) {
const shape = new Shape().fromJSON( json[ i ] );
shapes[ shape.uuid ] = shape;
}
}
return shapes;
}
parseSkeletons( json, object ) {
const skeletons = {};
const bones = {};
// generate bone lookup table
object.traverse( function ( child ) {
if ( child.isBone ) bones[ child.uuid ] = child;
} );
// create skeletons
if ( json !== undefined ) {
for ( let i = 0, l = json.length; i < l; i ++ ) {
const skeleton = new Skeleton().fromJSON( json[ i ], bones );
skeletons[ skeleton.uuid ] = skeleton;
}
}
return skeletons;
}
parseGeometries( json, shapes ) {
const geometries = {};
if ( json !== undefined ) {
const bufferGeometryLoader = new BufferGeometryLoader();
for ( let i = 0, l = json.length; i < l; i ++ ) {
let geometry;
const data = json[ i ];
switch ( data.type ) {
case 'BufferGeometry':
case 'InstancedBufferGeometry':
geometry = bufferGeometryLoader.parse( data );
break;
default:
if ( data.type in Geometries$1 ) {
geometry = Geometries$1[ data.type ].fromJSON( data, shapes );
} else {
console.warn( `THREE.ObjectLoader: Unsupported geometry type "${ data.type }"` );
}
}
geometry.uuid = data.uuid;
if ( data.name !== undefined ) geometry.name = data.name;
if ( data.userData !== undefined ) geometry.userData = data.userData;
geometries[ data.uuid ] = geometry;
}
}
return geometries;
}
parseMaterials( json, textures ) {
const cache = {}; // MultiMaterial
const materials = {};
if ( json !== undefined ) {
const loader = new MaterialLoader();
loader.setTextures( textures );
for ( let i = 0, l = json.length; i < l; i ++ ) {
const data = json[ i ];
if ( cache[ data.uuid ] === undefined ) {
cache[ data.uuid ] = loader.parse( data );
}
materials[ data.uuid ] = cache[ data.uuid ];
}
}
return materials;
}
parseAnimations( json ) {
const animations = {};
if ( json !== undefined ) {
for ( let i = 0; i < json.length; i ++ ) {
const data = json[ i ];
const clip = AnimationClip.parse( data );
animations[ clip.uuid ] = clip;
}
}
return animations;
}
parseImages( json, onLoad ) {
const scope = this;
const images = {};
let loader;
function loadImage( url ) {
scope.manager.itemStart( url );
return loader.load( url, function () {
scope.manager.itemEnd( url );
}, undefined, function () {
scope.manager.itemError( url );
scope.manager.itemEnd( url );
} );
}
function deserializeImage( image ) {
if ( typeof image === 'string' ) {
const url = image;
const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( url ) ? url : scope.resourcePath + url;
return loadImage( path );
} else {
if ( image.data ) {
return {
data: getTypedArray( image.type, image.data ),
width: image.width,
height: image.height
};
} else {
return null;
}
}
}
if ( json !== undefined && json.length > 0 ) {
const manager = new LoadingManager( onLoad );
loader = new ImageLoader( manager );
loader.setCrossOrigin( this.crossOrigin );
for ( let i = 0, il = json.length; i < il; i ++ ) {
const image = json[ i ];
const url = image.url;
if ( Array.isArray( url ) ) {
// load array of images e.g CubeTexture
const imageArray = [];
for ( let j = 0, jl = url.length; j < jl; j ++ ) {
const currentUrl = url[ j ];
const deserializedImage = deserializeImage( currentUrl );
if ( deserializedImage !== null ) {
if ( deserializedImage instanceof HTMLImageElement ) {
imageArray.push( deserializedImage );
} else {
// special case: handle array of data textures for cube textures
imageArray.push( new DataTexture( deserializedImage.data, deserializedImage.width, deserializedImage.height ) );
}
}
}
images[ image.uuid ] = new Source( imageArray );
} else {
// load single image
const deserializedImage = deserializeImage( image.url );
images[ image.uuid ] = new Source( deserializedImage );
}
}
}
return images;
}
async parseImagesAsync( json ) {
const scope = this;
const images = {};
let loader;
async function deserializeImage( image ) {
if ( typeof image === 'string' ) {
const url = image;
const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( url ) ? url : scope.resourcePath + url;
return await loader.loadAsync( path );
} else {
if ( image.data ) {
return {
data: getTypedArray( image.type, image.data ),
width: image.width,
height: image.height
};
} else {
return null;
}
}
}
if ( json !== undefined && json.length > 0 ) {
loader = new ImageLoader( this.manager );
loader.setCrossOrigin( this.crossOrigin );
for ( let i = 0, il = json.length; i < il; i ++ ) {
const image = json[ i ];
const url = image.url;
if ( Array.isArray( url ) ) {
// load array of images e.g CubeTexture
const imageArray = [];
for ( let j = 0, jl = url.length; j < jl; j ++ ) {
const currentUrl = url[ j ];
const deserializedImage = await deserializeImage( currentUrl );
if ( deserializedImage !== null ) {
if ( deserializedImage instanceof HTMLImageElement ) {
imageArray.push( deserializedImage );
} else {
// special case: handle array of data textures for cube textures
imageArray.push( new DataTexture( deserializedImage.data, deserializedImage.width, deserializedImage.height ) );
}
}
}
images[ image.uuid ] = new Source( imageArray );
} else {
// load single image
const deserializedImage = await deserializeImage( image.url );
images[ image.uuid ] = new Source( deserializedImage );
}
}
}
return images;
}
parseTextures( json, images ) {
function parseConstant( value, type ) {
if ( typeof value === 'number' ) return value;
console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value );
return type[ value ];
}
const textures = {};
if ( json !== undefined ) {
for ( let i = 0, l = json.length; i < l; i ++ ) {
const data = json[ i ];
if ( data.image === undefined ) {
console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid );
}
if ( images[ data.image ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined image', data.image );
}
const source = images[ data.image ];
const image = source.data;
let texture;
if ( Array.isArray( image ) ) {
texture = new CubeTexture();
if ( image.length === 6 ) texture.needsUpdate = true;
} else {
if ( image && image.data ) {
texture = new DataTexture();
} else {
texture = new Texture();
}
if ( image ) texture.needsUpdate = true; // textures can have undefined image data
}
texture.source = source;
texture.uuid = data.uuid;
if ( data.name !== undefined ) texture.name = data.name;
if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping, TEXTURE_MAPPING );
if ( data.channel !== undefined ) texture.channel = data.channel;
if ( data.offset !== undefined ) texture.offset.fromArray( data.offset );
if ( data.repeat !== undefined ) texture.repeat.fromArray( data.repeat );
if ( data.center !== undefined ) texture.center.fromArray( data.center );
if ( data.rotation !== undefined ) texture.rotation = data.rotation;
if ( data.wrap !== undefined ) {
texture.wrapS = parseConstant( data.wrap[ 0 ], TEXTURE_WRAPPING );
texture.wrapT = parseConstant( data.wrap[ 1 ], TEXTURE_WRAPPING );
}
if ( data.format !== undefined ) texture.format = data.format;
if ( data.internalFormat !== undefined ) texture.internalFormat = data.internalFormat;
if ( data.type !== undefined ) texture.type = data.type;
if ( data.colorSpace !== undefined ) texture.colorSpace = data.colorSpace;
if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter, TEXTURE_FILTER );
if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter, TEXTURE_FILTER );
if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy;
if ( data.flipY !== undefined ) texture.flipY = data.flipY;
if ( data.generateMipmaps !== undefined ) texture.generateMipmaps = data.generateMipmaps;
if ( data.premultiplyAlpha !== undefined ) texture.premultiplyAlpha = data.premultiplyAlpha;
if ( data.unpackAlignment !== undefined ) texture.unpackAlignment = data.unpackAlignment;
if ( data.compareFunction !== undefined ) texture.compareFunction = data.compareFunction;
if ( data.userData !== undefined ) texture.userData = data.userData;
textures[ data.uuid ] = texture;
}
}
return textures;
}
parseObject( data, geometries, materials, textures, animations ) {
let object;
function getGeometry( name ) {
if ( geometries[ name ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined geometry', name );
}
return geometries[ name ];
}
function getMaterial( name ) {
if ( name === undefined ) return undefined;
if ( Array.isArray( name ) ) {
const array = [];
for ( let i = 0, l = name.length; i < l; i ++ ) {
const uuid = name[ i ];
if ( materials[ uuid ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined material', uuid );
}
array.push( materials[ uuid ] );
}
return array;
}
if ( materials[ name ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined material', name );
}
return materials[ name ];
}
function getTexture( uuid ) {
if ( textures[ uuid ] === undefined ) {
console.warn( 'THREE.ObjectLoader: Undefined texture', uuid );
}
return textures[ uuid ];
}
let geometry, material;
switch ( data.type ) {
case 'Scene':
object = new Scene();
if ( data.background !== undefined ) {
if ( Number.isInteger( data.background ) ) {
object.background = new Color( data.background );
} else {
object.background = getTexture( data.background );
}
}
if ( data.environment !== undefined ) {
object.environment = getTexture( data.environment );
}
if ( data.fog !== undefined ) {
if ( data.fog.type === 'Fog' ) {
object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far );
} else if ( data.fog.type === 'FogExp2' ) {
object.fog = new FogExp2( data.fog.color, data.fog.density );
}
if ( data.fog.name !== '' ) {
object.fog.name = data.fog.name;
}
}
if ( data.backgroundBlurriness !== undefined ) object.backgroundBlurriness = data.backgroundBlurriness;
if ( data.backgroundIntensity !== undefined ) object.backgroundIntensity = data.backgroundIntensity;
if ( data.backgroundRotation !== undefined ) object.backgroundRotation.fromArray( data.backgroundRotation );
if ( data.environmentIntensity !== undefined ) object.environmentIntensity = data.environmentIntensity;
if ( data.environmentRotation !== undefined ) object.environmentRotation.fromArray( data.environmentRotation );
break;
case 'PerspectiveCamera':
object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far );
if ( data.focus !== undefined ) object.focus = data.focus;
if ( data.zoom !== undefined ) object.zoom = data.zoom;
if ( data.filmGauge !== undefined ) object.filmGauge = data.filmGauge;
if ( data.filmOffset !== undefined ) object.filmOffset = data.filmOffset;
if ( data.view !== undefined ) object.view = Object.assign( {}, data.view );
break;
case 'OrthographicCamera':
object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far );
if ( data.zoom !== undefined ) object.zoom = data.zoom;
if ( data.view !== undefined ) object.view = Object.assign( {}, data.view );
break;
case 'AmbientLight':
object = new AmbientLight( data.color, data.intensity );
break;
case 'DirectionalLight':
object = new DirectionalLight( data.color, data.intensity );
object.target = data.target || '';
break;
case 'PointLight':
object = new PointLight( data.color, data.intensity, data.distance, data.decay );
break;
case 'RectAreaLight':
object = new RectAreaLight( data.color, data.intensity, data.width, data.height );
break;
case 'SpotLight':
object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay );
object.target = data.target || '';
break;
case 'HemisphereLight':
object = new HemisphereLight( data.color, data.groundColor, data.intensity );
break;
case 'LightProbe':
object = new LightProbe().fromJSON( data );
break;
case 'SkinnedMesh':
geometry = getGeometry( data.geometry );
material = getMaterial( data.material );
object = new SkinnedMesh( geometry, material );
if ( data.bindMode !== undefined ) object.bindMode = data.bindMode;
if ( data.bindMatrix !== undefined ) object.bindMatrix.fromArray( data.bindMatrix );
if ( data.skeleton !== undefined ) object.skeleton = data.skeleton;
break;
case 'Mesh':
geometry = getGeometry( data.geometry );
material = getMaterial( data.material );
object = new Mesh( geometry, material );
break;
case 'InstancedMesh':
geometry = getGeometry( data.geometry );
material = getMaterial( data.material );
const count = data.count;
const instanceMatrix = data.instanceMatrix;
const instanceColor = data.instanceColor;
object = new InstancedMesh( geometry, material, count );
object.instanceMatrix = new InstancedBufferAttribute( new Float32Array( instanceMatrix.array ), 16 );
if ( instanceColor !== undefined ) object.instanceColor = new InstancedBufferAttribute( new Float32Array( instanceColor.array ), instanceColor.itemSize );
break;
case 'BatchedMesh':
geometry = getGeometry( data.geometry );
material = getMaterial( data.material );
object = new BatchedMesh( data.maxInstanceCount, data.maxVertexCount, data.maxIndexCount, material );
object.geometry = geometry;
object.perObjectFrustumCulled = data.perObjectFrustumCulled;
object.sortObjects = data.sortObjects;
object._drawRanges = data.drawRanges;
object._reservedRanges = data.reservedRanges;
object._visibility = data.visibility;
object._active = data.active;
object._bounds = data.bounds.map( bound => {
const box = new Box3();
box.min.fromArray( bound.boxMin );
box.max.fromArray( bound.boxMax );
const sphere = new Sphere();
sphere.radius = bound.sphereRadius;
sphere.center.fromArray( bound.sphereCenter );
return {
boxInitialized: bound.boxInitialized,
box: box,
sphereInitialized: bound.sphereInitialized,
sphere: sphere
};
} );
object._maxInstanceCount = data.maxInstanceCount;
object._maxVertexCount = data.maxVertexCount;
object._maxIndexCount = data.maxIndexCount;
object._geometryInitialized = data.geometryInitialized;
object._geometryCount = data.geometryCount;
object._matricesTexture = getTexture( data.matricesTexture.uuid );
if ( data.colorsTexture !== undefined ) object._colorsTexture = getTexture( data.colorsTexture.uuid );
break;
case 'LOD':
object = new LOD();
break;
case 'Line':
object = new Line( getGeometry( data.geometry ), getMaterial( data.material ) );
break;
case 'LineLoop':
object = new LineLoop( getGeometry( data.geometry ), getMaterial( data.material ) );
break;
case 'LineSegments':
object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) );
break;
case 'PointCloud':
case 'Points':
object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) );
break;
case 'Sprite':
object = new Sprite( getMaterial( data.material ) );
break;
case 'Group':
object = new Group();
break;
case 'Bone':
object = new Bone();
break;
default:
object = new Object3D();
}
object.uuid = data.uuid;
if ( data.name !== undefined ) object.name = data.name;
if ( data.matrix !== undefined ) {
object.matrix.fromArray( data.matrix );
if ( data.matrixAutoUpdate !== undefined ) object.matrixAutoUpdate = data.matrixAutoUpdate;
if ( object.matrixAutoUpdate ) object.matrix.decompose( object.position, object.quaternion, object.scale );
} else {
if ( data.position !== undefined ) object.position.fromArray( data.position );
if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation );
if ( data.quaternion !== undefined ) object.quaternion.fromArray( data.quaternion );
if ( data.scale !== undefined ) object.scale.fromArray( data.scale );
}
if ( data.up !== undefined ) object.up.fromArray( data.up );
if ( data.castShadow !== undefined ) object.castShadow = data.castShadow;
if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow;
if ( data.shadow ) {
if ( data.shadow.intensity !== undefined ) object.shadow.intensity = data.shadow.intensity;
if ( data.shadow.bias !== undefined ) object.shadow.bias = data.shadow.bias;
if ( data.shadow.normalBias !== undefined ) object.shadow.normalBias = data.shadow.normalBias;
if ( data.shadow.radius !== undefined ) object.shadow.radius = data.shadow.radius;
if ( data.shadow.mapSize !== undefined ) object.shadow.mapSize.fromArray( data.shadow.mapSize );
if ( data.shadow.camera !== undefined ) object.shadow.camera = this.parseObject( data.shadow.camera );
}
if ( data.visible !== undefined ) object.visible = data.visible;
if ( data.frustumCulled !== undefined ) object.frustumCulled = data.frustumCulled;
if ( data.renderOrder !== undefined ) object.renderOrder = data.renderOrder;
if ( data.userData !== undefined ) object.userData = data.userData;
if ( data.layers !== undefined ) object.layers.mask = data.layers;
if ( data.children !== undefined ) {
const children = data.children;
for ( let i = 0; i < children.length; i ++ ) {
object.add( this.parseObject( children[ i ], geometries, materials, textures, animations ) );
}
}
if ( data.animations !== undefined ) {
const objectAnimations = data.animations;
for ( let i = 0; i < objectAnimations.length; i ++ ) {
const uuid = objectAnimations[ i ];
object.animations.push( animations[ uuid ] );
}
}
if ( data.type === 'LOD' ) {
if ( data.autoUpdate !== undefined ) object.autoUpdate = data.autoUpdate;
const levels = data.levels;
for ( let l = 0; l < levels.length; l ++ ) {
const level = levels[ l ];
const child = object.getObjectByProperty( 'uuid', level.object );
if ( child !== undefined ) {
object.addLevel( child, level.distance, level.hysteresis );
}
}
}
return object;
}
bindSkeletons( object, skeletons ) {
if ( Object.keys( skeletons ).length === 0 ) return;
object.traverse( function ( child ) {
if ( child.isSkinnedMesh === true && child.skeleton !== undefined ) {
const skeleton = skeletons[ child.skeleton ];
if ( skeleton === undefined ) {
console.warn( 'THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton );
} else {
child.bind( skeleton, child.bindMatrix );
}
}
} );
}
bindLightTargets( object ) {
object.traverse( function ( child ) {
if ( child.isDirectionalLight || child.isSpotLight ) {
const uuid = child.target;
const target = object.getObjectByProperty( 'uuid', uuid );
if ( target !== undefined ) {
child.target = target;
} else {
child.target = new Object3D();
}
}
} );
}
}
const TEXTURE_MAPPING = {
UVMapping: UVMapping,
CubeReflectionMapping: CubeReflectionMapping,
CubeRefractionMapping: CubeRefractionMapping,
EquirectangularReflectionMapping: EquirectangularReflectionMapping,
EquirectangularRefractionMapping: EquirectangularRefractionMapping,
CubeUVReflectionMapping: CubeUVReflectionMapping
};
const TEXTURE_WRAPPING = {
RepeatWrapping: RepeatWrapping,
ClampToEdgeWrapping: ClampToEdgeWrapping,
MirroredRepeatWrapping: MirroredRepeatWrapping
};
const TEXTURE_FILTER = {
NearestFilter: NearestFilter,
NearestMipmapNearestFilter: NearestMipmapNearestFilter,
NearestMipmapLinearFilter: NearestMipmapLinearFilter,
LinearFilter: LinearFilter,
LinearMipmapNearestFilter: LinearMipmapNearestFilter,
LinearMipmapLinearFilter: LinearMipmapLinearFilter
};
class ImageBitmapLoader extends Loader {
constructor( manager ) {
super( manager );
this.isImageBitmapLoader = true;
if ( typeof createImageBitmap === 'undefined' ) {
console.warn( 'THREE.ImageBitmapLoader: createImageBitmap() not supported.' );
}
if ( typeof fetch === 'undefined' ) {
console.warn( 'THREE.ImageBitmapLoader: fetch() not supported.' );
}
this.options = { premultiplyAlpha: 'none' };
}
setOptions( options ) {
this.options = options;
return this;
}
load( url, onLoad, onProgress, onError ) {
if ( url === undefined ) url = '';
if ( this.path !== undefined ) url = this.path + url;
url = this.manager.resolveURL( url );
const scope = this;
const cached = Cache.get( url );
if ( cached !== undefined ) {
scope.manager.itemStart( url );
// If cached is a promise, wait for it to resolve
if ( cached.then ) {
cached.then( imageBitmap => {
if ( onLoad ) onLoad( imageBitmap );
scope.manager.itemEnd( url );
} ).catch( e => {
if ( onError ) onError( e );
} );
return;
}
// If cached is not a promise (i.e., it's already an imageBitmap)
setTimeout( function () {
if ( onLoad ) onLoad( cached );
scope.manager.itemEnd( url );
}, 0 );
return cached;
}
const fetchOptions = {};
fetchOptions.credentials = ( this.crossOrigin === 'anonymous' ) ? 'same-origin' : 'include';
fetchOptions.headers = this.requestHeader;
const promise = fetch( url, fetchOptions ).then( function ( res ) {
return res.blob();
} ).then( function ( blob ) {
return createImageBitmap( blob, Object.assign( scope.options, { colorSpaceConversion: 'none' } ) );
} ).then( function ( imageBitmap ) {
Cache.add( url, imageBitmap );
if ( onLoad ) onLoad( imageBitmap );
scope.manager.itemEnd( url );
return imageBitmap;
} ).catch( function ( e ) {
if ( onError ) onError( e );
Cache.remove( url );
scope.manager.itemError( url );
scope.manager.itemEnd( url );
} );
Cache.add( url, promise );
scope.manager.itemStart( url );
}
}
let _context;
class AudioContext {
static getContext() {
if ( _context === undefined ) {
_context = new ( window.AudioContext || window.webkitAudioContext )();
}
return _context;
}
static setContext( value ) {
_context = value;
}
}
class AudioLoader extends Loader {
constructor( manager ) {
super( manager );
}
load( url, onLoad, onProgress, onError ) {
const scope = this;
const loader = new FileLoader( this.manager );
loader.setResponseType( 'arraybuffer' );
loader.setPath( this.path );
loader.setRequestHeader( this.requestHeader );
loader.setWithCredentials( this.withCredentials );
loader.load( url, function ( buffer ) {
try {
// Create a copy of the buffer. The `decodeAudioData` method
// detaches the buffer when complete, preventing reuse.
const bufferCopy = buffer.slice( 0 );
const context = AudioContext.getContext();
context.decodeAudioData( bufferCopy, function ( audioBuffer ) {
onLoad( audioBuffer );
} ).catch( handleError );
} catch ( e ) {
handleError( e );
}
}, onProgress, onError );
function handleError( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}
}
const _eyeRight = /*@__PURE__*/ new Matrix4();
const _eyeLeft = /*@__PURE__*/ new Matrix4();
const _projectionMatrix = /*@__PURE__*/ new Matrix4();
class StereoCamera {
constructor() {
this.type = 'StereoCamera';
this.aspect = 1;
this.eyeSep = 0.064;
this.cameraL = new PerspectiveCamera();
this.cameraL.layers.enable( 1 );
this.cameraL.matrixAutoUpdate = false;
this.cameraR = new PerspectiveCamera();
this.cameraR.layers.enable( 2 );
this.cameraR.matrixAutoUpdate = false;
this._cache = {
focus: null,
fov: null,
aspect: null,
near: null,
far: null,
zoom: null,
eyeSep: null
};
}
update( camera ) {
const cache = this._cache;
const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov ||
cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near ||
cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep;
if ( needsUpdate ) {
cache.focus = camera.focus;
cache.fov = camera.fov;
cache.aspect = camera.aspect * this.aspect;
cache.near = camera.near;
cache.far = camera.far;
cache.zoom = camera.zoom;
cache.eyeSep = this.eyeSep;
// Off-axis stereoscopic effect based on
// http://paulbourke.net/stereographics/stereorender/
_projectionMatrix.copy( camera.projectionMatrix );
const eyeSepHalf = cache.eyeSep / 2;
const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus;
const ymax = ( cache.near * Math.tan( DEG2RAD * cache.fov * 0.5 ) ) / cache.zoom;
let xmin, xmax;
// translate xOffset
_eyeLeft.elements[ 12 ] = - eyeSepHalf;
_eyeRight.elements[ 12 ] = eyeSepHalf;
// for left eye
xmin = - ymax * cache.aspect + eyeSepOnProjection;
xmax = ymax * cache.aspect + eyeSepOnProjection;
_projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin );
_projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );
this.cameraL.projectionMatrix.copy( _projectionMatrix );
// for right eye
xmin = - ymax * cache.aspect - eyeSepOnProjection;
xmax = ymax * cache.aspect - eyeSepOnProjection;
_projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin );
_projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );
this.cameraR.projectionMatrix.copy( _projectionMatrix );
}
this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeLeft );
this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeRight );
}
}
class ArrayCamera extends PerspectiveCamera {
constructor( array = [] ) {
super();
this.isArrayCamera = true;
this.cameras = array;
}
}
class Clock {
constructor( autoStart = true ) {
this.autoStart = autoStart;
this.startTime = 0;
this.oldTime = 0;
this.elapsedTime = 0;
this.running = false;
}
start() {
this.startTime = now();
this.oldTime = this.startTime;
this.elapsedTime = 0;
this.running = true;
}
stop() {
this.getElapsedTime();
this.running = false;
this.autoStart = false;
}
getElapsedTime() {
this.getDelta();
return this.elapsedTime;
}
getDelta() {
let diff = 0;
if ( this.autoStart && ! this.running ) {
this.start();
return 0;
}
if ( this.running ) {
const newTime = now();
diff = ( newTime - this.oldTime ) / 1000;
this.oldTime = newTime;
this.elapsedTime += diff;
}
return diff;
}
}
function now() {
return ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732
}
const _position$1 = /*@__PURE__*/ new Vector3();
const _quaternion$1 = /*@__PURE__*/ new Quaternion();
const _scale$1 = /*@__PURE__*/ new Vector3();
const _orientation$1 = /*@__PURE__*/ new Vector3();
class AudioListener extends Object3D {
constructor() {
super();
this.type = 'AudioListener';
this.context = AudioContext.getContext();
this.gain = this.context.createGain();
this.gain.connect( this.context.destination );
this.filter = null;
this.timeDelta = 0;
// private
this._clock = new Clock();
}
getInput() {
return this.gain;
}
removeFilter() {
if ( this.filter !== null ) {
this.gain.disconnect( this.filter );
this.filter.disconnect( this.context.destination );
this.gain.connect( this.context.destination );
this.filter = null;
}
return this;
}
getFilter() {
return this.filter;
}
setFilter( value ) {
if ( this.filter !== null ) {
this.gain.disconnect( this.filter );
this.filter.disconnect( this.context.destination );
} else {
this.gain.disconnect( this.context.destination );
}
this.filter = value;
this.gain.connect( this.filter );
this.filter.connect( this.context.destination );
return this;
}
getMasterVolume() {
return this.gain.gain.value;
}
setMasterVolume( value ) {
this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 );
return this;
}
updateMatrixWorld( force ) {
super.updateMatrixWorld( force );
const listener = this.context.listener;
const up = this.up;
this.timeDelta = this._clock.getDelta();
this.matrixWorld.decompose( _position$1, _quaternion$1, _scale$1 );
_orientation$1.set( 0, 0, - 1 ).applyQuaternion( _quaternion$1 );
if ( listener.positionX ) {
// code path for Chrome (see #14393)
const endTime = this.context.currentTime + this.timeDelta;
listener.positionX.linearRampToValueAtTime( _position$1.x, endTime );
listener.positionY.linearRampToValueAtTime( _position$1.y, endTime );
listener.positionZ.linearRampToValueAtTime( _position$1.z, endTime );
listener.forwardX.linearRampToValueAtTime( _orientation$1.x, endTime );
listener.forwardY.linearRampToValueAtTime( _orientation$1.y, endTime );
listener.forwardZ.linearRampToValueAtTime( _orientation$1.z, endTime );
listener.upX.linearRampToValueAtTime( up.x, endTime );
listener.upY.linearRampToValueAtTime( up.y, endTime );
listener.upZ.linearRampToValueAtTime( up.z, endTime );
} else {
listener.setPosition( _position$1.x, _position$1.y, _position$1.z );
listener.setOrientation( _orientation$1.x, _orientation$1.y, _orientation$1.z, up.x, up.y, up.z );
}
}
}
class Audio extends Object3D {
constructor( listener ) {
super();
this.type = 'Audio';
this.listener = listener;
this.context = listener.context;
this.gain = this.context.createGain();
this.gain.connect( listener.getInput() );
this.autoplay = false;
this.buffer = null;
this.detune = 0;
this.loop = false;
this.loopStart = 0;
this.loopEnd = 0;
this.offset = 0;
this.duration = undefined;
this.playbackRate = 1;
this.isPlaying = false;
this.hasPlaybackControl = true;
this.source = null;
this.sourceType = 'empty';
this._startedAt = 0;
this._progress = 0;
this._connected = false;
this.filters = [];
}
getOutput() {
return this.gain;
}
setNodeSource( audioNode ) {
this.hasPlaybackControl = false;
this.sourceType = 'audioNode';
this.source = audioNode;
this.connect();
return this;
}
setMediaElementSource( mediaElement ) {
this.hasPlaybackControl = false;
this.sourceType = 'mediaNode';
this.source = this.context.createMediaElementSource( mediaElement );
this.connect();
return this;
}
setMediaStreamSource( mediaStream ) {
this.hasPlaybackControl = false;
this.sourceType = 'mediaStreamNode';
this.source = this.context.createMediaStreamSource( mediaStream );
this.connect();
return this;
}
setBuffer( audioBuffer ) {
this.buffer = audioBuffer;
this.sourceType = 'buffer';
if ( this.autoplay ) this.play();
return this;
}
play( delay = 0 ) {
if ( this.isPlaying === true ) {
console.warn( 'THREE.Audio: Audio is already playing.' );
return;
}
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this._startedAt = this.context.currentTime + delay;
const source = this.context.createBufferSource();
source.buffer = this.buffer;
source.loop = this.loop;
source.loopStart = this.loopStart;
source.loopEnd = this.loopEnd;
source.onended = this.onEnded.bind( this );
source.start( this._startedAt, this._progress + this.offset, this.duration );
this.isPlaying = true;
this.source = source;
this.setDetune( this.detune );
this.setPlaybackRate( this.playbackRate );
return this.connect();
}
pause() {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
if ( this.isPlaying === true ) {
// update current progress
this._progress += Math.max( this.context.currentTime - this._startedAt, 0 ) * this.playbackRate;
if ( this.loop === true ) {
// ensure _progress does not exceed duration with looped audios
this._progress = this._progress % ( this.duration || this.buffer.duration );
}
this.source.stop();
this.source.onended = null;
this.isPlaying = false;
}
return this;
}
stop() {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this._progress = 0;
if ( this.source !== null ) {
this.source.stop();
this.source.onended = null;
}
this.isPlaying = false;
return this;
}
connect() {
if ( this.filters.length > 0 ) {
this.source.connect( this.filters[ 0 ] );
for ( let i = 1, l = this.filters.length; i < l; i ++ ) {
this.filters[ i - 1 ].connect( this.filters[ i ] );
}
this.filters[ this.filters.length - 1 ].connect( this.getOutput() );
} else {
this.source.connect( this.getOutput() );
}
this._connected = true;
return this;
}
disconnect() {
if ( this._connected === false ) {
return;
}
if ( this.filters.length > 0 ) {
this.source.disconnect( this.filters[ 0 ] );
for ( let i = 1, l = this.filters.length; i < l; i ++ ) {
this.filters[ i - 1 ].disconnect( this.filters[ i ] );
}
this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() );
} else {
this.source.disconnect( this.getOutput() );
}
this._connected = false;
return this;
}
getFilters() {
return this.filters;
}
setFilters( value ) {
if ( ! value ) value = [];
if ( this._connected === true ) {
this.disconnect();
this.filters = value.slice();
this.connect();
} else {
this.filters = value.slice();
}
return this;
}
setDetune( value ) {
this.detune = value;
if ( this.isPlaying === true && this.source.detune !== undefined ) {
this.source.detune.setTargetAtTime( this.detune, this.context.currentTime, 0.01 );
}
return this;
}
getDetune() {
return this.detune;
}
getFilter() {
return this.getFilters()[ 0 ];
}
setFilter( filter ) {
return this.setFilters( filter ? [ filter ] : [] );
}
setPlaybackRate( value ) {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this.playbackRate = value;
if ( this.isPlaying === true ) {
this.source.playbackRate.setTargetAtTime( this.playbackRate, this.context.currentTime, 0.01 );
}
return this;
}
getPlaybackRate() {
return this.playbackRate;
}
onEnded() {
this.isPlaying = false;
}
getLoop() {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return false;
}
return this.loop;
}
setLoop( value ) {
if ( this.hasPlaybackControl === false ) {
console.warn( 'THREE.Audio: this Audio has no playback control.' );
return;
}
this.loop = value;
if ( this.isPlaying === true ) {
this.source.loop = this.loop;
}
return this;
}
setLoopStart( value ) {
this.loopStart = value;
return this;
}
setLoopEnd( value ) {
this.loopEnd = value;
return this;
}
getVolume() {
return this.gain.gain.value;
}
setVolume( value ) {
this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 );
return this;
}
}
const _position = /*@__PURE__*/ new Vector3();
const _quaternion = /*@__PURE__*/ new Quaternion();
const _scale = /*@__PURE__*/ new Vector3();
const _orientation = /*@__PURE__*/ new Vector3();
class PositionalAudio extends Audio {
constructor( listener ) {
super( listener );
this.panner = this.context.createPanner();
this.panner.panningModel = 'HRTF';
this.panner.connect( this.gain );
}
connect() {
super.connect();
this.panner.connect( this.gain );
}
disconnect() {
super.disconnect();
this.panner.disconnect( this.gain );
}
getOutput() {
return this.panner;
}
getRefDistance() {
return this.panner.refDistance;
}
setRefDistance( value ) {
this.panner.refDistance = value;
return this;
}
getRolloffFactor() {
return this.panner.rolloffFactor;
}
setRolloffFactor( value ) {
this.panner.rolloffFactor = value;
return this;
}
getDistanceModel() {
return this.panner.distanceModel;
}
setDistanceModel( value ) {
this.panner.distanceModel = value;
return this;
}
getMaxDistance() {
return this.panner.maxDistance;
}
setMaxDistance( value ) {
this.panner.maxDistance = value;
return this;
}
setDirectionalCone( coneInnerAngle, coneOuterAngle, coneOuterGain ) {
this.panner.coneInnerAngle = coneInnerAngle;
this.panner.coneOuterAngle = coneOuterAngle;
this.panner.coneOuterGain = coneOuterGain;
return this;
}
updateMatrixWorld( force ) {
super.updateMatrixWorld( force );
if ( this.hasPlaybackControl === true && this.isPlaying === false ) return;
this.matrixWorld.decompose( _position, _quaternion, _scale );
_orientation.set( 0, 0, 1 ).applyQuaternion( _quaternion );
const panner = this.panner;
if ( panner.positionX ) {
// code path for Chrome and Firefox (see #14393)
const endTime = this.context.currentTime + this.listener.timeDelta;
panner.positionX.linearRampToValueAtTime( _position.x, endTime );
panner.positionY.linearRampToValueAtTime( _position.y, endTime );
panner.positionZ.linearRampToValueAtTime( _position.z, endTime );
panner.orientationX.linearRampToValueAtTime( _orientation.x, endTime );
panner.orientationY.linearRampToValueAtTime( _orientation.y, endTime );
panner.orientationZ.linearRampToValueAtTime( _orientation.z, endTime );
} else {
panner.setPosition( _position.x, _position.y, _position.z );
panner.setOrientation( _orientation.x, _orientation.y, _orientation.z );
}
}
}
class AudioAnalyser {
constructor( audio, fftSize = 2048 ) {
this.analyser = audio.context.createAnalyser();
this.analyser.fftSize = fftSize;
this.data = new Uint8Array( this.analyser.frequencyBinCount );
audio.getOutput().connect( this.analyser );
}
getFrequencyData() {
this.analyser.getByteFrequencyData( this.data );
return this.data;
}
getAverageFrequency() {
let value = 0;
const data = this.getFrequencyData();
for ( let i = 0; i < data.length; i ++ ) {
value += data[ i ];
}
return value / data.length;
}
}
class PropertyMixer {
constructor( binding, typeName, valueSize ) {
this.binding = binding;
this.valueSize = valueSize;
let mixFunction,
mixFunctionAdditive,
setIdentity;
// buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ]
//
// interpolators can use .buffer as their .result
// the data then goes to 'incoming'
//
// 'accu0' and 'accu1' are used frame-interleaved for
// the cumulative result and are compared to detect
// changes
//
// 'orig' stores the original state of the property
//
// 'add' is used for additive cumulative results
//
// 'work' is optional and is only present for quaternion types. It is used
// to store intermediate quaternion multiplication results
switch ( typeName ) {
case 'quaternion':
mixFunction = this._slerp;
mixFunctionAdditive = this._slerpAdditive;
setIdentity = this._setAdditiveIdentityQuaternion;
this.buffer = new Float64Array( valueSize * 6 );
this._workIndex = 5;
break;
case 'string':
case 'bool':
mixFunction = this._select;
// Use the regular mix function and for additive on these types,
// additive is not relevant for non-numeric types
mixFunctionAdditive = this._select;
setIdentity = this._setAdditiveIdentityOther;
this.buffer = new Array( valueSize * 5 );
break;
default:
mixFunction = this._lerp;
mixFunctionAdditive = this._lerpAdditive;
setIdentity = this._setAdditiveIdentityNumeric;
this.buffer = new Float64Array( valueSize * 5 );
}
this._mixBufferRegion = mixFunction;
this._mixBufferRegionAdditive = mixFunctionAdditive;
this._setIdentity = setIdentity;
this._origIndex = 3;
this._addIndex = 4;
this.cumulativeWeight = 0;
this.cumulativeWeightAdditive = 0;
this.useCount = 0;
this.referenceCount = 0;
}
// accumulate data in the 'incoming' region into 'accu<i>'
accumulate( accuIndex, weight ) {
// note: happily accumulating nothing when weight = 0, the caller knows
// the weight and shouldn't have made the call in the first place
const buffer = this.buffer,
stride = this.valueSize,
offset = accuIndex * stride + stride;
let currentWeight = this.cumulativeWeight;
if ( currentWeight === 0 ) {
// accuN := incoming * weight
for ( let i = 0; i !== stride; ++ i ) {
buffer[ offset + i ] = buffer[ i ];
}
currentWeight = weight;
} else {
// accuN := accuN + incoming * weight
currentWeight += weight;
const mix = weight / currentWeight;
this._mixBufferRegion( buffer, offset, 0, mix, stride );
}
this.cumulativeWeight = currentWeight;
}
// accumulate data in the 'incoming' region into 'add'
accumulateAdditive( weight ) {
const buffer = this.buffer,
stride = this.valueSize,
offset = stride * this._addIndex;
if ( this.cumulativeWeightAdditive === 0 ) {
// add = identity
this._setIdentity();
}
// add := add + incoming * weight
this._mixBufferRegionAdditive( buffer, offset, 0, weight, stride );
this.cumulativeWeightAdditive += weight;
}
// apply the state of 'accu<i>' to the binding when accus differ
apply( accuIndex ) {
const stride = this.valueSize,
buffer = this.buffer,
offset = accuIndex * stride + stride,
weight = this.cumulativeWeight,
weightAdditive = this.cumulativeWeightAdditive,
binding = this.binding;
this.cumulativeWeight = 0;
this.cumulativeWeightAdditive = 0;
if ( weight < 1 ) {
// accuN := accuN + original * ( 1 - cumulativeWeight )
const originalValueOffset = stride * this._origIndex;
this._mixBufferRegion(
buffer, offset, originalValueOffset, 1 - weight, stride );
}
if ( weightAdditive > 0 ) {
// accuN := accuN + additive accuN
this._mixBufferRegionAdditive( buffer, offset, this._addIndex * stride, 1, stride );
}
for ( let i = stride, e = stride + stride; i !== e; ++ i ) {
if ( buffer[ i ] !== buffer[ i + stride ] ) {
// value has changed -> update scene graph
binding.setValue( buffer, offset );
break;
}
}
}
// remember the state of the bound property and copy it to both accus
saveOriginalState() {
const binding = this.binding;
const buffer = this.buffer,
stride = this.valueSize,
originalValueOffset = stride * this._origIndex;
binding.getValue( buffer, originalValueOffset );
// accu[0..1] := orig -- initially detect changes against the original
for ( let i = stride, e = originalValueOffset; i !== e; ++ i ) {
buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ];
}
// Add to identity for additive
this._setIdentity();
this.cumulativeWeight = 0;
this.cumulativeWeightAdditive = 0;
}
// apply the state previously taken via 'saveOriginalState' to the binding
restoreOriginalState() {
const originalValueOffset = this.valueSize * 3;
this.binding.setValue( this.buffer, originalValueOffset );
}
_setAdditiveIdentityNumeric() {
const startIndex = this._addIndex * this.valueSize;
const endIndex = startIndex + this.valueSize;
for ( let i = startIndex; i < endIndex; i ++ ) {
this.buffer[ i ] = 0;
}
}
_setAdditiveIdentityQuaternion() {
this._setAdditiveIdentityNumeric();
this.buffer[ this._addIndex * this.valueSize + 3 ] = 1;
}
_setAdditiveIdentityOther() {
const startIndex = this._origIndex * this.valueSize;
const targetIndex = this._addIndex * this.valueSize;
for ( let i = 0; i < this.valueSize; i ++ ) {
this.buffer[ targetIndex + i ] = this.buffer[ startIndex + i ];
}
}
// mix functions
_select( buffer, dstOffset, srcOffset, t, stride ) {
if ( t >= 0.5 ) {
for ( let i = 0; i !== stride; ++ i ) {
buffer[ dstOffset + i ] = buffer[ srcOffset + i ];
}
}
}
_slerp( buffer, dstOffset, srcOffset, t ) {
Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t );
}
_slerpAdditive( buffer, dstOffset, srcOffset, t, stride ) {
const workOffset = this._workIndex * stride;
// Store result in intermediate buffer offset
Quaternion.multiplyQuaternionsFlat( buffer, workOffset, buffer, dstOffset, buffer, srcOffset );
// Slerp to the intermediate result
Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t );
}
_lerp( buffer, dstOffset, srcOffset, t, stride ) {
const s = 1 - t;
for ( let i = 0; i !== stride; ++ i ) {
const j = dstOffset + i;
buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t;
}
}
_lerpAdditive( buffer, dstOffset, srcOffset, t, stride ) {
for ( let i = 0; i !== stride; ++ i ) {
const j = dstOffset + i;
buffer[ j ] = buffer[ j ] + buffer[ srcOffset + i ] * t;
}
}
}
// Characters [].:/ are reserved for track binding syntax.
const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/';
const _reservedRe = new RegExp( '[' + _RESERVED_CHARS_RE + ']', 'g' );
// Attempts to allow node names from any language. ES5's `\w` regexp matches
// only latin characters, and the unicode \p{L} is not yet supported. So
// instead, we exclude reserved characters and match everything else.
const _wordChar = '[^' + _RESERVED_CHARS_RE + ']';
const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace( '\\.', '' ) + ']';
// Parent directories, delimited by '/' or ':'. Currently unused, but must
// be matched to parse the rest of the track name.
const _directoryRe = /*@__PURE__*/ /((?:WC+[\/:])*)/.source.replace( 'WC', _wordChar );
// Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'.
const _nodeRe = /*@__PURE__*/ /(WCOD+)?/.source.replace( 'WCOD', _wordCharOrDot );
// Object on target node, and accessor. May not contain reserved
// characters. Accessor may contain any character except closing bracket.
const _objectRe = /*@__PURE__*/ /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace( 'WC', _wordChar );
// Property and accessor. May not contain reserved characters. Accessor may
// contain any non-bracket characters.
const _propertyRe = /*@__PURE__*/ /\.(WC+)(?:\[(.+)\])?/.source.replace( 'WC', _wordChar );
const _trackRe = new RegExp( ''
+ '^'
+ _directoryRe
+ _nodeRe
+ _objectRe
+ _propertyRe
+ '$'
);
const _supportedObjectNames = [ 'material', 'materials', 'bones', 'map' ];
class Composite {
constructor( targetGroup, path, optionalParsedPath ) {
const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path );
this._targetGroup = targetGroup;
this._bindings = targetGroup.subscribe_( path, parsedPath );
}
getValue( array, offset ) {
this.bind(); // bind all binding
const firstValidIndex = this._targetGroup.nCachedObjects_,
binding = this._bindings[ firstValidIndex ];
// and only call .getValue on the first
if ( binding !== undefined ) binding.getValue( array, offset );
}
setValue( array, offset ) {
const bindings = this._bindings;
for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {
bindings[ i ].setValue( array, offset );
}
}
bind() {
const bindings = this._bindings;
for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {
bindings[ i ].bind();
}
}
unbind() {
const bindings = this._bindings;
for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) {
bindings[ i ].unbind();
}
}
}
// Note: This class uses a State pattern on a per-method basis:
// 'bind' sets 'this.getValue' / 'setValue' and shadows the
// prototype version of these methods with one that represents
// the bound state. When the property is not found, the methods
// become no-ops.
class PropertyBinding {
constructor( rootNode, path, parsedPath ) {
this.path = path;
this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path );
this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName );
this.rootNode = rootNode;
// initial state of these methods that calls 'bind'
this.getValue = this._getValue_unbound;
this.setValue = this._setValue_unbound;
}
static create( root, path, parsedPath ) {
if ( ! ( root && root.isAnimationObjectGroup ) ) {
return new PropertyBinding( root, path, parsedPath );
} else {
return new PropertyBinding.Composite( root, path, parsedPath );
}
}
/**
* Replaces spaces with underscores and removes unsupported characters from
* node names, to ensure compatibility with parseTrackName().
*
* @param {string} name Node name to be sanitized.
* @return {string}
*/
static sanitizeNodeName( name ) {
return name.replace( /\s/g, '_' ).replace( _reservedRe, '' );
}
static parseTrackName( trackName ) {
const matches = _trackRe.exec( trackName );
if ( matches === null ) {
throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName );
}
const results = {
// directoryName: matches[ 1 ], // (tschw) currently unused
nodeName: matches[ 2 ],
objectName: matches[ 3 ],
objectIndex: matches[ 4 ],
propertyName: matches[ 5 ], // required
propertyIndex: matches[ 6 ]
};
const lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' );
if ( lastDot !== undefined && lastDot !== - 1 ) {
const objectName = results.nodeName.substring( lastDot + 1 );
// Object names must be checked against an allowlist. Otherwise, there
// is no way to parse 'foo.bar.baz': 'baz' must be a property, but
// 'bar' could be the objectName, or part of a nodeName (which can
// include '.' characters).
if ( _supportedObjectNames.indexOf( objectName ) !== - 1 ) {
results.nodeName = results.nodeName.substring( 0, lastDot );
results.objectName = objectName;
}
}
if ( results.propertyName === null || results.propertyName.length === 0 ) {
throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName );
}
return results;
}
static findNode( root, nodeName ) {
if ( nodeName === undefined || nodeName === '' || nodeName === '.' || nodeName === - 1 || nodeName === root.name || nodeName === root.uuid ) {
return root;
}
// search into skeleton bones.
if ( root.skeleton ) {
const bone = root.skeleton.getBoneByName( nodeName );
if ( bone !== undefined ) {
return bone;
}
}
// search into node subtree.
if ( root.children ) {
const searchNodeSubtree = function ( children ) {
for ( let i = 0; i < children.length; i ++ ) {
const childNode = children[ i ];
if ( childNode.name === nodeName || childNode.uuid === nodeName ) {
return childNode;
}
const result = searchNodeSubtree( childNode.children );
if ( result ) return result;
}
return null;
};
const subTreeNode = searchNodeSubtree( root.children );
if ( subTreeNode ) {
return subTreeNode;
}
}
return null;
}
// these are used to "bind" a nonexistent property
_getValue_unavailable() {}
_setValue_unavailable() {}
// Getters
_getValue_direct( buffer, offset ) {
buffer[ offset ] = this.targetObject[ this.propertyName ];
}
_getValue_array( buffer, offset ) {
const source = this.resolvedProperty;
for ( let i = 0, n = source.length; i !== n; ++ i ) {
buffer[ offset ++ ] = source[ i ];
}
}
_getValue_arrayElement( buffer, offset ) {
buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ];
}
_getValue_toArray( buffer, offset ) {
this.resolvedProperty.toArray( buffer, offset );
}
// Direct
_setValue_direct( buffer, offset ) {
this.targetObject[ this.propertyName ] = buffer[ offset ];
}
_setValue_direct_setNeedsUpdate( buffer, offset ) {
this.targetObject[ this.propertyName ] = buffer[ offset ];
this.targetObject.needsUpdate = true;
}
_setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) {
this.targetObject[ this.propertyName ] = buffer[ offset ];
this.targetObject.matrixWorldNeedsUpdate = true;
}
// EntireArray
_setValue_array( buffer, offset ) {
const dest = this.resolvedProperty;
for ( let i = 0, n = dest.length; i !== n; ++ i ) {
dest[ i ] = buffer[ offset ++ ];
}
}
_setValue_array_setNeedsUpdate( buffer, offset ) {
const dest = this.resolvedProperty;
for ( let i = 0, n = dest.length; i !== n; ++ i ) {
dest[ i ] = buffer[ offset ++ ];
}
this.targetObject.needsUpdate = true;
}
_setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) {
const dest = this.resolvedProperty;
for ( let i = 0, n = dest.length; i !== n; ++ i ) {
dest[ i ] = buffer[ offset ++ ];
}
this.targetObject.matrixWorldNeedsUpdate = true;
}
// ArrayElement
_setValue_arrayElement( buffer, offset ) {
this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
}
_setValue_arrayElement_setNeedsUpdate( buffer, offset ) {
this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
this.targetObject.needsUpdate = true;
}
_setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) {
this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
this.targetObject.matrixWorldNeedsUpdate = true;
}
// HasToFromArray
_setValue_fromArray( buffer, offset ) {
this.resolvedProperty.fromArray( buffer, offset );
}
_setValue_fromArray_setNeedsUpdate( buffer, offset ) {
this.resolvedProperty.fromArray( buffer, offset );
this.targetObject.needsUpdate = true;
}
_setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) {
this.resolvedProperty.fromArray( buffer, offset );
this.targetObject.matrixWorldNeedsUpdate = true;
}
_getValue_unbound( targetArray, offset ) {
this.bind();
this.getValue( targetArray, offset );
}
_setValue_unbound( sourceArray, offset ) {
this.bind();
this.setValue( sourceArray, offset );
}
// create getter / setter pair for a property in the scene graph
bind() {
let targetObject = this.node;
const parsedPath = this.parsedPath;
const objectName = parsedPath.objectName;
const propertyName = parsedPath.propertyName;
let propertyIndex = parsedPath.propertyIndex;
if ( ! targetObject ) {
targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName );
this.node = targetObject;
}
// set fail state so we can just 'return' on error
this.getValue = this._getValue_unavailable;
this.setValue = this._setValue_unavailable;
// ensure there is a value node
if ( ! targetObject ) {
console.warn( 'THREE.PropertyBinding: No target node found for track: ' + this.path + '.' );
return;
}
if ( objectName ) {
let objectIndex = parsedPath.objectIndex;
// special cases were we need to reach deeper into the hierarchy to get the face materials....
switch ( objectName ) {
case 'materials':
if ( ! targetObject.material ) {
console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this );
return;
}
if ( ! targetObject.material.materials ) {
console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this );
return;
}
targetObject = targetObject.material.materials;
break;
case 'bones':
if ( ! targetObject.skeleton ) {
console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this );
return;
}
// potential future optimization: skip this if propertyIndex is already an integer
// and convert the integer string to a true integer.
targetObject = targetObject.skeleton.bones;
// support resolving morphTarget names into indices.
for ( let i = 0; i < targetObject.length; i ++ ) {
if ( targetObject[ i ].name === objectIndex ) {
objectIndex = i;
break;
}
}
break;
case 'map':
if ( 'map' in targetObject ) {
targetObject = targetObject.map;
break;
}
if ( ! targetObject.material ) {
console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this );
return;
}
if ( ! targetObject.material.map ) {
console.error( 'THREE.PropertyBinding: Can not bind to material.map as node.material does not have a map.', this );
return;
}
targetObject = targetObject.material.map;
break;
default:
if ( targetObject[ objectName ] === undefined ) {
console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this );
return;
}
targetObject = targetObject[ objectName ];
}
if ( objectIndex !== undefined ) {
if ( targetObject[ objectIndex ] === undefined ) {
console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject );
return;
}
targetObject = targetObject[ objectIndex ];
}
}
// resolve property
const nodeProperty = targetObject[ propertyName ];
if ( nodeProperty === undefined ) {
const nodeName = parsedPath.nodeName;
console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName +
'.' + propertyName + ' but it wasn\'t found.', targetObject );
return;
}
// determine versioning scheme
let versioning = this.Versioning.None;
this.targetObject = targetObject;
if ( targetObject.needsUpdate !== undefined ) { // material
versioning = this.Versioning.NeedsUpdate;
} else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform
versioning = this.Versioning.MatrixWorldNeedsUpdate;
}
// determine how the property gets bound
let bindingType = this.BindingType.Direct;
if ( propertyIndex !== undefined ) {
// access a sub element of the property array (only primitives are supported right now)
if ( propertyName === 'morphTargetInfluences' ) {
// potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.
// support resolving morphTarget names into indices.
if ( ! targetObject.geometry ) {
console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this );
return;
}
if ( ! targetObject.geometry.morphAttributes ) {
console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this );
return;
}
if ( targetObject.morphTargetDictionary[ propertyIndex ] !== undefined ) {
propertyIndex = targetObject.morphTargetDictionary[ propertyIndex ];
}
}
bindingType = this.BindingType.ArrayElement;
this.resolvedProperty = nodeProperty;
this.propertyIndex = propertyIndex;
} else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) {
// must use copy for Object3D.Euler/Quaternion
bindingType = this.BindingType.HasFromToArray;
this.resolvedProperty = nodeProperty;
} else if ( Array.isArray( nodeProperty ) ) {
bindingType = this.BindingType.EntireArray;
this.resolvedProperty = nodeProperty;
} else {
this.propertyName = propertyName;
}
// select getter / setter
this.getValue = this.GetterByBindingType[ bindingType ];
this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ];
}
unbind() {
this.node = null;
// back to the prototype version of getValue / setValue
// note: avoiding to mutate the shape of 'this' via 'delete'
this.getValue = this._getValue_unbound;
this.setValue = this._setValue_unbound;
}
}
PropertyBinding.Composite = Composite;
PropertyBinding.prototype.BindingType = {
Direct: 0,
EntireArray: 1,
ArrayElement: 2,
HasFromToArray: 3
};
PropertyBinding.prototype.Versioning = {
None: 0,
NeedsUpdate: 1,
MatrixWorldNeedsUpdate: 2
};
PropertyBinding.prototype.GetterByBindingType = [
PropertyBinding.prototype._getValue_direct,
PropertyBinding.prototype._getValue_array,
PropertyBinding.prototype._getValue_arrayElement,
PropertyBinding.prototype._getValue_toArray,
];
PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [
[
// Direct
PropertyBinding.prototype._setValue_direct,
PropertyBinding.prototype._setValue_direct_setNeedsUpdate,
PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate,
], [
// EntireArray
PropertyBinding.prototype._setValue_array,
PropertyBinding.prototype._setValue_array_setNeedsUpdate,
PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate,
], [
// ArrayElement
PropertyBinding.prototype._setValue_arrayElement,
PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate,
PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate,
], [
// HasToFromArray
PropertyBinding.prototype._setValue_fromArray,
PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate,
PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate,
]
];
/**
*
* A group of objects that receives a shared animation state.
*
* Usage:
*
* - Add objects you would otherwise pass as 'root' to the
* constructor or the .clipAction method of AnimationMixer.
*
* - Instead pass this object as 'root'.
*
* - You can also add and remove objects later when the mixer
* is running.
*
* Note:
*
* Objects of this class appear as one object to the mixer,
* so cache control of the individual objects must be done
* on the group.
*
* Limitation:
*
* - The animated properties must be compatible among the
* all objects in the group.
*
* - A single property can either be controlled through a
* target group or directly, but not both.
*/
class AnimationObjectGroup {
constructor() {
this.isAnimationObjectGroup = true;
this.uuid = generateUUID();
// cached objects followed by the active ones
this._objects = Array.prototype.slice.call( arguments );
this.nCachedObjects_ = 0; // threshold
// note: read by PropertyBinding.Composite
const indices = {};
this._indicesByUUID = indices; // for bookkeeping
for ( let i = 0, n = arguments.length; i !== n; ++ i ) {
indices[ arguments[ i ].uuid ] = i;
}
this._paths = []; // inside: string
this._parsedPaths = []; // inside: { we don't care, here }
this._bindings = []; // inside: Array< PropertyBinding >
this._bindingsIndicesByPath = {}; // inside: indices in these arrays
const scope = this;
this.stats = {
objects: {
get total() {
return scope._objects.length;
},
get inUse() {
return this.total - scope.nCachedObjects_;
}
},
get bindingsPerObject() {
return scope._bindings.length;
}
};
}
add() {
const objects = this._objects,
indicesByUUID = this._indicesByUUID,
paths = this._paths,
parsedPaths = this._parsedPaths,
bindings = this._bindings,
nBindings = bindings.length;
let knownObject = undefined,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_;
for ( let i = 0, n = arguments.length; i !== n; ++ i ) {
const object = arguments[ i ],
uuid = object.uuid;
let index = indicesByUUID[ uuid ];
if ( index === undefined ) {
// unknown object -> add it to the ACTIVE region
index = nObjects ++;
indicesByUUID[ uuid ] = index;
objects.push( object );
// accounting is done, now do the same for all bindings
for ( let j = 0, m = nBindings; j !== m; ++ j ) {
bindings[ j ].push( new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) );
}
} else if ( index < nCachedObjects ) {
knownObject = objects[ index ];
// move existing object to the ACTIVE region
const firstActiveIndex = -- nCachedObjects,
lastCachedObject = objects[ firstActiveIndex ];
indicesByUUID[ lastCachedObject.uuid ] = index;
objects[ index ] = lastCachedObject;
indicesByUUID[ uuid ] = firstActiveIndex;
objects[ firstActiveIndex ] = object;
// accounting is done, now do the same for all bindings
for ( let j = 0, m = nBindings; j !== m; ++ j ) {
const bindingsForPath = bindings[ j ],
lastCached = bindingsForPath[ firstActiveIndex ];
let binding = bindingsForPath[ index ];
bindingsForPath[ index ] = lastCached;
if ( binding === undefined ) {
// since we do not bother to create new bindings
// for objects that are cached, the binding may
// or may not exist
binding = new PropertyBinding( object, paths[ j ], parsedPaths[ j ] );
}
bindingsForPath[ firstActiveIndex ] = binding;
}
} else if ( objects[ index ] !== knownObject ) {
console.error( 'THREE.AnimationObjectGroup: Different objects with the same UUID ' +
'detected. Clean the caches or recreate your infrastructure when reloading scenes.' );
} // else the object is already where we want it to be
} // for arguments
this.nCachedObjects_ = nCachedObjects;
}
remove() {
const objects = this._objects,
indicesByUUID = this._indicesByUUID,
bindings = this._bindings,
nBindings = bindings.length;
let nCachedObjects = this.nCachedObjects_;
for ( let i = 0, n = arguments.length; i !== n; ++ i ) {
const object = arguments[ i ],
uuid = object.uuid,
index = indicesByUUID[ uuid ];
if ( index !== undefined && index >= nCachedObjects ) {
// move existing object into the CACHED region
const lastCachedIndex = nCachedObjects ++,
firstActiveObject = objects[ lastCachedIndex ];
indicesByUUID[ firstActiveObject.uuid ] = index;
objects[ index ] = firstActiveObject;
indicesByUUID[ uuid ] = lastCachedIndex;
objects[ lastCachedIndex ] = object;
// accounting is done, now do the same for all bindings
for ( let j = 0, m = nBindings; j !== m; ++ j ) {
const bindingsForPath = bindings[ j ],
firstActive = bindingsForPath[ lastCachedIndex ],
binding = bindingsForPath[ index ];
bindingsForPath[ index ] = firstActive;
bindingsForPath[ lastCachedIndex ] = binding;
}
}
} // for arguments
this.nCachedObjects_ = nCachedObjects;
}
// remove & forget
uncache() {
const objects = this._objects,
indicesByUUID = this._indicesByUUID,
bindings = this._bindings,
nBindings = bindings.length;
let nCachedObjects = this.nCachedObjects_,
nObjects = objects.length;
for ( let i = 0, n = arguments.length; i !== n; ++ i ) {
const object = arguments[ i ],
uuid = object.uuid,
index = indicesByUUID[ uuid ];
if ( index !== undefined ) {
delete indicesByUUID[ uuid ];
if ( index < nCachedObjects ) {
// object is cached, shrink the CACHED region
const firstActiveIndex = -- nCachedObjects,
lastCachedObject = objects[ firstActiveIndex ],
lastIndex = -- nObjects,
lastObject = objects[ lastIndex ];
// last cached object takes this object's place
indicesByUUID[ lastCachedObject.uuid ] = index;
objects[ index ] = lastCachedObject;
// last object goes to the activated slot and pop
indicesByUUID[ lastObject.uuid ] = firstActiveIndex;
objects[ firstActiveIndex ] = lastObject;
objects.pop();
// accounting is done, now do the same for all bindings
for ( let j = 0, m = nBindings; j !== m; ++ j ) {
const bindingsForPath = bindings[ j ],
lastCached = bindingsForPath[ firstActiveIndex ],
last = bindingsForPath[ lastIndex ];
bindingsForPath[ index ] = lastCached;
bindingsForPath[ firstActiveIndex ] = last;
bindingsForPath.pop();
}
} else {
// object is active, just swap with the last and pop
const lastIndex = -- nObjects,
lastObject = objects[ lastIndex ];
if ( lastIndex > 0 ) {
indicesByUUID[ lastObject.uuid ] = index;
}
objects[ index ] = lastObject;
objects.pop();
// accounting is done, now do the same for all bindings
for ( let j = 0, m = nBindings; j !== m; ++ j ) {
const bindingsForPath = bindings[ j ];
bindingsForPath[ index ] = bindingsForPath[ lastIndex ];
bindingsForPath.pop();
}
} // cached or active
} // if object is known
} // for arguments
this.nCachedObjects_ = nCachedObjects;
}
// Internal interface used by befriended PropertyBinding.Composite:
subscribe_( path, parsedPath ) {
// returns an array of bindings for the given path that is changed
// according to the contained objects in the group
const indicesByPath = this._bindingsIndicesByPath;
let index = indicesByPath[ path ];
const bindings = this._bindings;
if ( index !== undefined ) return bindings[ index ];
const paths = this._paths,
parsedPaths = this._parsedPaths,
objects = this._objects,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_,
bindingsForPath = new Array( nObjects );
index = bindings.length;
indicesByPath[ path ] = index;
paths.push( path );
parsedPaths.push( parsedPath );
bindings.push( bindingsForPath );
for ( let i = nCachedObjects, n = objects.length; i !== n; ++ i ) {
const object = objects[ i ];
bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath );
}
return bindingsForPath;
}
unsubscribe_( path ) {
// tells the group to forget about a property path and no longer
// update the array previously obtained with 'subscribe_'
const indicesByPath = this._bindingsIndicesByPath,
index = indicesByPath[ path ];
if ( index !== undefined ) {
const paths = this._paths,
parsedPaths = this._parsedPaths,
bindings = this._bindings,
lastBindingsIndex = bindings.length - 1,
lastBindings = bindings[ lastBindingsIndex ],
lastBindingsPath = path[ lastBindingsIndex ];
indicesByPath[ lastBindingsPath ] = index;
bindings[ index ] = lastBindings;
bindings.pop();
parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ];
parsedPaths.pop();
paths[ index ] = paths[ lastBindingsIndex ];
paths.pop();
}
}
}
class AnimationAction {
constructor( mixer, clip, localRoot = null, blendMode = clip.blendMode ) {
this._mixer = mixer;
this._clip = clip;
this._localRoot = localRoot;
this.blendMode = blendMode;
const tracks = clip.tracks,
nTracks = tracks.length,
interpolants = new Array( nTracks );
const interpolantSettings = {
endingStart: ZeroCurvatureEnding,
endingEnd: ZeroCurvatureEnding
};
for ( let i = 0; i !== nTracks; ++ i ) {
const interpolant = tracks[ i ].createInterpolant( null );
interpolants[ i ] = interpolant;
interpolant.settings = interpolantSettings;
}
this._interpolantSettings = interpolantSettings;
this._interpolants = interpolants; // bound by the mixer
// inside: PropertyMixer (managed by the mixer)
this._propertyBindings = new Array( nTracks );
this._cacheIndex = null; // for the memory manager
this._byClipCacheIndex = null; // for the memory manager
this._timeScaleInterpolant = null;
this._weightInterpolant = null;
this.loop = LoopRepeat;
this._loopCount = - 1;
// global mixer time when the action is to be started
// it's set back to 'null' upon start of the action
this._startTime = null;
// scaled local time of the action
// gets clamped or wrapped to 0..clip.duration according to loop
this.time = 0;
this.timeScale = 1;
this._effectiveTimeScale = 1;
this.weight = 1;
this._effectiveWeight = 1;
this.repetitions = Infinity; // no. of repetitions when looping
this.paused = false; // true -> zero effective time scale
this.enabled = true; // false -> zero effective weight
this.clampWhenFinished = false;// keep feeding the last frame?
this.zeroSlopeAtStart = true;// for smooth interpolation w/o separate
this.zeroSlopeAtEnd = true;// clips for start, loop and end
}
// State & Scheduling
play() {
this._mixer._activateAction( this );
return this;
}
stop() {
this._mixer._deactivateAction( this );
return this.reset();
}
reset() {
this.paused = false;
this.enabled = true;
this.time = 0; // restart clip
this._loopCount = - 1;// forget previous loops
this._startTime = null;// forget scheduling
return this.stopFading().stopWarping();
}
isRunning() {
return this.enabled && ! this.paused && this.timeScale !== 0 &&
this._startTime === null && this._mixer._isActiveAction( this );
}
// return true when play has been called
isScheduled() {
return this._mixer._isActiveAction( this );
}
startAt( time ) {
this._startTime = time;
return this;
}
setLoop( mode, repetitions ) {
this.loop = mode;
this.repetitions = repetitions;
return this;
}
// Weight
// set the weight stopping any scheduled fading
// although .enabled = false yields an effective weight of zero, this
// method does *not* change .enabled, because it would be confusing
setEffectiveWeight( weight ) {
this.weight = weight;
// note: same logic as when updated at runtime
this._effectiveWeight = this.enabled ? weight : 0;
return this.stopFading();
}
// return the weight considering fading and .enabled
getEffectiveWeight() {
return this._effectiveWeight;
}
fadeIn( duration ) {
return this._scheduleFading( duration, 0, 1 );
}
fadeOut( duration ) {
return this._scheduleFading( duration, 1, 0 );
}
crossFadeFrom( fadeOutAction, duration, warp ) {
fadeOutAction.fadeOut( duration );
this.fadeIn( duration );
if ( warp ) {
const fadeInDuration = this._clip.duration,
fadeOutDuration = fadeOutAction._clip.duration,
startEndRatio = fadeOutDuration / fadeInDuration,
endStartRatio = fadeInDuration / fadeOutDuration;
fadeOutAction.warp( 1.0, startEndRatio, duration );
this.warp( endStartRatio, 1.0, duration );
}
return this;
}
crossFadeTo( fadeInAction, duration, warp ) {
return fadeInAction.crossFadeFrom( this, duration, warp );
}
stopFading() {
const weightInterpolant = this._weightInterpolant;
if ( weightInterpolant !== null ) {
this._weightInterpolant = null;
this._mixer._takeBackControlInterpolant( weightInterpolant );
}
return this;
}
// Time Scale Control
// set the time scale stopping any scheduled warping
// although .paused = true yields an effective time scale of zero, this
// method does *not* change .paused, because it would be confusing
setEffectiveTimeScale( timeScale ) {
this.timeScale = timeScale;
this._effectiveTimeScale = this.paused ? 0 : timeScale;
return this.stopWarping();
}
// return the time scale considering warping and .paused
getEffectiveTimeScale() {
return this._effectiveTimeScale;
}
setDuration( duration ) {
this.timeScale = this._clip.duration / duration;
return this.stopWarping();
}
syncWith( action ) {
this.time = action.time;
this.timeScale = action.timeScale;
return this.stopWarping();
}
halt( duration ) {
return this.warp( this._effectiveTimeScale, 0, duration );
}
warp( startTimeScale, endTimeScale, duration ) {
const mixer = this._mixer,
now = mixer.time,
timeScale = this.timeScale;
let interpolant = this._timeScaleInterpolant;
if ( interpolant === null ) {
interpolant = mixer._lendControlInterpolant();
this._timeScaleInterpolant = interpolant;
}
const times = interpolant.parameterPositions,
values = interpolant.sampleValues;
times[ 0 ] = now;
times[ 1 ] = now + duration;
values[ 0 ] = startTimeScale / timeScale;
values[ 1 ] = endTimeScale / timeScale;
return this;
}
stopWarping() {
const timeScaleInterpolant = this._timeScaleInterpolant;
if ( timeScaleInterpolant !== null ) {
this._timeScaleInterpolant = null;
this._mixer._takeBackControlInterpolant( timeScaleInterpolant );
}
return this;
}
// Object Accessors
getMixer() {
return this._mixer;
}
getClip() {
return this._clip;
}
getRoot() {
return this._localRoot || this._mixer._root;
}
// Interna
_update( time, deltaTime, timeDirection, accuIndex ) {
// called by the mixer
if ( ! this.enabled ) {
// call ._updateWeight() to update ._effectiveWeight
this._updateWeight( time );
return;
}
const startTime = this._startTime;
if ( startTime !== null ) {
// check for scheduled start of action
const timeRunning = ( time - startTime ) * timeDirection;
if ( timeRunning < 0 || timeDirection === 0 ) {
deltaTime = 0;
} else {
this._startTime = null; // unschedule
deltaTime = timeDirection * timeRunning;
}
}
// apply time scale and advance time
deltaTime *= this._updateTimeScale( time );
const clipTime = this._updateTime( deltaTime );
// note: _updateTime may disable the action resulting in
// an effective weight of 0
const weight = this._updateWeight( time );
if ( weight > 0 ) {
const interpolants = this._interpolants;
const propertyMixers = this._propertyBindings;
switch ( this.blendMode ) {
case AdditiveAnimationBlendMode:
for ( let j = 0, m = interpolants.length; j !== m; ++ j ) {
interpolants[ j ].evaluate( clipTime );
propertyMixers[ j ].accumulateAdditive( weight );
}
break;
case NormalAnimationBlendMode:
default:
for ( let j = 0, m = interpolants.length; j !== m; ++ j ) {
interpolants[ j ].evaluate( clipTime );
propertyMixers[ j ].accumulate( accuIndex, weight );
}
}
}
}
_updateWeight( time ) {
let weight = 0;
if ( this.enabled ) {
weight = this.weight;
const interpolant = this._weightInterpolant;
if ( interpolant !== null ) {
const interpolantValue = interpolant.evaluate( time )[ 0 ];
weight *= interpolantValue;
if ( time > interpolant.parameterPositions[ 1 ] ) {
this.stopFading();
if ( interpolantValue === 0 ) {
// faded out, disable
this.enabled = false;
}
}
}
}
this._effectiveWeight = weight;
return weight;
}
_updateTimeScale( time ) {
let timeScale = 0;
if ( ! this.paused ) {
timeScale = this.timeScale;
const interpolant = this._timeScaleInterpolant;
if ( interpolant !== null ) {
const interpolantValue = interpolant.evaluate( time )[ 0 ];
timeScale *= interpolantValue;
if ( time > interpolant.parameterPositions[ 1 ] ) {
this.stopWarping();
if ( timeScale === 0 ) {
// motion has halted, pause
this.paused = true;
} else {
// warp done - apply final time scale
this.timeScale = timeScale;
}
}
}
}
this._effectiveTimeScale = timeScale;
return timeScale;
}
_updateTime( deltaTime ) {
const duration = this._clip.duration;
const loop = this.loop;
let time = this.time + deltaTime;
let loopCount = this._loopCount;
const pingPong = ( loop === LoopPingPong );
if ( deltaTime === 0 ) {
if ( loopCount === - 1 ) return time;
return ( pingPong && ( loopCount & 1 ) === 1 ) ? duration - time : time;
}
if ( loop === LoopOnce ) {
if ( loopCount === - 1 ) {
// just started
this._loopCount = 0;
this._setEndings( true, true, false );
}
handle_stop: {
if ( time >= duration ) {
time = duration;
} else if ( time < 0 ) {
time = 0;
} else {
this.time = time;
break handle_stop;
}
if ( this.clampWhenFinished ) this.paused = true;
else this.enabled = false;
this.time = time;
this._mixer.dispatchEvent( {
type: 'finished', action: this,
direction: deltaTime < 0 ? - 1 : 1
} );
}
} else { // repetitive Repeat or PingPong
if ( loopCount === - 1 ) {
// just started
if ( deltaTime >= 0 ) {
loopCount = 0;
this._setEndings( true, this.repetitions === 0, pingPong );
} else {
// when looping in reverse direction, the initial
// transition through zero counts as a repetition,
// so leave loopCount at -1
this._setEndings( this.repetitions === 0, true, pingPong );
}
}
if ( time >= duration || time < 0 ) {
// wrap around
const loopDelta = Math.floor( time / duration ); // signed
time -= duration * loopDelta;
loopCount += Math.abs( loopDelta );
const pending = this.repetitions - loopCount;
if ( pending <= 0 ) {
// have to stop (switch state, clamp time, fire event)
if ( this.clampWhenFinished ) this.paused = true;
else this.enabled = false;
time = deltaTime > 0 ? duration : 0;
this.time = time;
this._mixer.dispatchEvent( {
type: 'finished', action: this,
direction: deltaTime > 0 ? 1 : - 1
} );
} else {
// keep running
if ( pending === 1 ) {
// entering the last round
const atStart = deltaTime < 0;
this._setEndings( atStart, ! atStart, pingPong );
} else {
this._setEndings( false, false, pingPong );
}
this._loopCount = loopCount;
this.time = time;
this._mixer.dispatchEvent( {
type: 'loop', action: this, loopDelta: loopDelta
} );
}
} else {
this.time = time;
}
if ( pingPong && ( loopCount & 1 ) === 1 ) {
// invert time for the "pong round"
return duration - time;
}
}
return time;
}
_setEndings( atStart, atEnd, pingPong ) {
const settings = this._interpolantSettings;
if ( pingPong ) {
settings.endingStart = ZeroSlopeEnding;
settings.endingEnd = ZeroSlopeEnding;
} else {
// assuming for LoopOnce atStart == atEnd == true
if ( atStart ) {
settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding;
} else {
settings.endingStart = WrapAroundEnding;
}
if ( atEnd ) {
settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding;
} else {
settings.endingEnd = WrapAroundEnding;
}
}
}
_scheduleFading( duration, weightNow, weightThen ) {
const mixer = this._mixer, now = mixer.time;
let interpolant = this._weightInterpolant;
if ( interpolant === null ) {
interpolant = mixer._lendControlInterpolant();
this._weightInterpolant = interpolant;
}
const times = interpolant.parameterPositions,
values = interpolant.sampleValues;
times[ 0 ] = now;
values[ 0 ] = weightNow;
times[ 1 ] = now + duration;
values[ 1 ] = weightThen;
return this;
}
}
const _controlInterpolantsResultBuffer = new Float32Array( 1 );
class AnimationMixer extends EventDispatcher {
constructor( root ) {
super();
this._root = root;
this._initMemoryManager();
this._accuIndex = 0;
this.time = 0;
this.timeScale = 1.0;
}
_bindAction( action, prototypeAction ) {
const root = action._localRoot || this._root,
tracks = action._clip.tracks,
nTracks = tracks.length,
bindings = action._propertyBindings,
interpolants = action._interpolants,
rootUuid = root.uuid,
bindingsByRoot = this._bindingsByRootAndName;
let bindingsByName = bindingsByRoot[ rootUuid ];
if ( bindingsByName === undefined ) {
bindingsByName = {};
bindingsByRoot[ rootUuid ] = bindingsByName;
}
for ( let i = 0; i !== nTracks; ++ i ) {
const track = tracks[ i ],
trackName = track.name;
let binding = bindingsByName[ trackName ];
if ( binding !== undefined ) {
++ binding.referenceCount;
bindings[ i ] = binding;
} else {
binding = bindings[ i ];
if ( binding !== undefined ) {
// existing binding, make sure the cache knows
if ( binding._cacheIndex === null ) {
++ binding.referenceCount;
this._addInactiveBinding( binding, rootUuid, trackName );
}
continue;
}
const path = prototypeAction && prototypeAction.
_propertyBindings[ i ].binding.parsedPath;
binding = new PropertyMixer(
PropertyBinding.create( root, trackName, path ),
track.ValueTypeName, track.getValueSize() );
++ binding.referenceCount;
this._addInactiveBinding( binding, rootUuid, trackName );
bindings[ i ] = binding;
}
interpolants[ i ].resultBuffer = binding.buffer;
}
}
_activateAction( action ) {
if ( ! this._isActiveAction( action ) ) {
if ( action._cacheIndex === null ) {
// this action has been forgotten by the cache, but the user
// appears to be still using it -> rebind
const rootUuid = ( action._localRoot || this._root ).uuid,
clipUuid = action._clip.uuid,
actionsForClip = this._actionsByClip[ clipUuid ];
this._bindAction( action,
actionsForClip && actionsForClip.knownActions[ 0 ] );
this._addInactiveAction( action, clipUuid, rootUuid );
}
const bindings = action._propertyBindings;
// increment reference counts / sort out state
for ( let i = 0, n = bindings.length; i !== n; ++ i ) {
const binding = bindings[ i ];
if ( binding.useCount ++ === 0 ) {
this._lendBinding( binding );
binding.saveOriginalState();
}
}
this._lendAction( action );
}
}
_deactivateAction( action ) {
if ( this._isActiveAction( action ) ) {
const bindings = action._propertyBindings;
// decrement reference counts / sort out state
for ( let i = 0, n = bindings.length; i !== n; ++ i ) {
const binding = bindings[ i ];
if ( -- binding.useCount === 0 ) {
binding.restoreOriginalState();
this._takeBackBinding( binding );
}
}
this._takeBackAction( action );
}
}
// Memory manager
_initMemoryManager() {
this._actions = []; // 'nActiveActions' followed by inactive ones
this._nActiveActions = 0;
this._actionsByClip = {};
// inside:
// {
// knownActions: Array< AnimationAction > - used as prototypes
// actionByRoot: AnimationAction - lookup
// }
this._bindings = []; // 'nActiveBindings' followed by inactive ones
this._nActiveBindings = 0;
this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >
this._controlInterpolants = []; // same game as above
this._nActiveControlInterpolants = 0;
const scope = this;
this.stats = {
actions: {
get total() {
return scope._actions.length;
},
get inUse() {
return scope._nActiveActions;
}
},
bindings: {
get total() {
return scope._bindings.length;
},
get inUse() {
return scope._nActiveBindings;
}
},
controlInterpolants: {
get total() {
return scope._controlInterpolants.length;
},
get inUse() {
return scope._nActiveControlInterpolants;
}
}
};
}
// Memory management for AnimationAction objects
_isActiveAction( action ) {
const index = action._cacheIndex;
return index !== null && index < this._nActiveActions;
}
_addInactiveAction( action, clipUuid, rootUuid ) {
const actions = this._actions,
actionsByClip = this._actionsByClip;
let actionsForClip = actionsByClip[ clipUuid ];
if ( actionsForClip === undefined ) {
actionsForClip = {
knownActions: [ action ],
actionByRoot: {}
};
action._byClipCacheIndex = 0;
actionsByClip[ clipUuid ] = actionsForClip;
} else {
const knownActions = actionsForClip.knownActions;
action._byClipCacheIndex = knownActions.length;
knownActions.push( action );
}
action._cacheIndex = actions.length;
actions.push( action );
actionsForClip.actionByRoot[ rootUuid ] = action;
}
_removeInactiveAction( action ) {
const actions = this._actions,
lastInactiveAction = actions[ actions.length - 1 ],
cacheIndex = action._cacheIndex;
lastInactiveAction._cacheIndex = cacheIndex;
actions[ cacheIndex ] = lastInactiveAction;
actions.pop();
action._cacheIndex = null;
const clipUuid = action._clip.uuid,
actionsByClip = this._actionsByClip,
actionsForClip = actionsByClip[ clipUuid ],
knownActionsForClip = actionsForClip.knownActions,
lastKnownAction =
knownActionsForClip[ knownActionsForClip.length - 1 ],
byClipCacheIndex = action._byClipCacheIndex;
lastKnownAction._byClipCacheIndex = byClipCacheIndex;
knownActionsForClip[ byClipCacheIndex ] = lastKnownAction;
knownActionsForClip.pop();
action._byClipCacheIndex = null;
const actionByRoot = actionsForClip.actionByRoot,
rootUuid = ( action._localRoot || this._root ).uuid;
delete actionByRoot[ rootUuid ];
if ( knownActionsForClip.length === 0 ) {
delete actionsByClip[ clipUuid ];
}
this._removeInactiveBindingsForAction( action );
}
_removeInactiveBindingsForAction( action ) {
const bindings = action._propertyBindings;
for ( let i = 0, n = bindings.length; i !== n; ++ i ) {
const binding = bindings[ i ];
if ( -- binding.referenceCount === 0 ) {
this._removeInactiveBinding( binding );
}
}
}
_lendAction( action ) {
// [ active actions | inactive actions ]
// [ active actions >| inactive actions ]
// s a
// <-swap->
// a s
const actions = this._actions,
prevIndex = action._cacheIndex,
lastActiveIndex = this._nActiveActions ++,
firstInactiveAction = actions[ lastActiveIndex ];
action._cacheIndex = lastActiveIndex;
actions[ lastActiveIndex ] = action;
firstInactiveAction._cacheIndex = prevIndex;
actions[ prevIndex ] = firstInactiveAction;
}
_takeBackAction( action ) {
// [ active actions | inactive actions ]
// [ active actions |< inactive actions ]
// a s
// <-swap->
// s a
const actions = this._actions,
prevIndex = action._cacheIndex,
firstInactiveIndex = -- this._nActiveActions,
lastActiveAction = actions[ firstInactiveIndex ];
action._cacheIndex = firstInactiveIndex;
actions[ firstInactiveIndex ] = action;
lastActiveAction._cacheIndex = prevIndex;
actions[ prevIndex ] = lastActiveAction;
}
// Memory management for PropertyMixer objects
_addInactiveBinding( binding, rootUuid, trackName ) {
const bindingsByRoot = this._bindingsByRootAndName,
bindings = this._bindings;
let bindingByName = bindingsByRoot[ rootUuid ];
if ( bindingByName === undefined ) {
bindingByName = {};
bindingsByRoot[ rootUuid ] = bindingByName;
}
bindingByName[ trackName ] = binding;
binding._cacheIndex = bindings.length;
bindings.push( binding );
}
_removeInactiveBinding( binding ) {
const bindings = this._bindings,
propBinding = binding.binding,
rootUuid = propBinding.rootNode.uuid,
trackName = propBinding.path,
bindingsByRoot = this._bindingsByRootAndName,
bindingByName = bindingsByRoot[ rootUuid ],
lastInactiveBinding = bindings[ bindings.length - 1 ],
cacheIndex = binding._cacheIndex;
lastInactiveBinding._cacheIndex = cacheIndex;
bindings[ cacheIndex ] = lastInactiveBinding;
bindings.pop();
delete bindingByName[ trackName ];
if ( Object.keys( bindingByName ).length === 0 ) {
delete bindingsByRoot[ rootUuid ];
}
}
_lendBinding( binding ) {
const bindings = this._bindings,
prevIndex = binding._cacheIndex,
lastActiveIndex = this._nActiveBindings ++,
firstInactiveBinding = bindings[ lastActiveIndex ];
binding._cacheIndex = lastActiveIndex;
bindings[ lastActiveIndex ] = binding;
firstInactiveBinding._cacheIndex = prevIndex;
bindings[ prevIndex ] = firstInactiveBinding;
}
_takeBackBinding( binding ) {
const bindings = this._bindings,
prevIndex = binding._cacheIndex,
firstInactiveIndex = -- this._nActiveBindings,
lastActiveBinding = bindings[ firstInactiveIndex ];
binding._cacheIndex = firstInactiveIndex;
bindings[ firstInactiveIndex ] = binding;
lastActiveBinding._cacheIndex = prevIndex;
bindings[ prevIndex ] = lastActiveBinding;
}
// Memory management of Interpolants for weight and time scale
_lendControlInterpolant() {
const interpolants = this._controlInterpolants,
lastActiveIndex = this._nActiveControlInterpolants ++;
let interpolant = interpolants[ lastActiveIndex ];
if ( interpolant === undefined ) {
interpolant = new LinearInterpolant(
new Float32Array( 2 ), new Float32Array( 2 ),
1, _controlInterpolantsResultBuffer );
interpolant.__cacheIndex = lastActiveIndex;
interpolants[ lastActiveIndex ] = interpolant;
}
return interpolant;
}
_takeBackControlInterpolant( interpolant ) {
const interpolants = this._controlInterpolants,
prevIndex = interpolant.__cacheIndex,
firstInactiveIndex = -- this._nActiveControlInterpolants,
lastActiveInterpolant = interpolants[ firstInactiveIndex ];
interpolant.__cacheIndex = firstInactiveIndex;
interpolants[ firstInactiveIndex ] = interpolant;
lastActiveInterpolant.__cacheIndex = prevIndex;
interpolants[ prevIndex ] = lastActiveInterpolant;
}
// return an action for a clip optionally using a custom root target
// object (this method allocates a lot of dynamic memory in case a
// previously unknown clip/root combination is specified)
clipAction( clip, optionalRoot, blendMode ) {
const root = optionalRoot || this._root,
rootUuid = root.uuid;
let clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip;
const clipUuid = clipObject !== null ? clipObject.uuid : clip;
const actionsForClip = this._actionsByClip[ clipUuid ];
let prototypeAction = null;
if ( blendMode === undefined ) {
if ( clipObject !== null ) {
blendMode = clipObject.blendMode;
} else {
blendMode = NormalAnimationBlendMode;
}
}
if ( actionsForClip !== undefined ) {
const existingAction = actionsForClip.actionByRoot[ rootUuid ];
if ( existingAction !== undefined && existingAction.blendMode === blendMode ) {
return existingAction;
}
// we know the clip, so we don't have to parse all
// the bindings again but can just copy
prototypeAction = actionsForClip.knownActions[ 0 ];
// also, take the clip from the prototype action
if ( clipObject === null )
clipObject = prototypeAction._clip;
}
// clip must be known when specified via string
if ( clipObject === null ) return null;
// allocate all resources required to run it
const newAction = new AnimationAction( this, clipObject, optionalRoot, blendMode );
this._bindAction( newAction, prototypeAction );
// and make the action known to the memory manager
this._addInactiveAction( newAction, clipUuid, rootUuid );
return newAction;
}
// get an existing action
existingAction( clip, optionalRoot ) {
const root = optionalRoot || this._root,
rootUuid = root.uuid,
clipObject = typeof clip === 'string' ?
AnimationClip.findByName( root, clip ) : clip,
clipUuid = clipObject ? clipObject.uuid : clip,
actionsForClip = this._actionsByClip[ clipUuid ];
if ( actionsForClip !== undefined ) {
return actionsForClip.actionByRoot[ rootUuid ] || null;
}
return null;
}
// deactivates all previously scheduled actions
stopAllAction() {
const actions = this._actions,
nActions = this._nActiveActions;
for ( let i = nActions - 1; i >= 0; -- i ) {
actions[ i ].stop();
}
return this;
}
// advance the time and update apply the animation
update( deltaTime ) {
deltaTime *= this.timeScale;
const actions = this._actions,
nActions = this._nActiveActions,
time = this.time += deltaTime,
timeDirection = Math.sign( deltaTime ),
accuIndex = this._accuIndex ^= 1;
// run active actions
for ( let i = 0; i !== nActions; ++ i ) {
const action = actions[ i ];
action._update( time, deltaTime, timeDirection, accuIndex );
}
// update scene graph
const bindings = this._bindings,
nBindings = this._nActiveBindings;
for ( let i = 0; i !== nBindings; ++ i ) {
bindings[ i ].apply( accuIndex );
}
return this;
}
// Allows you to seek to a specific time in an animation.
setTime( timeInSeconds ) {
this.time = 0; // Zero out time attribute for AnimationMixer object;
for ( let i = 0; i < this._actions.length; i ++ ) {
this._actions[ i ].time = 0; // Zero out time attribute for all associated AnimationAction objects.
}
return this.update( timeInSeconds ); // Update used to set exact time. Returns "this" AnimationMixer object.
}
// return this mixer's root target object
getRoot() {
return this._root;
}
// free all resources specific to a particular clip
uncacheClip( clip ) {
const actions = this._actions,
clipUuid = clip.uuid,
actionsByClip = this._actionsByClip,
actionsForClip = actionsByClip[ clipUuid ];
if ( actionsForClip !== undefined ) {
// note: just calling _removeInactiveAction would mess up the
// iteration state and also require updating the state we can
// just throw away
const actionsToRemove = actionsForClip.knownActions;
for ( let i = 0, n = actionsToRemove.length; i !== n; ++ i ) {
const action = actionsToRemove[ i ];
this._deactivateAction( action );
const cacheIndex = action._cacheIndex,
lastInactiveAction = actions[ actions.length - 1 ];
action._cacheIndex = null;
action._byClipCacheIndex = null;
lastInactiveAction._cacheIndex = cacheIndex;
actions[ cacheIndex ] = lastInactiveAction;
actions.pop();
this._removeInactiveBindingsForAction( action );
}
delete actionsByClip[ clipUuid ];
}
}
// free all resources specific to a particular root target object
uncacheRoot( root ) {
const rootUuid = root.uuid,
actionsByClip = this._actionsByClip;
for ( const clipUuid in actionsByClip ) {
const actionByRoot = actionsByClip[ clipUuid ].actionByRoot,
action = actionByRoot[ rootUuid ];
if ( action !== undefined ) {
this._deactivateAction( action );
this._removeInactiveAction( action );
}
}
const bindingsByRoot = this._bindingsByRootAndName,
bindingByName = bindingsByRoot[ rootUuid ];
if ( bindingByName !== undefined ) {
for ( const trackName in bindingByName ) {
const binding = bindingByName[ trackName ];
binding.restoreOriginalState();
this._removeInactiveBinding( binding );
}
}
}
// remove a targeted clip from the cache
uncacheAction( clip, optionalRoot ) {
const action = this.existingAction( clip, optionalRoot );
if ( action !== null ) {
this._deactivateAction( action );
this._removeInactiveAction( action );
}
}
}
let Uniform$1 = class Uniform {
constructor( value ) {
this.value = value;
}
clone() {
return new Uniform( this.value.clone === undefined ? this.value : this.value.clone() );
}
};
let _id$8 = 0;
let UniformsGroup$1 = class UniformsGroup extends EventDispatcher {
constructor() {
super();
this.isUniformsGroup = true;
Object.defineProperty( this, 'id', { value: _id$8 ++ } );
this.name = '';
this.usage = StaticDrawUsage;
this.uniforms = [];
}
add( uniform ) {
this.uniforms.push( uniform );
return this;
}
remove( uniform ) {
const index = this.uniforms.indexOf( uniform );
if ( index !== - 1 ) this.uniforms.splice( index, 1 );
return this;
}
setName( name ) {
this.name = name;
return this;
}
setUsage( value ) {
this.usage = value;
return this;
}
dispose() {
this.dispatchEvent( { type: 'dispose' } );
return this;
}
copy( source ) {
this.name = source.name;
this.usage = source.usage;
const uniformsSource = source.uniforms;
this.uniforms.length = 0;
for ( let i = 0, l = uniformsSource.length; i < l; i ++ ) {
const uniforms = Array.isArray( uniformsSource[ i ] ) ? uniformsSource[ i ] : [ uniformsSource[ i ] ];
for ( let j = 0; j < uniforms.length; j ++ ) {
this.uniforms.push( uniforms[ j ].clone() );
}
}
return this;
}
clone() {
return new this.constructor().copy( this );
}
};
class InstancedInterleavedBuffer extends InterleavedBuffer {
constructor( array, stride, meshPerAttribute = 1 ) {
super( array, stride );
this.isInstancedInterleavedBuffer = true;
this.meshPerAttribute = meshPerAttribute;
}
copy( source ) {
super.copy( source );
this.meshPerAttribute = source.meshPerAttribute;
return this;
}
clone( data ) {
const ib = super.clone( data );
ib.meshPerAttribute = this.meshPerAttribute;
return ib;
}
toJSON( data ) {
const json = super.toJSON( data );
json.isInstancedInterleavedBuffer = true;
json.meshPerAttribute = this.meshPerAttribute;
return json;
}
}
class GLBufferAttribute {
constructor( buffer, type, itemSize, elementSize, count ) {
this.isGLBufferAttribute = true;
this.name = '';
this.buffer = buffer;
this.type = type;
this.itemSize = itemSize;
this.elementSize = elementSize;
this.count = count;
this.version = 0;
}
set needsUpdate( value ) {
if ( value === true ) this.version ++;
}
setBuffer( buffer ) {
this.buffer = buffer;
return this;
}
setType( type, elementSize ) {
this.type = type;
this.elementSize = elementSize;
return this;
}
setItemSize( itemSize ) {
this.itemSize = itemSize;
return this;
}
setCount( count ) {
this.count = count;
return this;
}
}
const _matrix = /*@__PURE__*/ new Matrix4();
class Raycaster {
constructor( origin, direction, near = 0, far = Infinity ) {
this.ray = new Ray( origin, direction );
// direction is assumed to be normalized (for accurate distance calculations)
this.near = near;
this.far = far;
this.camera = null;
this.layers = new Layers();
this.params = {
Mesh: {},
Line: { threshold: 1 },
LOD: {},
Points: { threshold: 1 },
Sprite: {}
};
}
set( origin, direction ) {
// direction is assumed to be normalized (for accurate distance calculations)
this.ray.set( origin, direction );
}
setFromCamera( coords, camera ) {
if ( camera.isPerspectiveCamera ) {
this.ray.origin.setFromMatrixPosition( camera.matrixWorld );
this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize();
this.camera = camera;
} else if ( camera.isOrthographicCamera ) {
this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera
this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld );
this.camera = camera;
} else {
console.error( 'THREE.Raycaster: Unsupported camera type: ' + camera.type );
}
}
setFromXRController( controller ) {
_matrix.identity().extractRotation( controller.matrixWorld );
this.ray.origin.setFromMatrixPosition( controller.matrixWorld );
this.ray.direction.set( 0, 0, - 1 ).applyMatrix4( _matrix );
return this;
}
intersectObject( object, recursive = true, intersects = [] ) {
intersect( object, this, intersects, recursive );
intersects.sort( ascSort );
return intersects;
}
intersectObjects( objects, recursive = true, intersects = [] ) {
for ( let i = 0, l = objects.length; i < l; i ++ ) {
intersect( objects[ i ], this, intersects, recursive );
}
intersects.sort( ascSort );
return intersects;
}
}
function ascSort( a, b ) {
return a.distance - b.distance;
}
function intersect( object, raycaster, intersects, recursive ) {
let propagate = true;
if ( object.layers.test( raycaster.layers ) ) {
const result = object.raycast( raycaster, intersects );
if ( result === false ) propagate = false;
}
if ( propagate === true && recursive === true ) {
const children = object.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
intersect( children[ i ], raycaster, intersects, true );
}
}
}
/**
* Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
*
* phi (the polar angle) is measured from the positive y-axis. The positive y-axis is up.
* theta (the azimuthal angle) is measured from the positive z-axis.
*/
class Spherical {
constructor( radius = 1, phi = 0, theta = 0 ) {
this.radius = radius;
this.phi = phi; // polar angle
this.theta = theta; // azimuthal angle
return this;
}
set( radius, phi, theta ) {
this.radius = radius;
this.phi = phi;
this.theta = theta;
return this;
}
copy( other ) {
this.radius = other.radius;
this.phi = other.phi;
this.theta = other.theta;
return this;
}
// restrict phi to be between EPS and PI-EPS
makeSafe() {
const EPS = 0.000001;
this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) );
return this;
}
setFromVector3( v ) {
return this.setFromCartesianCoords( v.x, v.y, v.z );
}
setFromCartesianCoords( x, y, z ) {
this.radius = Math.sqrt( x * x + y * y + z * z );
if ( this.radius === 0 ) {
this.theta = 0;
this.phi = 0;
} else {
this.theta = Math.atan2( x, z );
this.phi = Math.acos( clamp$1( y / this.radius, - 1, 1 ) );
}
return this;
}
clone() {
return new this.constructor().copy( this );
}
}
/**
* Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system
*/
class Cylindrical {
constructor( radius = 1, theta = 0, y = 0 ) {
this.radius = radius; // distance from the origin to a point in the x-z plane
this.theta = theta; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis
this.y = y; // height above the x-z plane
return this;
}
set( radius, theta, y ) {
this.radius = radius;
this.theta = theta;
this.y = y;
return this;
}
copy( other ) {
this.radius = other.radius;
this.theta = other.theta;
this.y = other.y;
return this;
}
setFromVector3( v ) {
return this.setFromCartesianCoords( v.x, v.y, v.z );
}
setFromCartesianCoords( x, y, z ) {
this.radius = Math.sqrt( x * x + z * z );
this.theta = Math.atan2( x, z );
this.y = y;
return this;
}
clone() {
return new this.constructor().copy( this );
}
}
class Matrix2 {
constructor( n11, n12, n21, n22 ) {
Matrix2.prototype.isMatrix2 = true;
this.elements = [
1, 0,
0, 1,
];
if ( n11 !== undefined ) {
this.set( n11, n12, n21, n22 );
}
}
identity() {
this.set(
1, 0,
0, 1,
);
return this;
}
fromArray( array, offset = 0 ) {
for ( let i = 0; i < 4; i ++ ) {
this.elements[ i ] = array[ i + offset ];
}
return this;
}
set( n11, n12, n21, n22 ) {
const te = this.elements;
te[ 0 ] = n11; te[ 2 ] = n12;
te[ 1 ] = n21; te[ 3 ] = n22;
return this;
}
}
const _vector$4 = /*@__PURE__*/ new Vector2();
class Box2 {
constructor( min = new Vector2( + Infinity, + Infinity ), max = new Vector2( - Infinity, - Infinity ) ) {
this.isBox2 = true;
this.min = min;
this.max = max;
}
set( min, max ) {
this.min.copy( min );
this.max.copy( max );
return this;
}
setFromPoints( points ) {
this.makeEmpty();
for ( let i = 0, il = points.length; i < il; i ++ ) {
this.expandByPoint( points[ i ] );
}
return this;
}
setFromCenterAndSize( center, size ) {
const halfSize = _vector$4.copy( size ).multiplyScalar( 0.5 );
this.min.copy( center ).sub( halfSize );
this.max.copy( center ).add( halfSize );
return this;
}
clone() {
return new this.constructor().copy( this );
}
copy( box ) {
this.min.copy( box.min );
this.max.copy( box.max );
return this;
}
makeEmpty() {
this.min.x = this.min.y = + Infinity;
this.max.x = this.max.y = - Infinity;
return this;
}
isEmpty() {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y );
}
getCenter( target ) {
return this.isEmpty() ? target.set( 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );
}
getSize( target ) {
return this.isEmpty() ? target.set( 0, 0 ) : target.subVectors( this.max, this.min );
}
expandByPoint( point ) {
this.min.min( point );
this.max.max( point );
return this;
}
expandByVector( vector ) {
this.min.sub( vector );
this.max.add( vector );
return this;
}
expandByScalar( scalar ) {
this.min.addScalar( - scalar );
this.max.addScalar( scalar );
return this;
}
containsPoint( point ) {
return point.x >= this.min.x && point.x <= this.max.x &&
point.y >= this.min.y && point.y <= this.max.y;
}
containsBox( box ) {
return this.min.x <= box.min.x && box.max.x <= this.max.x &&
this.min.y <= box.min.y && box.max.y <= this.max.y;
}
getParameter( point, target ) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
return target.set(
( point.x - this.min.x ) / ( this.max.x - this.min.x ),
( point.y - this.min.y ) / ( this.max.y - this.min.y )
);
}
intersectsBox( box ) {
// using 4 splitting planes to rule out intersections
return box.max.x >= this.min.x && box.min.x <= this.max.x &&
box.max.y >= this.min.y && box.min.y <= this.max.y;
}
clampPoint( point, target ) {
return target.copy( point ).clamp( this.min, this.max );
}
distanceToPoint( point ) {
return this.clampPoint( point, _vector$4 ).distanceTo( point );
}
intersect( box ) {
this.min.max( box.min );
this.max.min( box.max );
if ( this.isEmpty() ) this.makeEmpty();
return this;
}
union( box ) {
this.min.min( box.min );
this.max.max( box.max );
return this;
}
translate( offset ) {
this.min.add( offset );
this.max.add( offset );
return this;
}
equals( box ) {
return box.min.equals( this.min ) && box.max.equals( this.max );
}
}
const _startP = /*@__PURE__*/ new Vector3();
const _startEnd = /*@__PURE__*/ new Vector3();
class Line3 {
constructor( start = new Vector3(), end = new Vector3() ) {
this.start = start;
this.end = end;
}
set( start, end ) {
this.start.copy( start );
this.end.copy( end );
return this;
}
copy( line ) {
this.start.copy( line.start );
this.end.copy( line.end );
return this;
}
getCenter( target ) {
return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 );
}
delta( target ) {
return target.subVectors( this.end, this.start );
}
distanceSq() {
return this.start.distanceToSquared( this.end );
}
distance() {
return this.start.distanceTo( this.end );
}
at( t, target ) {
return this.delta( target ).multiplyScalar( t ).add( this.start );
}
closestPointToPointParameter( point, clampToLine ) {
_startP.subVectors( point, this.start );
_startEnd.subVectors( this.end, this.start );
const startEnd2 = _startEnd.dot( _startEnd );
const startEnd_startP = _startEnd.dot( _startP );
let t = startEnd_startP / startEnd2;
if ( clampToLine ) {
t = clamp$1( t, 0, 1 );
}
return t;
}
closestPointToPoint( point, clampToLine, target ) {
const t = this.closestPointToPointParameter( point, clampToLine );
return this.delta( target ).multiplyScalar( t ).add( this.start );
}
applyMatrix4( matrix ) {
this.start.applyMatrix4( matrix );
this.end.applyMatrix4( matrix );
return this;
}
equals( line ) {
return line.start.equals( this.start ) && line.end.equals( this.end );
}
clone() {
return new this.constructor().copy( this );
}
}
const _vector$3 = /*@__PURE__*/ new Vector3();
class SpotLightHelper extends Object3D {
constructor( light, color ) {
super();
this.light = light;
this.matrixAutoUpdate = false;
this.color = color;
this.type = 'SpotLightHelper';
const geometry = new BufferGeometry();
const positions = [
0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, - 1, 0, 1,
0, 0, 0, 0, 1, 1,
0, 0, 0, 0, - 1, 1
];
for ( let i = 0, j = 1, l = 32; i < l; i ++, j ++ ) {
const p1 = ( i / l ) * Math.PI * 2;
const p2 = ( j / l ) * Math.PI * 2;
positions.push(
Math.cos( p1 ), Math.sin( p1 ), 1,
Math.cos( p2 ), Math.sin( p2 ), 1
);
}
geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
const material = new LineBasicMaterial( { fog: false, toneMapped: false } );
this.cone = new LineSegments( geometry, material );
this.add( this.cone );
this.update();
}
dispose() {
this.cone.geometry.dispose();
this.cone.material.dispose();
}
update() {
this.light.updateWorldMatrix( true, false );
this.light.target.updateWorldMatrix( true, false );
// update the local matrix based on the parent and light target transforms
if ( this.parent ) {
this.parent.updateWorldMatrix( true );
this.matrix
.copy( this.parent.matrixWorld )
.invert()
.multiply( this.light.matrixWorld );
} else {
this.matrix.copy( this.light.matrixWorld );
}
this.matrixWorld.copy( this.light.matrixWorld );
const coneLength = this.light.distance ? this.light.distance : 1000;
const coneWidth = coneLength * Math.tan( this.light.angle );
this.cone.scale.set( coneWidth, coneWidth, coneLength );
_vector$3.setFromMatrixPosition( this.light.target.matrixWorld );
this.cone.lookAt( _vector$3 );
if ( this.color !== undefined ) {
this.cone.material.color.set( this.color );
} else {
this.cone.material.color.copy( this.light.color );
}
}
}
const _vector$2 = /*@__PURE__*/ new Vector3();
const _boneMatrix = /*@__PURE__*/ new Matrix4();
const _matrixWorldInv = /*@__PURE__*/ new Matrix4();
class SkeletonHelper extends LineSegments {
constructor( object ) {
const bones = getBoneList( object );
const geometry = new BufferGeometry();
const vertices = [];
const colors = [];
const color1 = new Color( 0, 0, 1 );
const color2 = new Color( 0, 1, 0 );
for ( let i = 0; i < bones.length; i ++ ) {
const bone = bones[ i ];
if ( bone.parent && bone.parent.isBone ) {
vertices.push( 0, 0, 0 );
vertices.push( 0, 0, 0 );
colors.push( color1.r, color1.g, color1.b );
colors.push( color2.r, color2.g, color2.b );
}
}
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
const material = new LineBasicMaterial( { vertexColors: true, depthTest: false, depthWrite: false, toneMapped: false, transparent: true } );
super( geometry, material );
this.isSkeletonHelper = true;
this.type = 'SkeletonHelper';
this.root = object;
this.bones = bones;
this.matrix = object.matrixWorld;
this.matrixAutoUpdate = false;
}
updateMatrixWorld( force ) {
const bones = this.bones;
const geometry = this.geometry;
const position = geometry.getAttribute( 'position' );
_matrixWorldInv.copy( this.root.matrixWorld ).invert();
for ( let i = 0, j = 0; i < bones.length; i ++ ) {
const bone = bones[ i ];
if ( bone.parent && bone.parent.isBone ) {
_boneMatrix.multiplyMatrices( _matrixWorldInv, bone.matrixWorld );
_vector$2.setFromMatrixPosition( _boneMatrix );
position.setXYZ( j, _vector$2.x, _vector$2.y, _vector$2.z );
_boneMatrix.multiplyMatrices( _matrixWorldInv, bone.parent.matrixWorld );
_vector$2.setFromMatrixPosition( _boneMatrix );
position.setXYZ( j + 1, _vector$2.x, _vector$2.y, _vector$2.z );
j += 2;
}
}
geometry.getAttribute( 'position' ).needsUpdate = true;
super.updateMatrixWorld( force );
}
dispose() {
this.geometry.dispose();
this.material.dispose();
}
}
function getBoneList( object ) {
const boneList = [];
if ( object.isBone === true ) {
boneList.push( object );
}
for ( let i = 0; i < object.children.length; i ++ ) {
boneList.push.apply( boneList, getBoneList( object.children[ i ] ) );
}
return boneList;
}
class PointLightHelper extends Mesh {
constructor( light, sphereSize, color ) {
const geometry = new SphereGeometry( sphereSize, 4, 2 );
const material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } );
super( geometry, material );
this.light = light;
this.color = color;
this.type = 'PointLightHelper';
this.matrix = this.light.matrixWorld;
this.matrixAutoUpdate = false;
this.update();
/*
// TODO: delete this comment?
const distanceGeometry = new THREE.IcosahedronGeometry( 1, 2 );
const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );
this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial );
this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial );
const d = light.distance;
if ( d === 0.0 ) {
this.lightDistance.visible = false;
} else {
this.lightDistance.scale.set( d, d, d );
}
this.add( this.lightDistance );
*/
}
dispose() {
this.geometry.dispose();
this.material.dispose();
}
update() {
this.light.updateWorldMatrix( true, false );
if ( this.color !== undefined ) {
this.material.color.set( this.color );
} else {
this.material.color.copy( this.light.color );
}
/*
const d = this.light.distance;
if ( d === 0.0 ) {
this.lightDistance.visible = false;
} else {
this.lightDistance.visible = true;
this.lightDistance.scale.set( d, d, d );
}
*/
}
}
const _vector$1 = /*@__PURE__*/ new Vector3();
const _color1 = /*@__PURE__*/ new Color();
const _color2 = /*@__PURE__*/ new Color();
class HemisphereLightHelper extends Object3D {
constructor( light, size, color ) {
super();
this.light = light;
this.matrix = light.matrixWorld;
this.matrixAutoUpdate = false;
this.color = color;
this.type = 'HemisphereLightHelper';
const geometry = new OctahedronGeometry( size );
geometry.rotateY( Math.PI * 0.5 );
this.material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } );
if ( this.color === undefined ) this.material.vertexColors = true;
const position = geometry.getAttribute( 'position' );
const colors = new Float32Array( position.count * 3 );
geometry.setAttribute( 'color', new BufferAttribute( colors, 3 ) );
this.add( new Mesh( geometry, this.material ) );
this.update();
}
dispose() {
this.children[ 0 ].geometry.dispose();
this.children[ 0 ].material.dispose();
}
update() {
const mesh = this.children[ 0 ];
if ( this.color !== undefined ) {
this.material.color.set( this.color );
} else {
const colors = mesh.geometry.getAttribute( 'color' );
_color1.copy( this.light.color );
_color2.copy( this.light.groundColor );
for ( let i = 0, l = colors.count; i < l; i ++ ) {
const color = ( i < ( l / 2 ) ) ? _color1 : _color2;
colors.setXYZ( i, color.r, color.g, color.b );
}
colors.needsUpdate = true;
}
this.light.updateWorldMatrix( true, false );
mesh.lookAt( _vector$1.setFromMatrixPosition( this.light.matrixWorld ).negate() );
}
}
class GridHelper extends LineSegments {
constructor( size = 10, divisions = 10, color1 = 0x444444, color2 = 0x888888 ) {
color1 = new Color( color1 );
color2 = new Color( color2 );
const center = divisions / 2;
const step = size / divisions;
const halfSize = size / 2;
const vertices = [], colors = [];
for ( let i = 0, j = 0, k = - halfSize; i <= divisions; i ++, k += step ) {
vertices.push( - halfSize, 0, k, halfSize, 0, k );
vertices.push( k, 0, - halfSize, k, 0, halfSize );
const color = i === center ? color1 : color2;
color.toArray( colors, j ); j += 3;
color.toArray( colors, j ); j += 3;
color.toArray( colors, j ); j += 3;
color.toArray( colors, j ); j += 3;
}
const geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } );
super( geometry, material );
this.type = 'GridHelper';
}
dispose() {
this.geometry.dispose();
this.material.dispose();
}
}
class PolarGridHelper extends LineSegments {
constructor( radius = 10, sectors = 16, rings = 8, divisions = 64, color1 = 0x444444, color2 = 0x888888 ) {
color1 = new Color( color1 );
color2 = new Color( color2 );
const vertices = [];
const colors = [];
// create the sectors
if ( sectors > 1 ) {
for ( let i = 0; i < sectors; i ++ ) {
const v = ( i / sectors ) * ( Math.PI * 2 );
const x = Math.sin( v ) * radius;
const z = Math.cos( v ) * radius;
vertices.push( 0, 0, 0 );
vertices.push( x, 0, z );
const color = ( i & 1 ) ? color1 : color2;
colors.push( color.r, color.g, color.b );
colors.push( color.r, color.g, color.b );
}
}
// create the rings
for ( let i = 0; i < rings; i ++ ) {
const color = ( i & 1 ) ? color1 : color2;
const r = radius - ( radius / rings * i );
for ( let j = 0; j < divisions; j ++ ) {
// first vertex
let v = ( j / divisions ) * ( Math.PI * 2 );
let x = Math.sin( v ) * r;
let z = Math.cos( v ) * r;
vertices.push( x, 0, z );
colors.push( color.r, color.g, color.b );
// second vertex
v = ( ( j + 1 ) / divisions ) * ( Math.PI * 2 );
x = Math.sin( v ) * r;
z = Math.cos( v ) * r;
vertices.push( x, 0, z );
colors.push( color.r, color.g, color.b );
}
}
const geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } );
super( geometry, material );
this.type = 'PolarGridHelper';
}
dispose() {
this.geometry.dispose();
this.material.dispose();
}
}
const _v1 = /*@__PURE__*/ new Vector3();
const _v2 = /*@__PURE__*/ new Vector3();
const _v3 = /*@__PURE__*/ new Vector3();
class DirectionalLightHelper extends Object3D {
constructor( light, size, color ) {
super();
this.light = light;
this.matrix = light.matrixWorld;
this.matrixAutoUpdate = false;
this.color = color;
this.type = 'DirectionalLightHelper';
if ( size === undefined ) size = 1;
let geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( [
- size, size, 0,
size, size, 0,
size, - size, 0,
- size, - size, 0,
- size, size, 0
], 3 ) );
const material = new LineBasicMaterial( { fog: false, toneMapped: false } );
this.lightPlane = new Line( geometry, material );
this.add( this.lightPlane );
geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 0, 1 ], 3 ) );
this.targetLine = new Line( geometry, material );
this.add( this.targetLine );
this.update();
}
dispose() {
this.lightPlane.geometry.dispose();
this.lightPlane.material.dispose();
this.targetLine.geometry.dispose();
this.targetLine.material.dispose();
}
update() {
this.light.updateWorldMatrix( true, false );
this.light.target.updateWorldMatrix( true, false );
_v1.setFromMatrixPosition( this.light.matrixWorld );
_v2.setFromMatrixPosition( this.light.target.matrixWorld );
_v3.subVectors( _v2, _v1 );
this.lightPlane.lookAt( _v2 );
if ( this.color !== undefined ) {
this.lightPlane.material.color.set( this.color );
this.targetLine.material.color.set( this.color );
} else {
this.lightPlane.material.color.copy( this.light.color );
this.targetLine.material.color.copy( this.light.color );
}
this.targetLine.lookAt( _v2 );
this.targetLine.scale.z = _v3.length();
}
}
const _vector = /*@__PURE__*/ new Vector3();
const _camera$1 = /*@__PURE__*/ new Camera();
/**
* - shows frustum, line of sight and up of the camera
* - suitable for fast updates
* - based on frustum visualization in lightgl.js shadowmap example
* https://github.com/evanw/lightgl.js/blob/master/tests/shadowmap.html
*/
class CameraHelper extends LineSegments {
constructor( camera ) {
const geometry = new BufferGeometry();
const material = new LineBasicMaterial( { color: 0xffffff, vertexColors: true, toneMapped: false } );
const vertices = [];
const colors = [];
const pointMap = {};
// near
addLine( 'n1', 'n2' );
addLine( 'n2', 'n4' );
addLine( 'n4', 'n3' );
addLine( 'n3', 'n1' );
// far
addLine( 'f1', 'f2' );
addLine( 'f2', 'f4' );
addLine( 'f4', 'f3' );
addLine( 'f3', 'f1' );
// sides
addLine( 'n1', 'f1' );
addLine( 'n2', 'f2' );
addLine( 'n3', 'f3' );
addLine( 'n4', 'f4' );
// cone
addLine( 'p', 'n1' );
addLine( 'p', 'n2' );
addLine( 'p', 'n3' );
addLine( 'p', 'n4' );
// up
addLine( 'u1', 'u2' );
addLine( 'u2', 'u3' );
addLine( 'u3', 'u1' );
// target
addLine( 'c', 't' );
addLine( 'p', 'c' );
// cross
addLine( 'cn1', 'cn2' );
addLine( 'cn3', 'cn4' );
addLine( 'cf1', 'cf2' );
addLine( 'cf3', 'cf4' );
function addLine( a, b ) {
addPoint( a );
addPoint( b );
}
function addPoint( id ) {
vertices.push( 0, 0, 0 );
colors.push( 0, 0, 0 );
if ( pointMap[ id ] === undefined ) {
pointMap[ id ] = [];
}
pointMap[ id ].push( ( vertices.length / 3 ) - 1 );
}
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
super( geometry, material );
this.type = 'CameraHelper';
this.camera = camera;
if ( this.camera.updateProjectionMatrix ) this.camera.updateProjectionMatrix();
this.matrix = camera.matrixWorld;
this.matrixAutoUpdate = false;
this.pointMap = pointMap;
this.update();
// colors
const colorFrustum = new Color( 0xffaa00 );
const colorCone = new Color( 0xff0000 );
const colorUp = new Color( 0x00aaff );
const colorTarget = new Color( 0xffffff );
const colorCross = new Color( 0x333333 );
this.setColors( colorFrustum, colorCone, colorUp, colorTarget, colorCross );
}
setColors( frustum, cone, up, target, cross ) {
const geometry = this.geometry;
const colorAttribute = geometry.getAttribute( 'color' );
// near
colorAttribute.setXYZ( 0, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 1, frustum.r, frustum.g, frustum.b ); // n1, n2
colorAttribute.setXYZ( 2, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 3, frustum.r, frustum.g, frustum.b ); // n2, n4
colorAttribute.setXYZ( 4, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 5, frustum.r, frustum.g, frustum.b ); // n4, n3
colorAttribute.setXYZ( 6, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 7, frustum.r, frustum.g, frustum.b ); // n3, n1
// far
colorAttribute.setXYZ( 8, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 9, frustum.r, frustum.g, frustum.b ); // f1, f2
colorAttribute.setXYZ( 10, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 11, frustum.r, frustum.g, frustum.b ); // f2, f4
colorAttribute.setXYZ( 12, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 13, frustum.r, frustum.g, frustum.b ); // f4, f3
colorAttribute.setXYZ( 14, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 15, frustum.r, frustum.g, frustum.b ); // f3, f1
// sides
colorAttribute.setXYZ( 16, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 17, frustum.r, frustum.g, frustum.b ); // n1, f1
colorAttribute.setXYZ( 18, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 19, frustum.r, frustum.g, frustum.b ); // n2, f2
colorAttribute.setXYZ( 20, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 21, frustum.r, frustum.g, frustum.b ); // n3, f3
colorAttribute.setXYZ( 22, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 23, frustum.r, frustum.g, frustum.b ); // n4, f4
// cone
colorAttribute.setXYZ( 24, cone.r, cone.g, cone.b ); colorAttribute.setXYZ( 25, cone.r, cone.g, cone.b ); // p, n1
colorAttribute.setXYZ( 26, cone.r, cone.g, cone.b ); colorAttribute.setXYZ( 27, cone.r, cone.g, cone.b ); // p, n2
colorAttribute.setXYZ( 28, cone.r, cone.g, cone.b ); colorAttribute.setXYZ( 29, cone.r, cone.g, cone.b ); // p, n3
colorAttribute.setXYZ( 30, cone.r, cone.g, cone.b ); colorAttribute.setXYZ( 31, cone.r, cone.g, cone.b ); // p, n4
// up
colorAttribute.setXYZ( 32, up.r, up.g, up.b ); colorAttribute.setXYZ( 33, up.r, up.g, up.b ); // u1, u2
colorAttribute.setXYZ( 34, up.r, up.g, up.b ); colorAttribute.setXYZ( 35, up.r, up.g, up.b ); // u2, u3
colorAttribute.setXYZ( 36, up.r, up.g, up.b ); colorAttribute.setXYZ( 37, up.r, up.g, up.b ); // u3, u1
// target
colorAttribute.setXYZ( 38, target.r, target.g, target.b ); colorAttribute.setXYZ( 39, target.r, target.g, target.b ); // c, t
colorAttribute.setXYZ( 40, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 41, cross.r, cross.g, cross.b ); // p, c
// cross
colorAttribute.setXYZ( 42, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 43, cross.r, cross.g, cross.b ); // cn1, cn2
colorAttribute.setXYZ( 44, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 45, cross.r, cross.g, cross.b ); // cn3, cn4
colorAttribute.setXYZ( 46, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 47, cross.r, cross.g, cross.b ); // cf1, cf2
colorAttribute.setXYZ( 48, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 49, cross.r, cross.g, cross.b ); // cf3, cf4
colorAttribute.needsUpdate = true;
}
update() {
const geometry = this.geometry;
const pointMap = this.pointMap;
const w = 1, h = 1;
// we need just camera projection matrix inverse
// world matrix must be identity
_camera$1.projectionMatrixInverse.copy( this.camera.projectionMatrixInverse );
// center / target
setPoint( 'c', pointMap, geometry, _camera$1, 0, 0, - 1 );
setPoint( 't', pointMap, geometry, _camera$1, 0, 0, 1 );
// near
setPoint( 'n1', pointMap, geometry, _camera$1, - w, - h, - 1 );
setPoint( 'n2', pointMap, geometry, _camera$1, w, - h, - 1 );
setPoint( 'n3', pointMap, geometry, _camera$1, - w, h, - 1 );
setPoint( 'n4', pointMap, geometry, _camera$1, w, h, - 1 );
// far
setPoint( 'f1', pointMap, geometry, _camera$1, - w, - h, 1 );
setPoint( 'f2', pointMap, geometry, _camera$1, w, - h, 1 );
setPoint( 'f3', pointMap, geometry, _camera$1, - w, h, 1 );
setPoint( 'f4', pointMap, geometry, _camera$1, w, h, 1 );
// up
setPoint( 'u1', pointMap, geometry, _camera$1, w * 0.7, h * 1.1, - 1 );
setPoint( 'u2', pointMap, geometry, _camera$1, - w * 0.7, h * 1.1, - 1 );
setPoint( 'u3', pointMap, geometry, _camera$1, 0, h * 2, - 1 );
// cross
setPoint( 'cf1', pointMap, geometry, _camera$1, - w, 0, 1 );
setPoint( 'cf2', pointMap, geometry, _camera$1, w, 0, 1 );
setPoint( 'cf3', pointMap, geometry, _camera$1, 0, - h, 1 );
setPoint( 'cf4', pointMap, geometry, _camera$1, 0, h, 1 );
setPoint( 'cn1', pointMap, geometry, _camera$1, - w, 0, - 1 );
setPoint( 'cn2', pointMap, geometry, _camera$1, w, 0, - 1 );
setPoint( 'cn3', pointMap, geometry, _camera$1, 0, - h, - 1 );
setPoint( 'cn4', pointMap, geometry, _camera$1, 0, h, - 1 );
geometry.getAttribute( 'position' ).needsUpdate = true;
}
dispose() {
this.geometry.dispose();
this.material.dispose();
}
}
function setPoint( point, pointMap, geometry, camera, x, y, z ) {
_vector.set( x, y, z ).unproject( camera );
const points = pointMap[ point ];
if ( points !== undefined ) {
const position = geometry.getAttribute( 'position' );
for ( let i = 0, l = points.length; i < l; i ++ ) {
position.setXYZ( points[ i ], _vector.x, _vector.y, _vector.z );
}
}
}
const _box = /*@__PURE__*/ new Box3();
class BoxHelper extends LineSegments {
constructor( object, color = 0xffff00 ) {
const indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );
const positions = new Float32Array( 8 * 3 );
const geometry = new BufferGeometry();
geometry.setIndex( new BufferAttribute( indices, 1 ) );
geometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) );
super( geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );
this.object = object;
this.type = 'BoxHelper';
this.matrixAutoUpdate = false;
this.update();
}
update( object ) {
if ( object !== undefined ) {
console.warn( 'THREE.BoxHelper: .update() has no longer arguments.' );
}
if ( this.object !== undefined ) {
_box.setFromObject( this.object );
}
if ( _box.isEmpty() ) return;
const min = _box.min;
const max = _box.max;
/*
5____4
1/___0/|
| 6__|_7
2/___3/
0: max.x, max.y, max.z
1: min.x, max.y, max.z
2: min.x, min.y, max.z
3: max.x, min.y, max.z
4: max.x, max.y, min.z
5: min.x, max.y, min.z
6: min.x, min.y, min.z
7: max.x, min.y, min.z
*/
const position = this.geometry.attributes.position;
const array = position.array;
array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z;
array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z;
array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z;
array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z;
array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z;
array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z;
array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z;
array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z;
position.needsUpdate = true;
this.geometry.computeBoundingSphere();
}
setFromObject( object ) {
this.object = object;
this.update();
return this;
}
copy( source, recursive ) {
super.copy( source, recursive );
this.object = source.object;
return this;
}
dispose() {
this.geometry.dispose();
this.material.dispose();
}
}
class Box3Helper extends LineSegments {
constructor( box, color = 0xffff00 ) {
const indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );
const positions = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, - 1, - 1, - 1, 1, - 1, - 1 ];
const geometry = new BufferGeometry();
geometry.setIndex( new BufferAttribute( indices, 1 ) );
geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
super( geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );
this.box = box;
this.type = 'Box3Helper';
this.geometry.computeBoundingSphere();
}
updateMatrixWorld( force ) {
const box = this.box;
if ( box.isEmpty() ) return;
box.getCenter( this.position );
box.getSize( this.scale );
this.scale.multiplyScalar( 0.5 );
super.updateMatrixWorld( force );
}
dispose() {
this.geometry.dispose();
this.material.dispose();
}
}
class PlaneHelper extends Line {
constructor( plane, size = 1, hex = 0xffff00 ) {
const color = hex;
const positions = [ 1, - 1, 0, - 1, 1, 0, - 1, - 1, 0, 1, 1, 0, - 1, 1, 0, - 1, - 1, 0, 1, - 1, 0, 1, 1, 0 ];
const geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
geometry.computeBoundingSphere();
super( geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );
this.type = 'PlaneHelper';
this.plane = plane;
this.size = size;
const positions2 = [ 1, 1, 0, - 1, 1, 0, - 1, - 1, 0, 1, 1, 0, - 1, - 1, 0, 1, - 1, 0 ];
const geometry2 = new BufferGeometry();
geometry2.setAttribute( 'position', new Float32BufferAttribute( positions2, 3 ) );
geometry2.computeBoundingSphere();
this.add( new Mesh( geometry2, new MeshBasicMaterial( { color: color, opacity: 0.2, transparent: true, depthWrite: false, toneMapped: false } ) ) );
}
updateMatrixWorld( force ) {
this.position.set( 0, 0, 0 );
this.scale.set( 0.5 * this.size, 0.5 * this.size, 1 );
this.lookAt( this.plane.normal );
this.translateZ( - this.plane.constant );
super.updateMatrixWorld( force );
}
dispose() {
this.geometry.dispose();
this.material.dispose();
this.children[ 0 ].geometry.dispose();
this.children[ 0 ].material.dispose();
}
}
const _axis = /*@__PURE__*/ new Vector3();
let _lineGeometry, _coneGeometry;
class ArrowHelper extends Object3D {
// dir is assumed to be normalized
constructor( dir = new Vector3( 0, 0, 1 ), origin = new Vector3( 0, 0, 0 ), length = 1, color = 0xffff00, headLength = length * 0.2, headWidth = headLength * 0.2 ) {
super();
this.type = 'ArrowHelper';
if ( _lineGeometry === undefined ) {
_lineGeometry = new BufferGeometry();
_lineGeometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 1, 0 ], 3 ) );
_coneGeometry = new CylinderGeometry( 0, 0.5, 1, 5, 1 );
_coneGeometry.translate( 0, - 0.5, 0 );
}
this.position.copy( origin );
this.line = new Line( _lineGeometry, new LineBasicMaterial( { color: color, toneMapped: false } ) );
this.line.matrixAutoUpdate = false;
this.add( this.line );
this.cone = new Mesh( _coneGeometry, new MeshBasicMaterial( { color: color, toneMapped: false } ) );
this.cone.matrixAutoUpdate = false;
this.add( this.cone );
this.setDirection( dir );
this.setLength( length, headLength, headWidth );
}
setDirection( dir ) {
// dir is assumed to be normalized
if ( dir.y > 0.99999 ) {
this.quaternion.set( 0, 0, 0, 1 );
} else if ( dir.y < - 0.99999 ) {
this.quaternion.set( 1, 0, 0, 0 );
} else {
_axis.set( dir.z, 0, - dir.x ).normalize();
const radians = Math.acos( dir.y );
this.quaternion.setFromAxisAngle( _axis, radians );
}
}
setLength( length, headLength = length * 0.2, headWidth = headLength * 0.2 ) {
this.line.scale.set( 1, Math.max( 0.0001, length - headLength ), 1 ); // see #17458
this.line.updateMatrix();
this.cone.scale.set( headWidth, headLength, headWidth );
this.cone.position.y = length;
this.cone.updateMatrix();
}
setColor( color ) {
this.line.material.color.set( color );
this.cone.material.color.set( color );
}
copy( source ) {
super.copy( source, false );
this.line.copy( source.line );
this.cone.copy( source.cone );
return this;
}
dispose() {
this.line.geometry.dispose();
this.line.material.dispose();
this.cone.geometry.dispose();
this.cone.material.dispose();
}
}
class AxesHelper extends LineSegments {
constructor( size = 1 ) {
const vertices = [
0, 0, 0, size, 0, 0,
0, 0, 0, 0, size, 0,
0, 0, 0, 0, 0, size
];
const colors = [
1, 0, 0, 1, 0.6, 0,
0, 1, 0, 0.6, 1, 0,
0, 0, 1, 0, 0.6, 1
];
const geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } );
super( geometry, material );
this.type = 'AxesHelper';
}
setColors( xAxisColor, yAxisColor, zAxisColor ) {
const color = new Color();
const array = this.geometry.attributes.color.array;
color.set( xAxisColor );
color.toArray( array, 0 );
color.toArray( array, 3 );
color.set( yAxisColor );
color.toArray( array, 6 );
color.toArray( array, 9 );
color.set( zAxisColor );
color.toArray( array, 12 );
color.toArray( array, 15 );
this.geometry.attributes.color.needsUpdate = true;
return this;
}
dispose() {
this.geometry.dispose();
this.material.dispose();
}
}
class ShapePath {
constructor() {
this.type = 'ShapePath';
this.color = new Color();
this.subPaths = [];
this.currentPath = null;
}
moveTo( x, y ) {
this.currentPath = new Path();
this.subPaths.push( this.currentPath );
this.currentPath.moveTo( x, y );
return this;
}
lineTo( x, y ) {
this.currentPath.lineTo( x, y );
return this;
}
quadraticCurveTo( aCPx, aCPy, aX, aY ) {
this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY );
return this;
}
bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {
this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY );
return this;
}
splineThru( pts ) {
this.currentPath.splineThru( pts );
return this;
}
toShapes( isCCW ) {
function toShapesNoHoles( inSubpaths ) {
const shapes = [];
for ( let i = 0, l = inSubpaths.length; i < l; i ++ ) {
const tmpPath = inSubpaths[ i ];
const tmpShape = new Shape();
tmpShape.curves = tmpPath.curves;
shapes.push( tmpShape );
}
return shapes;
}
function isPointInsidePolygon( inPt, inPolygon ) {
const polyLen = inPolygon.length;
// inPt on polygon contour => immediate success or
// toggling of inside/outside at every single! intersection point of an edge
// with the horizontal line through inPt, left of inPt
// not counting lowerY endpoints of edges and whole edges on that line
let inside = false;
for ( let p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) {
let edgeLowPt = inPolygon[ p ];
let edgeHighPt = inPolygon[ q ];
let edgeDx = edgeHighPt.x - edgeLowPt.x;
let edgeDy = edgeHighPt.y - edgeLowPt.y;
if ( Math.abs( edgeDy ) > Number.EPSILON ) {
// not parallel
if ( edgeDy < 0 ) {
edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx;
edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy;
}
if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) continue;
if ( inPt.y === edgeLowPt.y ) {
if ( inPt.x === edgeLowPt.x ) return true; // inPt is on contour ?
// continue; // no intersection or edgeLowPt => doesn't count !!!
} else {
const perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y );
if ( perpEdge === 0 ) return true; // inPt is on contour ?
if ( perpEdge < 0 ) continue;
inside = ! inside; // true intersection left of inPt
}
} else {
// parallel or collinear
if ( inPt.y !== edgeLowPt.y ) continue; // parallel
// edge lies on the same horizontal line as inPt
if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) ||
( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) return true; // inPt: Point on contour !
// continue;
}
}
return inside;
}
const isClockWise = ShapeUtils.isClockWise;
const subPaths = this.subPaths;
if ( subPaths.length === 0 ) return [];
let solid, tmpPath, tmpShape;
const shapes = [];
if ( subPaths.length === 1 ) {
tmpPath = subPaths[ 0 ];
tmpShape = new Shape();
tmpShape.curves = tmpPath.curves;
shapes.push( tmpShape );
return shapes;
}
let holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() );
holesFirst = isCCW ? ! holesFirst : holesFirst;
// console.log("Holes first", holesFirst);
const betterShapeHoles = [];
const newShapes = [];
let newShapeHoles = [];
let mainIdx = 0;
let tmpPoints;
newShapes[ mainIdx ] = undefined;
newShapeHoles[ mainIdx ] = [];
for ( let i = 0, l = subPaths.length; i < l; i ++ ) {
tmpPath = subPaths[ i ];
tmpPoints = tmpPath.getPoints();
solid = isClockWise( tmpPoints );
solid = isCCW ? ! solid : solid;
if ( solid ) {
if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) ) mainIdx ++;
newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints };
newShapes[ mainIdx ].s.curves = tmpPath.curves;
if ( holesFirst ) mainIdx ++;
newShapeHoles[ mainIdx ] = [];
//console.log('cw', i);
} else {
newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } );
//console.log('ccw', i);
}
}
// only Holes? -> probably all Shapes with wrong orientation
if ( ! newShapes[ 0 ] ) return toShapesNoHoles( subPaths );
if ( newShapes.length > 1 ) {
let ambiguous = false;
let toChange = 0;
for ( let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {
betterShapeHoles[ sIdx ] = [];
}
for ( let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {
const sho = newShapeHoles[ sIdx ];
for ( let hIdx = 0; hIdx < sho.length; hIdx ++ ) {
const ho = sho[ hIdx ];
let hole_unassigned = true;
for ( let s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) {
if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) {
if ( sIdx !== s2Idx ) toChange ++;
if ( hole_unassigned ) {
hole_unassigned = false;
betterShapeHoles[ s2Idx ].push( ho );
} else {
ambiguous = true;
}
}
}
if ( hole_unassigned ) {
betterShapeHoles[ sIdx ].push( ho );
}
}
}
if ( toChange > 0 && ambiguous === false ) {
newShapeHoles = betterShapeHoles;
}
}
let tmpHoles;
for ( let i = 0, il = newShapes.length; i < il; i ++ ) {
tmpShape = newShapes[ i ].s;
shapes.push( tmpShape );
tmpHoles = newShapeHoles[ i ];
for ( let j = 0, jl = tmpHoles.length; j < jl; j ++ ) {
tmpShape.holes.push( tmpHoles[ j ].h );
}
}
//console.log("shape", shapes);
return shapes;
}
}
class WebGLMultipleRenderTargets extends WebGLRenderTarget { // @deprecated, r162
constructor( width = 1, height = 1, count = 1, options = {} ) {
console.warn( 'THREE.WebGLMultipleRenderTargets has been deprecated and will be removed in r172. Use THREE.WebGLRenderTarget and set the "count" parameter to enable MRT.' );
super( width, height, { ...options, count } );
this.isWebGLMultipleRenderTargets = true;
}
get texture() {
return this.textures;
}
}
if ( self.GPUShaderStage === undefined ) {
self.GPUShaderStage = { VERTEX: 1, FRAGMENT: 2, COMPUTE: 4 };
}
// statics
let isAvailable = navigator.gpu !== undefined;
if ( typeof window !== 'undefined' && isAvailable ) {
isAvailable = await navigator.gpu.requestAdapter();
}
class WebGPU {
static isAvailable() {
return Boolean( isAvailable );
}
static getStaticAdapter() {
return isAvailable;
}
static getErrorMessage() {
const message = 'Your browser does not support <a href="https://gpuweb.github.io/gpuweb/" style="color:blue">WebGPU</a> yet';
const element = document.createElement( 'div' );
element.id = 'webgpumessage';
element.style.fontFamily = 'monospace';
element.style.fontSize = '13px';
element.style.fontWeight = 'normal';
element.style.textAlign = 'center';
element.style.background = '#fff';
element.style.color = '#000';
element.style.padding = '1.5em';
element.style.maxWidth = '400px';
element.style.margin = '5em auto 0';
element.innerHTML = message;
return element;
}
}
class Animation {
constructor( nodes, info ) {
this.nodes = nodes;
this.info = info;
this.animationLoop = null;
this.requestId = null;
this._init();
}
_init() {
const update = ( time, frame ) => {
this.requestId = self.requestAnimationFrame( update );
if ( this.info.autoReset === true ) this.info.reset();
this.nodes.nodeFrame.update();
this.info.frame = this.nodes.nodeFrame.frameId;
if ( this.animationLoop !== null ) this.animationLoop( time, frame );
};
update();
}
dispose() {
self.cancelAnimationFrame( this.requestId );
this.requestId = null;
}
setAnimationLoop( callback ) {
this.animationLoop = callback;
}
}
class ChainMap {
constructor() {
this.weakMap = new WeakMap();
}
get( keys ) {
let map = this.weakMap;
for ( let i = 0; i < keys.length; i ++ ) {
map = map.get( keys[ i ] );
if ( map === undefined ) return undefined;
}
return map.get( keys[ keys.length - 1 ] );
}
set( keys, value ) {
let map = this.weakMap;
for ( let i = 0; i < keys.length; i ++ ) {
const key = keys[ i ];
if ( map.has( key ) === false ) map.set( key, new WeakMap() );
map = map.get( key );
}
return map.set( keys[ keys.length - 1 ], value );
}
delete( keys ) {
let map = this.weakMap;
for ( let i = 0; i < keys.length; i ++ ) {
map = map.get( keys[ i ] );
if ( map === undefined ) return false;
}
return map.delete( keys[ keys.length - 1 ] );
}
}
const _plane = /*@__PURE__*/ new Plane();
let _clippingContextVersion = 0;
class ClippingContext {
constructor() {
this.version = ++ _clippingContextVersion;
this.globalClippingCount = 0;
this.localClippingCount = 0;
this.localClippingEnabled = false;
this.localClipIntersection = false;
this.planes = [];
this.parentVersion = 0;
this.viewNormalMatrix = new Matrix3();
}
projectPlanes( source, offset ) {
const l = source.length;
const planes = this.planes;
for ( let i = 0; i < l; i ++ ) {
_plane.copy( source[ i ] ).applyMatrix4( this.viewMatrix, this.viewNormalMatrix );
const v = planes[ offset + i ];
const normal = _plane.normal;
v.x = - normal.x;
v.y = - normal.y;
v.z = - normal.z;
v.w = _plane.constant;
}
}
updateGlobal( renderer, camera ) {
const rendererClippingPlanes = renderer.clippingPlanes;
this.viewMatrix = camera.matrixWorldInverse;
this.viewNormalMatrix.getNormalMatrix( this.viewMatrix );
let update = false;
if ( Array.isArray( rendererClippingPlanes ) && rendererClippingPlanes.length !== 0 ) {
const l = rendererClippingPlanes.length;
if ( l !== this.globalClippingCount ) {
const planes = [];
for ( let i = 0; i < l; i ++ ) {
planes.push( new Vector4() );
}
this.globalClippingCount = l;
this.planes = planes;
update = true;
}
this.projectPlanes( rendererClippingPlanes, 0 );
} else if ( this.globalClippingCount !== 0 ) {
this.globalClippingCount = 0;
this.planes = [];
update = true;
}
if ( renderer.localClippingEnabled !== this.localClippingEnabled ) {
this.localClippingEnabled = renderer.localClippingEnabled;
update = true;
}
if ( update ) this.version = _clippingContextVersion ++;
}
update( parent, material ) {
let update = false;
if ( this !== parent && parent.version !== this.parentVersion ) {
this.globalClippingCount = material.isShadowNodeMaterial ? 0 : parent.globalClippingCount;
this.localClippingEnabled = parent.localClippingEnabled;
this.planes = Array.from( parent.planes );
this.parentVersion = parent.version;
this.viewMatrix = parent.viewMatrix;
this.viewNormalMatrix = parent.viewNormalMatrix;
update = true;
}
if ( this.localClippingEnabled ) {
const localClippingPlanes = material.clippingPlanes;
if ( ( Array.isArray( localClippingPlanes ) && localClippingPlanes.length !== 0 ) ) {
const l = localClippingPlanes.length;
const planes = this.planes;
const offset = this.globalClippingCount;
if ( update || l !== this.localClippingCount ) {
planes.length = offset + l;
for ( let i = 0; i < l; i ++ ) {
planes[ offset + i ] = new Vector4();
}
this.localClippingCount = l;
update = true;
}
this.projectPlanes( localClippingPlanes, offset );
} else if ( this.localClippingCount !== 0 ) {
this.localClippingCount = 0;
update = true;
}
if ( this.localClipIntersection !== material.clipIntersection ) {
this.localClipIntersection = material.clipIntersection;
update = true;
}
}
if ( update ) this.version = _clippingContextVersion ++;
}
}
let _id$7 = 0;
function getKeys( obj ) {
const keys = Object.keys( obj );
let proto = Object.getPrototypeOf( obj );
while ( proto ) {
const descriptors = Object.getOwnPropertyDescriptors( proto );
for ( const key in descriptors ) {
if ( descriptors[ key ] !== undefined ) {
const descriptor = descriptors[ key ];
if ( descriptor && typeof descriptor.get === 'function' ) {
keys.push( key );
}
}
}
proto = Object.getPrototypeOf( proto );
}
return keys;
}
class RenderObject {
constructor( nodes, geometries, renderer, object, material, scene, camera, lightsNode, renderContext ) {
this._nodes = nodes;
this._geometries = geometries;
this.id = _id$7 ++;
this.renderer = renderer;
this.object = object;
this.material = material;
this.scene = scene;
this.camera = camera;
this.lightsNode = lightsNode;
this.context = renderContext;
this.geometry = object.geometry;
this.version = material.version;
this.drawRange = null;
this.attributes = null;
this.pipeline = null;
this.vertexBuffers = null;
this.updateClipping( renderContext.clippingContext );
this.clippingContextVersion = this.clippingContext.version;
this.initialNodesCacheKey = this.getDynamicCacheKey();
this.initialCacheKey = this.getCacheKey();
this._nodeBuilderState = null;
this._bindings = null;
this.onDispose = null;
this.isRenderObject = true;
this.onMaterialDispose = () => {
this.dispose();
};
this.material.addEventListener( 'dispose', this.onMaterialDispose );
}
updateClipping( parent ) {
const material = this.material;
let clippingContext = this.clippingContext;
if ( Array.isArray( material.clippingPlanes ) ) {
if ( clippingContext === parent || ! clippingContext ) {
clippingContext = new ClippingContext();
this.clippingContext = clippingContext;
}
clippingContext.update( parent, material );
} else if ( this.clippingContext !== parent ) {
this.clippingContext = parent;
}
}
get clippingNeedsUpdate() {
if ( this.clippingContext.version === this.clippingContextVersion ) return false;
this.clippingContextVersion = this.clippingContext.version;
return true;
}
getNodeBuilderState() {
return this._nodeBuilderState || ( this._nodeBuilderState = this._nodes.getForRender( this ) );
}
getBindings() {
return this._bindings || ( this._bindings = this.getNodeBuilderState().createBindings() );
}
getIndex() {
return this._geometries.getIndex( this );
}
getChainArray() {
return [ this.object, this.material, this.context, this.lightsNode ];
}
getAttributes() {
if ( this.attributes !== null ) return this.attributes;
const nodeAttributes = this.getNodeBuilderState().nodeAttributes;
const geometry = this.geometry;
const attributes = [];
const vertexBuffers = new Set();
for ( const nodeAttribute of nodeAttributes ) {
const attribute = nodeAttribute.node && nodeAttribute.node.attribute ? nodeAttribute.node.attribute : geometry.getAttribute( nodeAttribute.name );
if ( attribute === undefined ) continue;
attributes.push( attribute );
const bufferAttribute = attribute.isInterleavedBufferAttribute ? attribute.data : attribute;
vertexBuffers.add( bufferAttribute );
}
this.attributes = attributes;
this.vertexBuffers = Array.from( vertexBuffers.values() );
return attributes;
}
getVertexBuffers() {
if ( this.vertexBuffers === null ) this.getAttributes();
return this.vertexBuffers;
}
getMaterialCacheKey() {
const { object, material } = this;
let cacheKey = material.customProgramCacheKey();
for ( const property of getKeys( material ) ) {
if ( /^(is[A-Z]|_)|^(visible|version|uuid|name|opacity|userData)$/.test( property ) ) continue;
const value = material[ property ];
let valueKey;
if ( value !== null ) {
// some material values require a formatting
const type = typeof value;
if ( type === 'number' ) {
valueKey = value !== 0 ? '1' : '0'; // Convert to on/off, important for clearcoat, transmission, etc
} else if ( type === 'object' ) {
valueKey = '{';
if ( value.isTexture ) {
valueKey += value.mapping;
}
valueKey += '}';
} else {
valueKey = String( value );
}
} else {
valueKey = String( value );
}
cacheKey += /*property + ':' +*/ valueKey + ',';
}
cacheKey += this.clippingContextVersion + ',';
if ( object.skeleton ) {
cacheKey += object.skeleton.bones.length + ',';
}
if ( object.morphTargetInfluences ) {
cacheKey += object.morphTargetInfluences.length + ',';
}
if ( object.isBatchedMesh ) {
cacheKey += object._matricesTexture.uuid + ',';
if ( object._colorsTexture !== null ) {
cacheKey += object._colorsTexture.uuid + ',';
}
}
if ( object.count > 1 ) {
cacheKey += object.count + ',';
}
return cacheKey;
}
get needsUpdate() {
return this.initialNodesCacheKey !== this.getDynamicCacheKey() || this.clippingNeedsUpdate;
}
getDynamicCacheKey() {
// Environment Nodes Cache Key
return this.object.receiveShadow + ',' + this._nodes.getCacheKey( this.scene, this.lightsNode );
}
getCacheKey() {
return this.getMaterialCacheKey() + ',' + this.getDynamicCacheKey();
}
dispose() {
this.material.removeEventListener( 'dispose', this.onMaterialDispose );
this.onDispose();
}
}
class RenderObjects {
constructor( renderer, nodes, geometries, pipelines, bindings, info ) {
this.renderer = renderer;
this.nodes = nodes;
this.geometries = geometries;
this.pipelines = pipelines;
this.bindings = bindings;
this.info = info;
this.chainMaps = {};
}
get( object, material, scene, camera, lightsNode, renderContext, passId ) {
const chainMap = this.getChainMap( passId );
const chainArray = [ object, material, renderContext, lightsNode ];
let renderObject = chainMap.get( chainArray );
if ( renderObject === undefined ) {
renderObject = this.createRenderObject( this.nodes, this.geometries, this.renderer, object, material, scene, camera, lightsNode, renderContext, passId );
chainMap.set( chainArray, renderObject );
} else {
renderObject.updateClipping( renderContext.clippingContext );
if ( renderObject.version !== material.version || renderObject.needsUpdate ) {
if ( renderObject.initialCacheKey !== renderObject.getCacheKey() ) {
renderObject.dispose();
renderObject = this.get( object, material, scene, camera, lightsNode, renderContext, passId );
} else {
renderObject.version = material.version;
}
}
}
return renderObject;
}
getChainMap( passId = 'default' ) {
return this.chainMaps[ passId ] || ( this.chainMaps[ passId ] = new ChainMap() );
}
dispose() {
this.chainMaps = {};
}
createRenderObject( nodes, geometries, renderer, object, material, scene, camera, lightsNode, renderContext, passId ) {
const chainMap = this.getChainMap( passId );
const renderObject = new RenderObject( nodes, geometries, renderer, object, material, scene, camera, lightsNode, renderContext );
renderObject.onDispose = () => {
this.pipelines.delete( renderObject );
this.bindings.delete( renderObject );
this.nodes.delete( renderObject );
chainMap.delete( renderObject.getChainArray() );
};
return renderObject;
}
}
class DataMap {
constructor() {
this.data = new WeakMap();
}
get( object ) {
let map = this.data.get( object );
if ( map === undefined ) {
map = {};
this.data.set( object, map );
}
return map;
}
delete( object ) {
let map;
if ( this.data.has( object ) ) {
map = this.data.get( object );
this.data.delete( object );
}
return map;
}
has( object ) {
return this.data.has( object );
}
dispose() {
this.data = new WeakMap();
}
}
const AttributeType = {
VERTEX: 1,
INDEX: 2,
STORAGE: 4
};
// size of a chunk in bytes (STD140 layout)
const GPU_CHUNK_BYTES = 16;
// @TODO: Move to src/constants.js
const BlendColorFactor = 211;
const OneMinusBlendColorFactor = 212;
class Attributes extends DataMap {
constructor( backend ) {
super();
this.backend = backend;
}
delete( attribute ) {
const attributeData = super.delete( attribute );
if ( attributeData !== undefined ) {
this.backend.destroyAttribute( attribute );
}
return attributeData;
}
update( attribute, type ) {
const data = this.get( attribute );
if ( data.version === undefined ) {
if ( type === AttributeType.VERTEX ) {
this.backend.createAttribute( attribute );
} else if ( type === AttributeType.INDEX ) {
this.backend.createIndexAttribute( attribute );
} else if ( type === AttributeType.STORAGE ) {
this.backend.createStorageAttribute( attribute );
}
data.version = this._getBufferAttribute( attribute ).version;
} else {
const bufferAttribute = this._getBufferAttribute( attribute );
if ( data.version < bufferAttribute.version || bufferAttribute.usage === DynamicDrawUsage ) {
this.backend.updateAttribute( attribute );
data.version = bufferAttribute.version;
}
}
}
_getBufferAttribute( attribute ) {
if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;
return attribute;
}
}
function arrayNeedsUint32( array ) {
// assumes larger values usually on last
for ( let i = array.length - 1; i >= 0; -- i ) {
if ( array[ i ] >= 65535 ) return true; // account for PRIMITIVE_RESTART_FIXED_INDEX, #24565
}
return false;
}
function getWireframeVersion( geometry ) {
return ( geometry.index !== null ) ? geometry.index.version : geometry.attributes.position.version;
}
function getWireframeIndex( geometry ) {
const indices = [];
const geometryIndex = geometry.index;
const geometryPosition = geometry.attributes.position;
if ( geometryIndex !== null ) {
const array = geometryIndex.array;
for ( let i = 0, l = array.length; i < l; i += 3 ) {
const a = array[ i + 0 ];
const b = array[ i + 1 ];
const c = array[ i + 2 ];
indices.push( a, b, b, c, c, a );
}
} else {
const array = geometryPosition.array;
for ( let i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) {
const a = i + 0;
const b = i + 1;
const c = i + 2;
indices.push( a, b, b, c, c, a );
}
}
const attribute = new ( arrayNeedsUint32( indices ) ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 );
attribute.version = getWireframeVersion( geometry );
return attribute;
}
class Geometries extends DataMap {
constructor( attributes, info ) {
super();
this.attributes = attributes;
this.info = info;
this.wireframes = new WeakMap();
this.attributeCall = new WeakMap();
}
has( renderObject ) {
const geometry = renderObject.geometry;
return super.has( geometry ) && this.get( geometry ).initialized === true;
}
updateForRender( renderObject ) {
if ( this.has( renderObject ) === false ) this.initGeometry( renderObject );
this.updateAttributes( renderObject );
}
initGeometry( renderObject ) {
const geometry = renderObject.geometry;
const geometryData = this.get( geometry );
geometryData.initialized = true;
this.info.memory.geometries ++;
const onDispose = () => {
this.info.memory.geometries --;
const index = geometry.index;
const geometryAttributes = renderObject.getAttributes();
if ( index !== null ) {
this.attributes.delete( index );
}
for ( const geometryAttribute of geometryAttributes ) {
this.attributes.delete( geometryAttribute );
}
const wireframeAttribute = this.wireframes.get( geometry );
if ( wireframeAttribute !== undefined ) {
this.attributes.delete( wireframeAttribute );
}
geometry.removeEventListener( 'dispose', onDispose );
};
geometry.addEventListener( 'dispose', onDispose );
}
updateAttributes( renderObject ) {
const attributes = renderObject.getAttributes();
for ( const attribute of attributes ) {
if ( attribute.isStorageBufferAttribute || attribute.isStorageInstancedBufferAttribute ) {
this.updateAttribute( attribute, AttributeType.STORAGE );
} else {
this.updateAttribute( attribute, AttributeType.VERTEX );
}
}
const index = this.getIndex( renderObject );
if ( index !== null ) {
this.updateAttribute( index, AttributeType.INDEX );
}
}
updateAttribute( attribute, type ) {
const callId = this.info.render.calls;
if ( ! attribute.isInterleavedBufferAttribute ) {
if ( this.attributeCall.get( attribute ) !== callId ) {
this.attributes.update( attribute, type );
this.attributeCall.set( attribute, callId );
}
} else {
if ( this.attributeCall.get( attribute ) === undefined ) {
this.attributes.update( attribute, type );
this.attributeCall.set( attribute, callId );
} else if ( this.attributeCall.get( attribute.data ) !== callId ) {
this.attributes.update( attribute, type );
this.attributeCall.set( attribute.data, callId );
this.attributeCall.set( attribute, callId );
}
}
}
getIndex( renderObject ) {
const { geometry, material } = renderObject;
let index = geometry.index;
if ( material.wireframe === true ) {
const wireframes = this.wireframes;
let wireframeAttribute = wireframes.get( geometry );
if ( wireframeAttribute === undefined ) {
wireframeAttribute = getWireframeIndex( geometry );
wireframes.set( geometry, wireframeAttribute );
} else if ( wireframeAttribute.version !== getWireframeVersion( geometry ) ) {
this.attributes.delete( wireframeAttribute );
wireframeAttribute = getWireframeIndex( geometry );
wireframes.set( geometry, wireframeAttribute );
}
index = wireframeAttribute;
}
return index;
}
}
class Info {
constructor() {
this.autoReset = true;
this.frame = 0;
this.calls = 0;
this.render = {
calls: 0,
frameCalls: 0,
drawCalls: 0,
triangles: 0,
points: 0,
lines: 0,
timestamp: 0,
previousFrameCalls: 0,
timestampCalls: 0
};
this.compute = {
calls: 0,
frameCalls: 0,
timestamp: 0,
previousFrameCalls: 0,
timestampCalls: 0
};
this.memory = {
geometries: 0,
textures: 0
};
}
update( object, count, instanceCount ) {
this.render.drawCalls ++;
if ( object.isMesh || object.isSprite ) {
this.render.triangles += instanceCount * ( count / 3 );
} else if ( object.isPoints ) {
this.render.points += instanceCount * count;
} else if ( object.isLineSegments ) {
this.render.lines += instanceCount * ( count / 2 );
} else if ( object.isLine ) {
this.render.lines += instanceCount * ( count - 1 );
} else {
console.error( 'THREE.WebGPUInfo: Unknown object type.' );
}
}
updateTimestamp( type, time ) {
if ( this[ type ].timestampCalls === 0 ) {
this[ type ].timestamp = 0;
}
this[ type ].timestamp += time;
this[ type ].timestampCalls ++;
if ( this[ type ].timestampCalls >= this[ type ].previousFrameCalls ) {
this[ type ].timestampCalls = 0;
}
}
reset() {
const previousRenderFrameCalls = this.render.frameCalls;
this.render.previousFrameCalls = previousRenderFrameCalls;
const previousComputeFrameCalls = this.compute.frameCalls;
this.compute.previousFrameCalls = previousComputeFrameCalls;
this.render.drawCalls = 0;
this.render.frameCalls = 0;
this.compute.frameCalls = 0;
this.render.triangles = 0;
this.render.points = 0;
this.render.lines = 0;
}
dispose() {
this.reset();
this.calls = 0;
this.render.calls = 0;
this.compute.calls = 0;
this.render.timestamp = 0;
this.compute.timestamp = 0;
this.memory.geometries = 0;
this.memory.textures = 0;
}
}
class Pipeline {
constructor( cacheKey ) {
this.cacheKey = cacheKey;
this.usedTimes = 0;
}
}
class RenderPipeline extends Pipeline {
constructor( cacheKey, vertexProgram, fragmentProgram ) {
super( cacheKey );
this.vertexProgram = vertexProgram;
this.fragmentProgram = fragmentProgram;
}
}
class ComputePipeline extends Pipeline {
constructor( cacheKey, computeProgram ) {
super( cacheKey );
this.computeProgram = computeProgram;
this.isComputePipeline = true;
}
}
let _id$6 = 0;
class ProgrammableStage {
constructor( code, type, transforms = null, attributes = null ) {
this.id = _id$6 ++;
this.code = code;
this.stage = type;
this.transforms = transforms;
this.attributes = attributes;
this.usedTimes = 0;
}
}
class Pipelines extends DataMap {
constructor( backend, nodes ) {
super();
this.backend = backend;
this.nodes = nodes;
this.bindings = null; // set by the bindings
this.caches = new Map();
this.programs = {
vertex: new Map(),
fragment: new Map(),
compute: new Map()
};
}
getForCompute( computeNode, bindings ) {
const { backend } = this;
const data = this.get( computeNode );
if ( this._needsComputeUpdate( computeNode ) ) {
const previousPipeline = data.pipeline;
if ( previousPipeline ) {
previousPipeline.usedTimes --;
previousPipeline.computeProgram.usedTimes --;
}
// get shader
const nodeBuilderState = this.nodes.getForCompute( computeNode );
// programmable stage
let stageCompute = this.programs.compute.get( nodeBuilderState.computeShader );
if ( stageCompute === undefined ) {
if ( previousPipeline && previousPipeline.computeProgram.usedTimes === 0 ) this._releaseProgram( previousPipeline.computeProgram );
stageCompute = new ProgrammableStage( nodeBuilderState.computeShader, 'compute', nodeBuilderState.transforms, nodeBuilderState.nodeAttributes );
this.programs.compute.set( nodeBuilderState.computeShader, stageCompute );
backend.createProgram( stageCompute );
}
// determine compute pipeline
const cacheKey = this._getComputeCacheKey( computeNode, stageCompute );
let pipeline = this.caches.get( cacheKey );
if ( pipeline === undefined ) {
if ( previousPipeline && previousPipeline.usedTimes === 0 ) this._releasePipeline( previousPipeline );
pipeline = this._getComputePipeline( computeNode, stageCompute, cacheKey, bindings );
}
// keep track of all used times
pipeline.usedTimes ++;
stageCompute.usedTimes ++;
//
data.version = computeNode.version;
data.pipeline = pipeline;
}
return data.pipeline;
}
getForRender( renderObject, promises = null ) {
const { backend } = this;
const data = this.get( renderObject );
if ( this._needsRenderUpdate( renderObject ) ) {
const previousPipeline = data.pipeline;
if ( previousPipeline ) {
previousPipeline.usedTimes --;
previousPipeline.vertexProgram.usedTimes --;
previousPipeline.fragmentProgram.usedTimes --;
}
// get shader
const nodeBuilderState = renderObject.getNodeBuilderState();
// programmable stages
let stageVertex = this.programs.vertex.get( nodeBuilderState.vertexShader );
if ( stageVertex === undefined ) {
if ( previousPipeline && previousPipeline.vertexProgram.usedTimes === 0 ) this._releaseProgram( previousPipeline.vertexProgram );
stageVertex = new ProgrammableStage( nodeBuilderState.vertexShader, 'vertex' );
this.programs.vertex.set( nodeBuilderState.vertexShader, stageVertex );
backend.createProgram( stageVertex );
}
let stageFragment = this.programs.fragment.get( nodeBuilderState.fragmentShader );
if ( stageFragment === undefined ) {
if ( previousPipeline && previousPipeline.fragmentProgram.usedTimes === 0 ) this._releaseProgram( previousPipeline.fragmentProgram );
stageFragment = new ProgrammableStage( nodeBuilderState.fragmentShader, 'fragment' );
this.programs.fragment.set( nodeBuilderState.fragmentShader, stageFragment );
backend.createProgram( stageFragment );
}
// determine render pipeline
const cacheKey = this._getRenderCacheKey( renderObject, stageVertex, stageFragment );
let pipeline = this.caches.get( cacheKey );
if ( pipeline === undefined ) {
if ( previousPipeline && previousPipeline.usedTimes === 0 ) this._releasePipeline( previousPipeline );
pipeline = this._getRenderPipeline( renderObject, stageVertex, stageFragment, cacheKey, promises );
} else {
renderObject.pipeline = pipeline;
}
// keep track of all used times
pipeline.usedTimes ++;
stageVertex.usedTimes ++;
stageFragment.usedTimes ++;
//
data.pipeline = pipeline;
}
return data.pipeline;
}
delete( object ) {
const pipeline = this.get( object ).pipeline;
if ( pipeline ) {
// pipeline
pipeline.usedTimes --;
if ( pipeline.usedTimes === 0 ) this._releasePipeline( pipeline );
// programs
if ( pipeline.isComputePipeline ) {
pipeline.computeProgram.usedTimes --;
if ( pipeline.computeProgram.usedTimes === 0 ) this._releaseProgram( pipeline.computeProgram );
} else {
pipeline.fragmentProgram.usedTimes --;
pipeline.vertexProgram.usedTimes --;
if ( pipeline.vertexProgram.usedTimes === 0 ) this._releaseProgram( pipeline.vertexProgram );
if ( pipeline.fragmentProgram.usedTimes === 0 ) this._releaseProgram( pipeline.fragmentProgram );
}
}
return super.delete( object );
}
dispose() {
super.dispose();
this.caches = new Map();
this.programs = {
vertex: new Map(),
fragment: new Map(),
compute: new Map()
};
}
updateForRender( renderObject ) {
this.getForRender( renderObject );
}
_getComputePipeline( computeNode, stageCompute, cacheKey, bindings ) {
// check for existing pipeline
cacheKey = cacheKey || this._getComputeCacheKey( computeNode, stageCompute );
let pipeline = this.caches.get( cacheKey );
if ( pipeline === undefined ) {
pipeline = new ComputePipeline( cacheKey, stageCompute );
this.caches.set( cacheKey, pipeline );
this.backend.createComputePipeline( pipeline, bindings );
}
return pipeline;
}
_getRenderPipeline( renderObject, stageVertex, stageFragment, cacheKey, promises ) {
// check for existing pipeline
cacheKey = cacheKey || this._getRenderCacheKey( renderObject, stageVertex, stageFragment );
let pipeline = this.caches.get( cacheKey );
if ( pipeline === undefined ) {
pipeline = new RenderPipeline( cacheKey, stageVertex, stageFragment );
this.caches.set( cacheKey, pipeline );
renderObject.pipeline = pipeline;
this.backend.createRenderPipeline( renderObject, promises );
}
return pipeline;
}
_getComputeCacheKey( computeNode, stageCompute ) {
return computeNode.id + ',' + stageCompute.id;
}
_getRenderCacheKey( renderObject, stageVertex, stageFragment ) {
return stageVertex.id + ',' + stageFragment.id + ',' + this.backend.getRenderCacheKey( renderObject );
}
_releasePipeline( pipeline ) {
this.caches.delete( pipeline.cacheKey );
}
_releaseProgram( program ) {
const code = program.code;
const stage = program.stage;
this.programs[ stage ].delete( code );
}
_needsComputeUpdate( computeNode ) {
const data = this.get( computeNode );
return data.pipeline === undefined || data.version !== computeNode.version;
}
_needsRenderUpdate( renderObject ) {
const data = this.get( renderObject );
return data.pipeline === undefined || this.backend.needsRenderUpdate( renderObject );
}
}
class Bindings extends DataMap {
constructor( backend, nodes, textures, attributes, pipelines, info ) {
super();
this.backend = backend;
this.textures = textures;
this.pipelines = pipelines;
this.attributes = attributes;
this.nodes = nodes;
this.info = info;
this.pipelines.bindings = this; // assign bindings to pipelines
}
getForRender( renderObject ) {
const bindings = renderObject.getBindings();
for ( const bindGroup of bindings ) {
const groupData = this.get( bindGroup );
if ( groupData.bindGroup === undefined ) {
// each object defines an array of bindings (ubos, textures, samplers etc.)
this._init( bindGroup );
this.backend.createBindings( bindGroup, bindings );
groupData.bindGroup = bindGroup;
}
}
return bindings;
}
getForCompute( computeNode ) {
const bindings = this.nodes.getForCompute( computeNode ).bindings;
for ( const bindGroup of bindings ) {
const groupData = this.get( bindGroup );
if ( groupData.bindGroup === undefined ) {
this._init( bindGroup );
this.backend.createBindings( bindGroup, bindings );
groupData.bindGroup = bindGroup;
}
}
return bindings;
}
updateForCompute( computeNode ) {
this._updateBindings( computeNode, this.getForCompute( computeNode ) );
}
updateForRender( renderObject ) {
this._updateBindings( renderObject, this.getForRender( renderObject ) );
}
_updateBindings( object, bindings ) {
for ( const bindGroup of bindings ) {
this._update( object, bindGroup, bindings );
}
}
_init( bindGroup ) {
for ( const binding of bindGroup.bindings ) {
if ( binding.isSampledTexture ) {
this.textures.updateTexture( binding.texture );
} else if ( binding.isStorageBuffer ) {
const attribute = binding.attribute;
this.attributes.update( attribute, AttributeType.STORAGE );
}
}
}
_update( object, bindGroup, bindings ) {
const { backend } = this;
let needsBindingsUpdate = false;
// iterate over all bindings and check if buffer updates or a new binding group is required
for ( const binding of bindGroup.bindings ) {
if ( binding.isNodeUniformsGroup ) {
const updated = this.nodes.updateGroup( binding );
if ( ! updated ) continue;
}
if ( binding.isUniformBuffer ) {
const updated = binding.update();
if ( updated ) {
backend.updateBinding( binding );
}
} else if ( binding.isSampler ) {
binding.update();
} else if ( binding.isSampledTexture ) {
const texture = binding.texture;
if ( binding.needsBindingsUpdate ) needsBindingsUpdate = true;
const updated = binding.update();
if ( updated ) {
this.textures.updateTexture( binding.texture );
}
const textureData = backend.get( binding.texture );
if ( backend.isWebGPUBackend === true && textureData.texture === undefined && textureData.externalTexture === undefined ) {
// TODO: Remove this once we found why updated === false isn't bound to a texture in the WebGPU backend
console.error( 'Bindings._update: binding should be available:', binding, updated, binding.texture, binding.textureNode.value );
this.textures.updateTexture( binding.texture );
needsBindingsUpdate = true;
}
if ( texture.isStorageTexture === true ) {
const textureData = this.get( texture );
if ( binding.store === true ) {
textureData.needsMipmap = true;
} else if ( texture.generateMipmaps === true && this.textures.needsMipmaps( texture ) && textureData.needsMipmap === true ) {
this.backend.generateMipmaps( texture );
textureData.needsMipmap = false;
}
}
}
}
if ( needsBindingsUpdate === true ) {
const pipeline = this.pipelines.getForRender( object );
this.backend.updateBindings( bindGroup, bindings, pipeline );
}
}
}
const NodeShaderStage = {
VERTEX: 'vertex',
FRAGMENT: 'fragment'
};
const NodeUpdateType = {
NONE: 'none',
FRAME: 'frame',
RENDER: 'render',
OBJECT: 'object'
};
const NodeType = {
BOOLEAN: 'bool',
INTEGER: 'int',
FLOAT: 'float',
VECTOR2: 'vec2',
VECTOR3: 'vec3',
VECTOR4: 'vec4',
MATRIX2: 'mat2',
MATRIX3: 'mat3',
MATRIX4: 'mat4'
};
const defaultShaderStages = [ 'fragment', 'vertex' ];
const defaultBuildStages = [ 'setup', 'analyze', 'generate' ];
const shaderStages = [ ...defaultShaderStages, 'compute' ];
const vectorComponents = [ 'x', 'y', 'z', 'w' ];
function getCacheKey( object, force = false ) {
let cacheKey = '{';
if ( object.isNode === true ) {
cacheKey += object.id;
}
for ( const { property, childNode } of getNodeChildren( object ) ) {
cacheKey += ',' + property.slice( 0, - 4 ) + ':' + childNode.getCacheKey( force );
}
cacheKey += '}';
return cacheKey;
}
function* getNodeChildren( node, toJSON = false ) {
for ( const property in node ) {
// Ignore private properties.
if ( property.startsWith( '_' ) === true ) continue;
const object = node[ property ];
if ( Array.isArray( object ) === true ) {
for ( let i = 0; i < object.length; i ++ ) {
const child = object[ i ];
if ( child && ( child.isNode === true || toJSON && typeof child.toJSON === 'function' ) ) {
yield { property, index: i, childNode: child };
}
}
} else if ( object && object.isNode === true ) {
yield { property, childNode: object };
} else if ( typeof object === 'object' ) {
for ( const subProperty in object ) {
const child = object[ subProperty ];
if ( child && ( child.isNode === true || toJSON && typeof child.toJSON === 'function' ) ) {
yield { property, index: subProperty, childNode: child };
}
}
}
}
}
function getValueType( value ) {
if ( value === undefined || value === null ) return null;
const typeOf = typeof value;
if ( value.isNode === true ) {
return 'node';
} else if ( typeOf === 'number' ) {
return 'float';
} else if ( typeOf === 'boolean' ) {
return 'bool';
} else if ( typeOf === 'string' ) {
return 'string';
} else if ( typeOf === 'function' ) {
return 'shader';
} else if ( value.isVector2 === true ) {
return 'vec2';
} else if ( value.isVector3 === true ) {
return 'vec3';
} else if ( value.isVector4 === true ) {
return 'vec4';
} else if ( value.isMatrix3 === true ) {
return 'mat3';
} else if ( value.isMatrix4 === true ) {
return 'mat4';
} else if ( value.isColor === true ) {
return 'color';
} else if ( value instanceof ArrayBuffer ) {
return 'ArrayBuffer';
}
return null;
}
function getValueFromType( type, ...params ) {
const last4 = type ? type.slice( - 4 ) : undefined;
if ( params.length === 1 ) { // ensure same behaviour as in NodeBuilder.format()
if ( last4 === 'vec2' ) params = [ params[ 0 ], params[ 0 ] ];
else if ( last4 === 'vec3' ) params = [ params[ 0 ], params[ 0 ], params[ 0 ] ];
else if ( last4 === 'vec4' ) params = [ params[ 0 ], params[ 0 ], params[ 0 ], params[ 0 ] ];
}
if ( type === 'color' ) {
return new Color( ...params );
} else if ( last4 === 'vec2' ) {
return new Vector2( ...params );
} else if ( last4 === 'vec3' ) {
return new Vector3( ...params );
} else if ( last4 === 'vec4' ) {
return new Vector4( ...params );
} else if ( last4 === 'mat3' ) {
return new Matrix3( ...params );
} else if ( last4 === 'mat4' ) {
return new Matrix4( ...params );
} else if ( type === 'bool' ) {
return params[ 0 ] || false;
} else if ( ( type === 'float' ) || ( type === 'int' ) || ( type === 'uint' ) ) {
return params[ 0 ] || 0;
} else if ( type === 'string' ) {
return params[ 0 ] || '';
} else if ( type === 'ArrayBuffer' ) {
return base64ToArrayBuffer( params[ 0 ] );
}
return null;
}
function arrayBufferToBase64( arrayBuffer ) {
let chars = '';
const array = new Uint8Array( arrayBuffer );
for ( let i = 0; i < array.length; i ++ ) {
chars += String.fromCharCode( array[ i ] );
}
return btoa( chars );
}
function base64ToArrayBuffer( base64 ) {
return Uint8Array.from( atob( base64 ), c => c.charCodeAt( 0 ) ).buffer;
}
var NodeUtils = /*#__PURE__*/Object.freeze({
__proto__: null,
arrayBufferToBase64: arrayBufferToBase64,
base64ToArrayBuffer: base64ToArrayBuffer,
getCacheKey: getCacheKey,
getNodeChildren: getNodeChildren,
getValueFromType: getValueFromType,
getValueType: getValueType
});
const NodeClasses = new Map();
let _nodeId = 0;
class Node extends EventDispatcher {
constructor( nodeType = null ) {
super();
this.nodeType = nodeType;
this.updateType = NodeUpdateType.NONE;
this.updateBeforeType = NodeUpdateType.NONE;
this.updateAfterType = NodeUpdateType.NONE;
this.uuid = MathUtils.generateUUID();
this.version = 0;
this._cacheKey = null;
this._cacheKeyVersion = 0;
this.global = false;
this.isNode = true;
Object.defineProperty( this, 'id', { value: _nodeId ++ } );
}
set needsUpdate( value ) {
if ( value === true ) {
this.version ++;
}
}
get type() {
return this.constructor.type;
}
onUpdate( callback, updateType ) {
this.updateType = updateType;
this.update = callback.bind( this.getSelf() );
return this;
}
onFrameUpdate( callback ) {
return this.onUpdate( callback, NodeUpdateType.FRAME );
}
onRenderUpdate( callback ) {
return this.onUpdate( callback, NodeUpdateType.RENDER );
}
onObjectUpdate( callback ) {
return this.onUpdate( callback, NodeUpdateType.OBJECT );
}
onReference( callback ) {
this.updateReference = callback.bind( this.getSelf() );
return this;
}
getSelf() {
// Returns non-node object.
return this.self || this;
}
updateReference( /*state*/ ) {
return this;
}
isGlobal( /*builder*/ ) {
return this.global;
}
* getChildren() {
for ( const { childNode } of getNodeChildren( this ) ) {
yield childNode;
}
}
dispose() {
this.dispatchEvent( { type: 'dispose' } );
}
traverse( callback ) {
callback( this );
for ( const childNode of this.getChildren() ) {
childNode.traverse( callback );
}
}
getCacheKey( force = false ) {
force = force || this.version !== this._cacheKeyVersion;
if ( force === true || this._cacheKey === null ) {
this._cacheKey = getCacheKey( this, force );
this._cacheKeyVersion = this.version;
}
return this._cacheKey;
}
getHash( /*builder*/ ) {
return this.uuid;
}
getUpdateType() {
return this.updateType;
}
getUpdateBeforeType() {
return this.updateBeforeType;
}
getUpdateAfterType() {
return this.updateAfterType;
}
getElementType( builder ) {
const type = this.getNodeType( builder );
const elementType = builder.getElementType( type );
return elementType;
}
getNodeType( builder ) {
const nodeProperties = builder.getNodeProperties( this );
if ( nodeProperties.outputNode ) {
return nodeProperties.outputNode.getNodeType( builder );
}
return this.nodeType;
}
getShared( builder ) {
const hash = this.getHash( builder );
const nodeFromHash = builder.getNodeFromHash( hash );
return nodeFromHash || this;
}
setup( builder ) {
const nodeProperties = builder.getNodeProperties( this );
let index = 0;
for ( const childNode of this.getChildren() ) {
nodeProperties[ 'node' + index ++ ] = childNode;
}
// return a outputNode if exists
return null;
}
increaseUsage( builder ) {
const nodeData = builder.getDataFromNode( this );
nodeData.usageCount = nodeData.usageCount === undefined ? 1 : nodeData.usageCount + 1;
return nodeData.usageCount;
}
analyze( builder ) {
const usageCount = this.increaseUsage( builder );
if ( usageCount === 1 ) {
// node flow children
const nodeProperties = builder.getNodeProperties( this );
for ( const childNode of Object.values( nodeProperties ) ) {
if ( childNode && childNode.isNode === true ) {
childNode.build( builder );
}
}
}
}
generate( builder, output ) {
const { outputNode } = builder.getNodeProperties( this );
if ( outputNode && outputNode.isNode === true ) {
return outputNode.build( builder, output );
}
}
updateBefore( /*frame*/ ) {
console.warn( 'Abstract function.' );
}
updateAfter( /*frame*/ ) {
console.warn( 'Abstract function.' );
}
update( /*frame*/ ) {
console.warn( 'Abstract function.' );
}
build( builder, output = null ) {
const refNode = this.getShared( builder );
if ( this !== refNode ) {
return refNode.build( builder, output );
}
builder.addNode( this );
builder.addChain( this );
/* Build stages expected results:
- "setup" -> Node
- "analyze" -> null
- "generate" -> String
*/
let result = null;
const buildStage = builder.getBuildStage();
if ( buildStage === 'setup' ) {
this.updateReference( builder );
const properties = builder.getNodeProperties( this );
if ( properties.initialized !== true ) {
const stackNodesBeforeSetup = builder.stack.nodes.length;
properties.initialized = true;
properties.outputNode = this.setup( builder );
if ( properties.outputNode !== null && builder.stack.nodes.length !== stackNodesBeforeSetup ) {
properties.outputNode = builder.stack;
}
for ( const childNode of Object.values( properties ) ) {
if ( childNode && childNode.isNode === true ) {
childNode.build( builder );
}
}
}
} else if ( buildStage === 'analyze' ) {
this.analyze( builder );
} else if ( buildStage === 'generate' ) {
const isGenerateOnce = this.generate.length === 1;
if ( isGenerateOnce ) {
const type = this.getNodeType( builder );
const nodeData = builder.getDataFromNode( this );
result = nodeData.snippet;
if ( result === undefined ) {
result = this.generate( builder ) || '';
nodeData.snippet = result;
}
result = builder.format( result, type, output );
} else {
result = this.generate( builder, output ) || '';
}
}
builder.removeChain( this );
return result;
}
getSerializeChildren() {
return getNodeChildren( this );
}
serialize( json ) {
const nodeChildren = this.getSerializeChildren();
const inputNodes = {};
for ( const { property, index, childNode } of nodeChildren ) {
if ( index !== undefined ) {
if ( inputNodes[ property ] === undefined ) {
inputNodes[ property ] = Number.isInteger( index ) ? [] : {};
}
inputNodes[ property ][ index ] = childNode.toJSON( json.meta ).uuid;
} else {
inputNodes[ property ] = childNode.toJSON( json.meta ).uuid;
}
}
if ( Object.keys( inputNodes ).length > 0 ) {
json.inputNodes = inputNodes;
}
}
deserialize( json ) {
if ( json.inputNodes !== undefined ) {
const nodes = json.meta.nodes;
for ( const property in json.inputNodes ) {
if ( Array.isArray( json.inputNodes[ property ] ) ) {
const inputArray = [];
for ( const uuid of json.inputNodes[ property ] ) {
inputArray.push( nodes[ uuid ] );
}
this[ property ] = inputArray;
} else if ( typeof json.inputNodes[ property ] === 'object' ) {
const inputObject = {};
for ( const subProperty in json.inputNodes[ property ] ) {
const uuid = json.inputNodes[ property ][ subProperty ];
inputObject[ subProperty ] = nodes[ uuid ];
}
this[ property ] = inputObject;
} else {
const uuid = json.inputNodes[ property ];
this[ property ] = nodes[ uuid ];
}
}
}
}
toJSON( meta ) {
const { uuid, type } = this;
const isRoot = ( meta === undefined || typeof meta === 'string' );
if ( isRoot ) {
meta = {
textures: {},
images: {},
nodes: {}
};
}
// serialize
let data = meta.nodes[ uuid ];
if ( data === undefined ) {
data = {
uuid,
type,
meta,
metadata: {
version: 4.6,
type: 'Node',
generator: 'Node.toJSON'
}
};
if ( isRoot !== true ) meta.nodes[ data.uuid ] = data;
this.serialize( data );
delete data.meta;
}
// TODO: Copied from Object3D.toJSON
function extractFromCache( cache ) {
const values = [];
for ( const key in cache ) {
const data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
if ( isRoot ) {
const textures = extractFromCache( meta.textures );
const images = extractFromCache( meta.images );
const nodes = extractFromCache( meta.nodes );
if ( textures.length > 0 ) data.textures = textures;
if ( images.length > 0 ) data.images = images;
if ( nodes.length > 0 ) data.nodes = nodes;
}
return data;
}
}
function addNodeClass( type, nodeClass ) {
if ( typeof nodeClass !== 'function' || ! type ) throw new Error( `Node class ${ type } is not a class` );
if ( NodeClasses.has( type ) ) {
console.warn( `Redefinition of node class ${ type }` );
return;
}
NodeClasses.set( type, nodeClass );
nodeClass.type = type;
}
function createNodeFromType( type ) {
const Class = NodeClasses.get( type );
if ( Class !== undefined ) {
return new Class();
}
}
class TempNode extends Node {
constructor( type ) {
super( type );
this.isTempNode = true;
}
hasDependencies( builder ) {
return builder.getDataFromNode( this ).usageCount > 1;
}
build( builder, output ) {
const buildStage = builder.getBuildStage();
if ( buildStage === 'generate' ) {
const type = builder.getVectorType( this.getNodeType( builder, output ) );
const nodeData = builder.getDataFromNode( this );
if ( nodeData.propertyName !== undefined ) {
return builder.format( nodeData.propertyName, type, output );
} else if ( type !== 'void' && output !== 'void' && this.hasDependencies( builder ) ) {
const snippet = super.build( builder, type );
const nodeVar = builder.getVarFromNode( this, null, type );
const propertyName = builder.getPropertyName( nodeVar );
builder.addLineFlowCode( `${propertyName} = ${snippet}` );
nodeData.snippet = snippet;
nodeData.propertyName = propertyName;
return builder.format( nodeData.propertyName, type, output );
}
}
return super.build( builder, output );
}
}
addNodeClass( 'TempNode', TempNode );
class ArrayElementNode extends Node { // @TODO: If extending from TempNode it breaks webgpu_compute
constructor( node, indexNode ) {
super();
this.node = node;
this.indexNode = indexNode;
this.isArrayElementNode = true;
}
getNodeType( builder ) {
return this.node.getElementType( builder );
}
generate( builder ) {
const nodeSnippet = this.node.build( builder );
const indexSnippet = this.indexNode.build( builder, 'uint' );
return `${nodeSnippet}[ ${indexSnippet} ]`;
}
}
addNodeClass( 'ArrayElementNode', ArrayElementNode );
class ConvertNode extends Node {
constructor( node, convertTo ) {
super();
this.node = node;
this.convertTo = convertTo;
}
getNodeType( builder ) {
const requestType = this.node.getNodeType( builder );
let convertTo = null;
for ( const overloadingType of this.convertTo.split( '|' ) ) {
if ( convertTo === null || builder.getTypeLength( requestType ) === builder.getTypeLength( overloadingType ) ) {
convertTo = overloadingType;
}
}
return convertTo;
}
serialize( data ) {
super.serialize( data );
data.convertTo = this.convertTo;
}
deserialize( data ) {
super.deserialize( data );
this.convertTo = data.convertTo;
}
generate( builder, output ) {
const node = this.node;
const type = this.getNodeType( builder );
const snippet = node.build( builder, type );
return builder.format( snippet, type, output );
}
}
addNodeClass( 'ConvertNode', ConvertNode );
class JoinNode extends TempNode {
constructor( nodes = [], nodeType = null ) {
super( nodeType );
this.nodes = nodes;
}
getNodeType( builder ) {
if ( this.nodeType !== null ) {
return builder.getVectorType( this.nodeType );
}
return builder.getTypeFromLength( this.nodes.reduce( ( count, cur ) => count + builder.getTypeLength( cur.getNodeType( builder ) ), 0 ) );
}
generate( builder, output ) {
const type = this.getNodeType( builder );
const nodes = this.nodes;
const primitiveType = builder.getComponentType( type );
const snippetValues = [];
for ( const input of nodes ) {
let inputSnippet = input.build( builder );
const inputPrimitiveType = builder.getComponentType( input.getNodeType( builder ) );
if ( inputPrimitiveType !== primitiveType ) {
inputSnippet = builder.format( inputSnippet, inputPrimitiveType, primitiveType );
}
snippetValues.push( inputSnippet );
}
const snippet = `${ builder.getType( type ) }( ${ snippetValues.join( ', ' ) } )`;
return builder.format( snippet, type, output );
}
}
addNodeClass( 'JoinNode', JoinNode );
const stringVectorComponents = vectorComponents.join( '' );
class SplitNode extends Node {
constructor( node, components = 'x' ) {
super();
this.node = node;
this.components = components;
this.isSplitNode = true;
}
getVectorLength() {
let vectorLength = this.components.length;
for ( const c of this.components ) {
vectorLength = Math.max( vectorComponents.indexOf( c ) + 1, vectorLength );
}
return vectorLength;
}
getComponentType( builder ) {
return builder.getComponentType( this.node.getNodeType( builder ) );
}
getNodeType( builder ) {
return builder.getTypeFromLength( this.components.length, this.getComponentType( builder ) );
}
generate( builder, output ) {
const node = this.node;
const nodeTypeLength = builder.getTypeLength( node.getNodeType( builder ) );
let snippet = null;
if ( nodeTypeLength > 1 ) {
let type = null;
const componentsLength = this.getVectorLength();
if ( componentsLength >= nodeTypeLength ) {
// needed expand the input node
type = builder.getTypeFromLength( this.getVectorLength(), this.getComponentType( builder ) );
}
const nodeSnippet = node.build( builder, type );
if ( this.components.length === nodeTypeLength && this.components === stringVectorComponents.slice( 0, this.components.length ) ) {
// unnecessary swizzle
snippet = builder.format( nodeSnippet, type, output );
} else {
snippet = builder.format( `${nodeSnippet}.${this.components}`, this.getNodeType( builder ), output );
}
} else {
// ignore .components if .node returns float/integer
snippet = node.build( builder, output );
}
return snippet;
}
serialize( data ) {
super.serialize( data );
data.components = this.components;
}
deserialize( data ) {
super.deserialize( data );
this.components = data.components;
}
}
addNodeClass( 'SplitNode', SplitNode );
class SetNode extends TempNode {
constructor( sourceNode, components, targetNode ) {
super();
this.sourceNode = sourceNode;
this.components = components;
this.targetNode = targetNode;
}
getNodeType( builder ) {
return this.sourceNode.getNodeType( builder );
}
generate( builder ) {
const { sourceNode, components, targetNode } = this;
const sourceType = this.getNodeType( builder );
const targetType = builder.getTypeFromLength( components.length );
const targetSnippet = targetNode.build( builder, targetType );
const sourceSnippet = sourceNode.build( builder, sourceType );
const length = builder.getTypeLength( sourceType );
const snippetValues = [];
for ( let i = 0; i < length; i ++ ) {
const component = vectorComponents[ i ];
if ( component === components[ 0 ] ) {
snippetValues.push( targetSnippet );
i += components.length - 1;
} else {
snippetValues.push( sourceSnippet + '.' + component );
}
}
return `${ builder.getType( sourceType ) }( ${ snippetValues.join( ', ' ) } )`;
}
}
addNodeClass( 'SetNode', SetNode );
class InputNode extends Node {
constructor( value, nodeType = null ) {
super( nodeType );
this.isInputNode = true;
this.value = value;
this.precision = null;
}
getNodeType( /*builder*/ ) {
if ( this.nodeType === null ) {
return getValueType( this.value );
}
return this.nodeType;
}
getInputType( builder ) {
return this.getNodeType( builder );
}
setPrecision( precision ) {
this.precision = precision;
return this;
}
serialize( data ) {
super.serialize( data );
data.value = this.value;
if ( this.value && this.value.toArray ) data.value = this.value.toArray();
data.valueType = getValueType( this.value );
data.nodeType = this.nodeType;
if ( data.valueType === 'ArrayBuffer' ) data.value = arrayBufferToBase64( data.value );
data.precision = this.precision;
}
deserialize( data ) {
super.deserialize( data );
this.nodeType = data.nodeType;
this.value = Array.isArray( data.value ) ? getValueFromType( data.valueType, ...data.value ) : data.value;
this.precision = data.precision || null;
if ( this.value && this.value.fromArray ) this.value = this.value.fromArray( data.value );
}
generate( /*builder, output*/ ) {
console.warn( 'Abstract function.' );
}
}
addNodeClass( 'InputNode', InputNode );
class ConstNode extends InputNode {
constructor( value, nodeType = null ) {
super( value, nodeType );
this.isConstNode = true;
}
generateConst( builder ) {
return builder.generateConst( this.getNodeType( builder ), this.value );
}
generate( builder, output ) {
const type = this.getNodeType( builder );
return builder.format( this.generateConst( builder ), type, output );
}
}
addNodeClass( 'ConstNode', ConstNode );
//
let currentStack = null;
const NodeElements = new Map(); // @TODO: Currently only a few nodes are added, probably also add others
function addNodeElement( name, nodeElement ) {
if ( NodeElements.has( name ) ) {
console.warn( `Redefinition of node element ${ name }` );
return;
}
if ( typeof nodeElement !== 'function' ) throw new Error( `Node element ${ name } is not a function` );
NodeElements.set( name, nodeElement );
}
const parseSwizzle = ( props ) => props.replace( /r|s/g, 'x' ).replace( /g|t/g, 'y' ).replace( /b|p/g, 'z' ).replace( /a|q/g, 'w' );
const shaderNodeHandler = {
setup( NodeClosure, params ) {
const inputs = params.shift();
return NodeClosure( nodeObjects( inputs ), ...params );
},
get( node, prop, nodeObj ) {
if ( typeof prop === 'string' && node[ prop ] === undefined ) {
if ( node.isStackNode !== true && prop === 'assign' ) {
return ( ...params ) => {
currentStack.assign( nodeObj, ...params );
return nodeObj;
};
} else if ( NodeElements.has( prop ) ) {
const nodeElement = NodeElements.get( prop );
return node.isStackNode ? ( ...params ) => nodeObj.add( nodeElement( ...params ) ) : ( ...params ) => nodeElement( nodeObj, ...params );
} else if ( prop === 'self' ) {
return node;
} else if ( prop.endsWith( 'Assign' ) && NodeElements.has( prop.slice( 0, prop.length - 'Assign'.length ) ) ) {
const nodeElement = NodeElements.get( prop.slice( 0, prop.length - 'Assign'.length ) );
return node.isStackNode ? ( ...params ) => nodeObj.assign( params[ 0 ], nodeElement( ...params ) ) : ( ...params ) => nodeObj.assign( nodeElement( nodeObj, ...params ) );
} else if ( /^[xyzwrgbastpq]{1,4}$/.test( prop ) === true ) {
// accessing properties ( swizzle )
prop = parseSwizzle( prop );
return nodeObject( new SplitNode( nodeObj, prop ) );
} else if ( /^set[XYZWRGBASTPQ]{1,4}$/.test( prop ) === true ) {
// set properties ( swizzle )
prop = parseSwizzle( prop.slice( 3 ).toLowerCase() );
// sort to xyzw sequence
prop = prop.split( '' ).sort().join( '' );
return ( value ) => nodeObject( new SetNode( node, prop, value ) );
} else if ( prop === 'width' || prop === 'height' || prop === 'depth' ) {
// accessing property
if ( prop === 'width' ) prop = 'x';
else if ( prop === 'height' ) prop = 'y';
else if ( prop === 'depth' ) prop = 'z';
return nodeObject( new SplitNode( node, prop ) );
} else if ( /^\d+$/.test( prop ) === true ) {
// accessing array
return nodeObject( new ArrayElementNode( nodeObj, new ConstNode( Number( prop ), 'uint' ) ) );
}
}
return Reflect.get( node, prop, nodeObj );
},
set( node, prop, value, nodeObj ) {
if ( typeof prop === 'string' && node[ prop ] === undefined ) {
// setting properties
if ( /^[xyzwrgbastpq]{1,4}$/.test( prop ) === true || prop === 'width' || prop === 'height' || prop === 'depth' || /^\d+$/.test( prop ) === true ) {
nodeObj[ prop ].assign( value );
return true;
}
}
return Reflect.set( node, prop, value, nodeObj );
}
};
const nodeObjectsCacheMap = new WeakMap();
const nodeBuilderFunctionsCacheMap = new WeakMap();
const ShaderNodeObject = function ( obj, altType = null ) {
const type = getValueType( obj );
if ( type === 'node' ) {
let nodeObject = nodeObjectsCacheMap.get( obj );
if ( nodeObject === undefined ) {
nodeObject = new Proxy( obj, shaderNodeHandler );
nodeObjectsCacheMap.set( obj, nodeObject );
nodeObjectsCacheMap.set( nodeObject, nodeObject );
}
return nodeObject;
} else if ( ( altType === null && ( type === 'float' || type === 'boolean' ) ) || ( type && type !== 'shader' && type !== 'string' ) ) {
return nodeObject( getConstNode( obj, altType ) );
} else if ( type === 'shader' ) {
return tslFn( obj );
}
return obj;
};
const ShaderNodeObjects = function ( objects, altType = null ) {
for ( const name in objects ) {
objects[ name ] = nodeObject( objects[ name ], altType );
}
return objects;
};
const ShaderNodeArray = function ( array, altType = null ) {
const len = array.length;
for ( let i = 0; i < len; i ++ ) {
array[ i ] = nodeObject( array[ i ], altType );
}
return array;
};
const ShaderNodeProxy = function ( NodeClass, scope = null, factor = null, settings = null ) {
const assignNode = ( node ) => nodeObject( settings !== null ? Object.assign( node, settings ) : node );
if ( scope === null ) {
return ( ...params ) => {
return assignNode( new NodeClass( ...nodeArray( params ) ) );
};
} else if ( factor !== null ) {
factor = nodeObject( factor );
return ( ...params ) => {
return assignNode( new NodeClass( scope, ...nodeArray( params ), factor ) );
};
} else {
return ( ...params ) => {
return assignNode( new NodeClass( scope, ...nodeArray( params ) ) );
};
}
};
const ShaderNodeImmutable = function ( NodeClass, ...params ) {
return nodeObject( new NodeClass( ...nodeArray( params ) ) );
};
class ShaderCallNodeInternal extends Node {
constructor( shaderNode, inputNodes ) {
super();
this.shaderNode = shaderNode;
this.inputNodes = inputNodes;
}
getNodeType( builder ) {
const properties = builder.getNodeProperties( this );
if ( properties.outputNode === null ) {
properties.outputNode = this.setupOutput( builder );
}
return properties.outputNode.getNodeType( builder );
}
call( builder ) {
const { shaderNode, inputNodes } = this;
if ( shaderNode.layout ) {
let functionNodesCacheMap = nodeBuilderFunctionsCacheMap.get( builder.constructor );
if ( functionNodesCacheMap === undefined ) {
functionNodesCacheMap = new WeakMap();
nodeBuilderFunctionsCacheMap.set( builder.constructor, functionNodesCacheMap );
}
let functionNode = functionNodesCacheMap.get( shaderNode );
if ( functionNode === undefined ) {
functionNode = nodeObject( builder.buildFunctionNode( shaderNode ) );
functionNodesCacheMap.set( shaderNode, functionNode );
}
if ( builder.currentFunctionNode !== null ) {
builder.currentFunctionNode.includes.push( functionNode );
}
return nodeObject( functionNode.call( inputNodes ) );
}
const jsFunc = shaderNode.jsFunc;
const outputNode = inputNodes !== null ? jsFunc( inputNodes, builder.stack, builder ) : jsFunc( builder.stack, builder );
return nodeObject( outputNode );
}
setup( builder ) {
const { outputNode } = builder.getNodeProperties( this );
return outputNode || this.setupOutput( builder );
}
setupOutput( builder ) {
builder.addStack();
builder.stack.outputNode = this.call( builder );
return builder.removeStack();
}
generate( builder, output ) {
const { outputNode } = builder.getNodeProperties( this );
if ( outputNode === null ) {
// TSL: It's recommended to use `tslFn` in setup() pass.
return this.call( builder ).build( builder, output );
}
return super.generate( builder, output );
}
}
class ShaderNodeInternal extends Node {
constructor( jsFunc ) {
super();
this.jsFunc = jsFunc;
this.layout = null;
this.global = true;
}
get isArrayInput() {
return /^\((\s+)?\[/.test( this.jsFunc.toString() );
}
setLayout( layout ) {
this.layout = layout;
return this;
}
call( inputs = null ) {
nodeObjects( inputs );
return nodeObject( new ShaderCallNodeInternal( this, inputs ) );
}
setup() {
return this.call();
}
}
const bools = [ false, true ];
const uints = [ 0, 1, 2, 3 ];
const ints = [ - 1, - 2 ];
const floats = [ 0.5, 1.5, 1 / 3, 1e-6, 1e6, Math.PI, Math.PI * 2, 1 / Math.PI, 2 / Math.PI, 1 / ( Math.PI * 2 ), Math.PI / 2 ];
const boolsCacheMap = new Map();
for ( const bool of bools ) boolsCacheMap.set( bool, new ConstNode( bool ) );
const uintsCacheMap = new Map();
for ( const uint of uints ) uintsCacheMap.set( uint, new ConstNode( uint, 'uint' ) );
const intsCacheMap = new Map( [ ...uintsCacheMap ].map( el => new ConstNode( el.value, 'int' ) ) );
for ( const int of ints ) intsCacheMap.set( int, new ConstNode( int, 'int' ) );
const floatsCacheMap = new Map( [ ...intsCacheMap ].map( el => new ConstNode( el.value ) ) );
for ( const float of floats ) floatsCacheMap.set( float, new ConstNode( float ) );
for ( const float of floats ) floatsCacheMap.set( - float, new ConstNode( - float ) );
const cacheMaps = { bool: boolsCacheMap, uint: uintsCacheMap, ints: intsCacheMap, float: floatsCacheMap };
const constNodesCacheMap = new Map( [ ...boolsCacheMap, ...floatsCacheMap ] );
const getConstNode = ( value, type ) => {
if ( constNodesCacheMap.has( value ) ) {
return constNodesCacheMap.get( value );
} else if ( value.isNode === true ) {
return value;
} else {
return new ConstNode( value, type );
}
};
const safeGetNodeType = ( node ) => {
try {
return node.getNodeType();
} catch ( _ ) {
return undefined;
}
};
const ConvertType = function ( type, cacheMap = null ) {
return ( ...params ) => {
if ( params.length === 0 || ( ! [ 'bool', 'float', 'int', 'uint' ].includes( type ) && params.every( param => typeof param !== 'object' ) ) ) {
params = [ getValueFromType( type, ...params ) ];
}
if ( params.length === 1 && cacheMap !== null && cacheMap.has( params[ 0 ] ) ) {
return nodeObject( cacheMap.get( params[ 0 ] ) );
}
if ( params.length === 1 ) {
const node = getConstNode( params[ 0 ], type );
if ( safeGetNodeType( node ) === type ) return nodeObject( node );
return nodeObject( new ConvertNode( node, type ) );
}
const nodes = params.map( param => getConstNode( param ) );
return nodeObject( new JoinNode( nodes, type ) );
};
};
// exports
const defined = ( value ) => value && value.value;
// utils
const getConstNodeType = ( value ) => ( value !== undefined && value !== null ) ? ( value.nodeType || value.convertTo || ( typeof value === 'string' ? value : null ) ) : null;
// shader node base
function ShaderNode( jsFunc ) {
return new Proxy( new ShaderNodeInternal( jsFunc ), shaderNodeHandler );
}
const nodeObject = ( val, altType = null ) => /* new */ ShaderNodeObject( val, altType );
const nodeObjects = ( val, altType = null ) => new ShaderNodeObjects( val, altType );
const nodeArray = ( val, altType = null ) => new ShaderNodeArray( val, altType );
const nodeProxy = ( ...params ) => new ShaderNodeProxy( ...params );
const nodeImmutable = ( ...params ) => new ShaderNodeImmutable( ...params );
const tslFn = ( jsFunc ) => {
const shaderNode = new ShaderNode( jsFunc );
const fn = ( ...params ) => {
let inputs;
nodeObjects( params );
if ( params[ 0 ] && params[ 0 ].isNode ) {
inputs = [ ...params ];
} else {
inputs = params[ 0 ];
}
return shaderNode.call( inputs );
};
fn.shaderNode = shaderNode;
fn.setLayout = ( layout ) => {
shaderNode.setLayout( layout );
return fn;
};
return fn;
};
addNodeClass( 'ShaderNode', ShaderNode );
//
addNodeElement( 'toGlobal', ( node ) => {
node.global = true;
return node;
} );
//
const setCurrentStack = ( stack ) => {
currentStack = stack;
};
const getCurrentStack = () => currentStack;
const If = ( ...params ) => currentStack.if( ...params );
function append( node ) {
if ( currentStack ) currentStack.add( node );
return node;
}
addNodeElement( 'append', append );
// types
// @TODO: Maybe export from ConstNode.js?
const color = new ConvertType( 'color' );
const float = new ConvertType( 'float', cacheMaps.float );
const int = new ConvertType( 'int', cacheMaps.ints );
const uint = new ConvertType( 'uint', cacheMaps.uint );
const bool = new ConvertType( 'bool', cacheMaps.bool );
const vec2 = new ConvertType( 'vec2' );
const ivec2 = new ConvertType( 'ivec2' );
const uvec2 = new ConvertType( 'uvec2' );
const bvec2 = new ConvertType( 'bvec2' );
const vec3 = new ConvertType( 'vec3' );
const ivec3 = new ConvertType( 'ivec3' );
const uvec3 = new ConvertType( 'uvec3' );
const bvec3 = new ConvertType( 'bvec3' );
const vec4 = new ConvertType( 'vec4' );
const ivec4 = new ConvertType( 'ivec4' );
const uvec4 = new ConvertType( 'uvec4' );
const bvec4 = new ConvertType( 'bvec4' );
const mat2 = new ConvertType( 'mat2' );
const imat2 = new ConvertType( 'imat2' );
const umat2 = new ConvertType( 'umat2' );
const bmat2 = new ConvertType( 'bmat2' );
const mat3 = new ConvertType( 'mat3' );
const imat3 = new ConvertType( 'imat3' );
const umat3 = new ConvertType( 'umat3' );
const bmat3 = new ConvertType( 'bmat3' );
const mat4 = new ConvertType( 'mat4' );
const imat4 = new ConvertType( 'imat4' );
const umat4 = new ConvertType( 'umat4' );
const bmat4 = new ConvertType( 'bmat4' );
const string = ( value = '' ) => nodeObject( new ConstNode( value, 'string' ) );
const arrayBuffer = ( value ) => nodeObject( new ConstNode( value, 'ArrayBuffer' ) );
addNodeElement( 'toColor', color );
addNodeElement( 'toFloat', float );
addNodeElement( 'toInt', int );
addNodeElement( 'toUint', uint );
addNodeElement( 'toBool', bool );
addNodeElement( 'toVec2', vec2 );
addNodeElement( 'toIvec2', ivec2 );
addNodeElement( 'toUvec2', uvec2 );
addNodeElement( 'toBvec2', bvec2 );
addNodeElement( 'toVec3', vec3 );
addNodeElement( 'toIvec3', ivec3 );
addNodeElement( 'toUvec3', uvec3 );
addNodeElement( 'toBvec3', bvec3 );
addNodeElement( 'toVec4', vec4 );
addNodeElement( 'toIvec4', ivec4 );
addNodeElement( 'toUvec4', uvec4 );
addNodeElement( 'toBvec4', bvec4 );
addNodeElement( 'toMat2', mat2 );
addNodeElement( 'toImat2', imat2 );
addNodeElement( 'toUmat2', umat2 );
addNodeElement( 'toBmat2', bmat2 );
addNodeElement( 'toMat3', mat3 );
addNodeElement( 'toImat3', imat3 );
addNodeElement( 'toUmat3', umat3 );
addNodeElement( 'toBmat3', bmat3 );
addNodeElement( 'toMat4', mat4 );
addNodeElement( 'toImat4', imat4 );
addNodeElement( 'toUmat4', umat4 );
addNodeElement( 'toBmat4', bmat4 );
// basic nodes
// HACK - we cannot export them from the corresponding files because of the cyclic dependency
const element = nodeProxy( ArrayElementNode );
const convert = ( node, types ) => nodeObject( new ConvertNode( nodeObject( node ), types ) );
const split = ( node, channels ) => nodeObject( new SplitNode( nodeObject( node ), channels ) );
addNodeElement( 'element', element );
addNodeElement( 'convert', convert );
class AssignNode extends TempNode {
constructor( targetNode, sourceNode ) {
super();
this.targetNode = targetNode;
this.sourceNode = sourceNode;
}
hasDependencies() {
return false;
}
getNodeType( builder, output ) {
return output !== 'void' ? this.targetNode.getNodeType( builder ) : 'void';
}
needsSplitAssign( builder ) {
const { targetNode } = this;
if ( builder.isAvailable( 'swizzleAssign' ) === false && targetNode.isSplitNode && targetNode.components.length > 1 ) {
const targetLength = builder.getTypeLength( targetNode.node.getNodeType( builder ) );
const assignDiferentVector = vectorComponents.join( '' ).slice( 0, targetLength ) !== targetNode.components;
return assignDiferentVector;
}
return false;
}
generate( builder, output ) {
const { targetNode, sourceNode } = this;
const needsSplitAssign = this.needsSplitAssign( builder );
const targetType = targetNode.getNodeType( builder );
const target = targetNode.context( { assign: true } ).build( builder );
const source = sourceNode.build( builder, targetType );
const sourceType = sourceNode.getNodeType( builder );
const nodeData = builder.getDataFromNode( this );
//
let snippet;
if ( nodeData.initialized === true ) {
if ( output !== 'void' ) {
snippet = target;
}
} else if ( needsSplitAssign ) {
const sourceVar = builder.getVarFromNode( this, null, targetType );
const sourceProperty = builder.getPropertyName( sourceVar );
builder.addLineFlowCode( `${ sourceProperty } = ${ source }` );
const targetRoot = targetNode.node.context( { assign: true } ).build( builder );
for ( let i = 0; i < targetNode.components.length; i ++ ) {
const component = targetNode.components[ i ];
builder.addLineFlowCode( `${ targetRoot }.${ component } = ${ sourceProperty }[ ${ i } ]` );
}
if ( output !== 'void' ) {
snippet = target;
}
} else {
snippet = `${ target } = ${ source }`;
if ( output === 'void' || sourceType === 'void' ) {
builder.addLineFlowCode( snippet );
if ( output !== 'void' ) {
snippet = target;
}
}
}
nodeData.initialized = true;
return builder.format( snippet, targetType, output );
}
}
const assign = nodeProxy( AssignNode );
addNodeClass( 'AssignNode', AssignNode );
addNodeElement( 'assign', assign );
class VaryingNode extends Node {
constructor( node, name = null ) {
super();
this.node = node;
this.name = name;
this.isVaryingNode = true;
}
isGlobal() {
return true;
}
getHash( builder ) {
return this.name || super.getHash( builder );
}
getNodeType( builder ) {
// VaryingNode is auto type
return this.node.getNodeType( builder );
}
setupVarying( builder ) {
const properties = builder.getNodeProperties( this );
let varying = properties.varying;
if ( varying === undefined ) {
const name = this.name;
const type = this.getNodeType( builder );
properties.varying = varying = builder.getVaryingFromNode( this, name, type );
properties.node = this.node;
}
// this property can be used to check if the varying can be optimized for a variable
varying.needsInterpolation || ( varying.needsInterpolation = ( builder.shaderStage === 'fragment' ) );
return varying;
}
setup( builder ) {
this.setupVarying( builder );
}
analyze( builder ) {
this.setupVarying( builder );
return this.node.analyze( builder );
}
generate( builder ) {
const properties = builder.getNodeProperties( this );
const varying = this.setupVarying( builder );
if ( properties.propertyName === undefined ) {
const type = this.getNodeType( builder );
const propertyName = builder.getPropertyName( varying, NodeShaderStage.VERTEX );
// force node run in vertex stage
builder.flowNodeFromShaderStage( NodeShaderStage.VERTEX, this.node, type, propertyName );
properties.propertyName = propertyName;
}
return builder.getPropertyName( varying );
}
}
const varying = nodeProxy( VaryingNode );
addNodeElement( 'varying', varying );
addNodeClass( 'VaryingNode', VaryingNode );
class AttributeNode extends Node {
constructor( attributeName, nodeType = null, defaultNode = null ) {
super( nodeType );
this.defaultNode = defaultNode;
this.global = true;
this._attributeName = attributeName;
}
getHash( builder ) {
return this.getAttributeName( builder );
}
getNodeType( builder ) {
let nodeType = super.getNodeType( builder );
if ( nodeType === null ) {
const attributeName = this.getAttributeName( builder );
if ( builder.hasGeometryAttribute( attributeName ) ) {
const attribute = builder.geometry.getAttribute( attributeName );
nodeType = builder.getTypeFromAttribute( attribute );
} else {
nodeType = 'float';
}
}
return nodeType;
}
setAttributeName( attributeName ) {
this._attributeName = attributeName;
return this;
}
getAttributeName( /*builder*/ ) {
return this._attributeName;
}
generate( builder ) {
const attributeName = this.getAttributeName( builder );
const nodeType = this.getNodeType( builder );
const geometryAttribute = builder.hasGeometryAttribute( attributeName );
if ( geometryAttribute === true ) {
const attribute = builder.geometry.getAttribute( attributeName );
const attributeType = builder.getTypeFromAttribute( attribute );
const nodeAttribute = builder.getAttribute( attributeName, attributeType );
if ( builder.shaderStage === 'vertex' ) {
return builder.format( nodeAttribute.name, attributeType, nodeType );
} else {
const nodeVarying = varying( this );
return nodeVarying.build( builder, nodeType );
}
} else {
console.warn( `AttributeNode: Vertex attribute "${ attributeName }" not found on geometry.` );
const { defaultNode } = this;
if ( defaultNode !== null ) {
return defaultNode.build( builder, nodeType );
} else {
return builder.generateConst( nodeType );
}
}
}
serialize( data ) {
super.serialize( data );
data.global = this.global;
data._attributeName = this._attributeName;
}
deserialize( data ) {
super.deserialize( data );
this.global = data.global;
this._attributeName = data._attributeName;
}
}
const attribute = ( name, nodeType, defaultNode ) => nodeObject( new AttributeNode( name, nodeType, nodeObject( defaultNode ) ) );
addNodeClass( 'AttributeNode', AttributeNode );
class BypassNode extends Node {
constructor( returnNode, callNode ) {
super();
this.isBypassNode = true;
this.outputNode = returnNode;
this.callNode = callNode;
}
getNodeType( builder ) {
return this.outputNode.getNodeType( builder );
}
generate( builder ) {
const snippet = this.callNode.build( builder, 'void' );
if ( snippet !== '' ) {
builder.addLineFlowCode( snippet );
}
return this.outputNode.build( builder );
}
}
const bypass = nodeProxy( BypassNode );
addNodeElement( 'bypass', bypass );
addNodeClass( 'BypassNode', BypassNode );
class CacheNode extends Node {
constructor( node, parent = true ) {
super();
this.node = node;
this.parent = parent;
this.isCacheNode = true;
}
getNodeType( builder ) {
return this.node.getNodeType( builder );
}
build( builder, ...params ) {
const previousCache = builder.getCache();
const cache = builder.getCacheFromNode( this, parent );
builder.setCache( cache );
const data = this.node.build( builder, ...params );
builder.setCache( previousCache );
return data;
}
}
const cache = ( node, ...params ) => nodeObject( new CacheNode( nodeObject( node ), ...params ) );
addNodeElement( 'cache', cache );
addNodeClass( 'CacheNode', CacheNode );
class ContextNode extends Node {
constructor( node, context = {} ) {
super();
this.isContextNode = true;
this.node = node;
this.context = context;
}
getNodeType( builder ) {
return this.node.getNodeType( builder );
}
analyze( builder ) {
this.node.build( builder );
}
setup( builder ) {
const previousContext = builder.getContext();
builder.setContext( { ...builder.context, ...this.context } );
const node = this.node.build( builder );
builder.setContext( previousContext );
return node;
}
generate( builder, output ) {
const previousContext = builder.getContext();
builder.setContext( { ...builder.context, ...this.context } );
const snippet = this.node.build( builder, output );
builder.setContext( previousContext );
return snippet;
}
}
const context = nodeProxy( ContextNode );
const label = ( node, name ) => context( node, { label: name } );
addNodeElement( 'context', context );
addNodeElement( 'label', label );
addNodeClass( 'ContextNode', ContextNode );
class IndexNode extends Node {
constructor( scope ) {
super( 'uint' );
this.scope = scope;
this.isInstanceIndexNode = true;
}
generate( builder ) {
const nodeType = this.getNodeType( builder );
const scope = this.scope;
let propertyName;
if ( scope === IndexNode.VERTEX ) {
propertyName = builder.getVertexIndex();
} else if ( scope === IndexNode.INSTANCE ) {
propertyName = builder.getInstanceIndex();
} else if ( scope === IndexNode.DRAW ) {
propertyName = builder.getDrawIndex();
} else {
throw new Error( 'THREE.IndexNode: Unknown scope: ' + scope );
}
let output;
if ( builder.shaderStage === 'vertex' || builder.shaderStage === 'compute' ) {
output = propertyName;
} else {
const nodeVarying = varying( this );
output = nodeVarying.build( builder, nodeType );
}
return output;
}
}
IndexNode.VERTEX = 'vertex';
IndexNode.INSTANCE = 'instance';
IndexNode.DRAW = 'draw';
const vertexIndex = nodeImmutable( IndexNode, IndexNode.VERTEX );
const instanceIndex = nodeImmutable( IndexNode, IndexNode.INSTANCE );
const drawIndex = nodeImmutable( IndexNode, IndexNode.DRAW );
addNodeClass( 'IndexNode', IndexNode );
class LightingModel {
start( /*input, stack, builder*/ ) { }
finish( /*input, stack, builder*/ ) { }
direct( /*input, stack, builder*/ ) { }
directRectArea( /*input, stack, builder*/ ) {}
indirect( /*input, stack, builder*/ ) { }
ambientOcclusion( /*input, stack, builder*/ ) { }
}
class VarNode extends Node {
constructor( node, name = null ) {
super();
this.node = node;
this.name = name;
this.global = true;
this.isVarNode = true;
}
getHash( builder ) {
return this.name || super.getHash( builder );
}
getNodeType( builder ) {
return this.node.getNodeType( builder );
}
generate( builder ) {
const { node, name } = this;
const nodeVar = builder.getVarFromNode( this, name, builder.getVectorType( this.getNodeType( builder ) ) );
const propertyName = builder.getPropertyName( nodeVar );
const snippet = node.build( builder, nodeVar.type );
builder.addLineFlowCode( `${propertyName} = ${snippet}` );
return propertyName;
}
}
const temp = nodeProxy( VarNode );
addNodeElement( 'temp', temp ); // @TODO: Will be removed in the future
addNodeElement( 'toVar', ( ...params ) => temp( ...params ).append() );
addNodeClass( 'VarNode', VarNode );
class NodeAttribute {
constructor( name, type, node = null ) {
this.isNodeAttribute = true;
this.name = name;
this.type = type;
this.node = node;
}
}
class NodeUniform {
constructor( name, type, node ) {
this.isNodeUniform = true;
this.name = name;
this.type = type;
this.node = node.getSelf();
}
get value() {
return this.node.value;
}
set value( val ) {
this.node.value = val;
}
get id() {
return this.node.id;
}
get groupNode() {
return this.node.groupNode;
}
}
class NodeVar {
constructor( name, type ) {
this.isNodeVar = true;
this.name = name;
this.type = type;
}
}
class NodeVarying extends NodeVar {
constructor( name, type ) {
super( name, type );
this.needsInterpolation = false;
this.isNodeVarying = true;
}
}
class NodeCode {
constructor( name, type, code = '' ) {
this.name = name;
this.type = type;
this.code = code;
Object.defineProperty( this, 'isNodeCode', { value: true } );
}
}
class NodeKeywords {
constructor() {
this.keywords = [];
this.nodes = {};
this.keywordsCallback = {};
}
getNode( name ) {
let node = this.nodes[ name ];
if ( node === undefined && this.keywordsCallback[ name ] !== undefined ) {
node = this.keywordsCallback[ name ]( name );
this.nodes[ name ] = node;
}
return node;
}
addKeyword( name, callback ) {
this.keywords.push( name );
this.keywordsCallback[ name ] = callback;
return this;
}
parse( code ) {
const keywordNames = this.keywords;
const regExp = new RegExp( `\\b${keywordNames.join( '\\b|\\b' )}\\b`, 'g' );
const codeKeywords = code.match( regExp );
const keywordNodes = [];
if ( codeKeywords !== null ) {
for ( const keyword of codeKeywords ) {
const node = this.getNode( keyword );
if ( node !== undefined && keywordNodes.indexOf( node ) === - 1 ) {
keywordNodes.push( node );
}
}
}
return keywordNodes;
}
include( builder, code ) {
const keywordNodes = this.parse( code );
for ( const keywordNode of keywordNodes ) {
keywordNode.build( builder );
}
}
}
let id$1 = 0;
class NodeCache {
constructor( parent = null ) {
this.id = id$1 ++;
this.nodesData = new WeakMap();
this.parent = parent;
}
getData( node ) {
let data = this.nodesData.get( node );
if ( data === undefined && this.parent !== null ) {
data = this.parent.getData( node );
}
return data;
}
setData( node, data ) {
this.nodesData.set( node, data );
}
}
class PropertyNode extends Node {
constructor( nodeType, name = null, varying = false ) {
super( nodeType );
this.name = name;
this.varying = varying;
this.isPropertyNode = true;
}
getHash( builder ) {
return this.name || super.getHash( builder );
}
isGlobal( /*builder*/ ) {
return true;
}
generate( builder ) {
let nodeVar;
if ( this.varying === true ) {
nodeVar = builder.getVaryingFromNode( this, this.name );
nodeVar.needsInterpolation = true;
} else {
nodeVar = builder.getVarFromNode( this, this.name );
}
return builder.getPropertyName( nodeVar );
}
}
const property = ( type, name ) => nodeObject( new PropertyNode( type, name ) );
const varyingProperty = ( type, name ) => nodeObject( new PropertyNode( type, name, true ) );
const diffuseColor = nodeImmutable( PropertyNode, 'vec4', 'DiffuseColor' );
const emissive = nodeImmutable( PropertyNode, 'vec3', 'EmissiveColor' );
const roughness = nodeImmutable( PropertyNode, 'float', 'Roughness' );
const metalness = nodeImmutable( PropertyNode, 'float', 'Metalness' );
const clearcoat = nodeImmutable( PropertyNode, 'float', 'Clearcoat' );
const clearcoatRoughness = nodeImmutable( PropertyNode, 'float', 'ClearcoatRoughness' );
const sheen = nodeImmutable( PropertyNode, 'vec3', 'Sheen' );
const sheenRoughness = nodeImmutable( PropertyNode, 'float', 'SheenRoughness' );
const iridescence = nodeImmutable( PropertyNode, 'float', 'Iridescence' );
const iridescenceIOR = nodeImmutable( PropertyNode, 'float', 'IridescenceIOR' );
const iridescenceThickness = nodeImmutable( PropertyNode, 'float', 'IridescenceThickness' );
const alphaT = nodeImmutable( PropertyNode, 'float', 'AlphaT' );
const anisotropy = nodeImmutable( PropertyNode, 'float', 'Anisotropy' );
const anisotropyT = nodeImmutable( PropertyNode, 'vec3', 'AnisotropyT' );
const anisotropyB = nodeImmutable( PropertyNode, 'vec3', 'AnisotropyB' );
const specularColor = nodeImmutable( PropertyNode, 'color', 'SpecularColor' );
const specularF90 = nodeImmutable( PropertyNode, 'float', 'SpecularF90' );
const shininess = nodeImmutable( PropertyNode, 'float', 'Shininess' );
const output = nodeImmutable( PropertyNode, 'vec4', 'Output' );
const dashSize = nodeImmutable( PropertyNode, 'float', 'dashSize' );
const gapSize = nodeImmutable( PropertyNode, 'float', 'gapSize' );
const pointWidth = nodeImmutable( PropertyNode, 'float', 'pointWidth' );
const ior = nodeImmutable( PropertyNode, 'float', 'IOR' );
const transmission = nodeImmutable( PropertyNode, 'float', 'Transmission' );
const thickness = nodeImmutable( PropertyNode, 'float', 'Thickness' );
const attenuationDistance = nodeImmutable( PropertyNode, 'float', 'AttenuationDistance' );
const attenuationColor = nodeImmutable( PropertyNode, 'color', 'AttenuationColor' );
const dispersion = nodeImmutable( PropertyNode, 'float', 'Dispersion' );
addNodeClass( 'PropertyNode', PropertyNode );
class ParameterNode extends PropertyNode {
constructor( nodeType, name = null ) {
super( nodeType, name );
this.isParameterNode = true;
}
getHash() {
return this.uuid;
}
generate() {
return this.name;
}
}
const parameter = ( type, name ) => nodeObject( new ParameterNode( type, name ) );
addNodeClass( 'ParameterNode', ParameterNode );
class CodeNode extends Node {
constructor( code = '', includes = [], language = '' ) {
super( 'code' );
this.isCodeNode = true;
this.code = code;
this.language = language;
this.includes = includes;
}
isGlobal() {
return true;
}
setIncludes( includes ) {
this.includes = includes;
return this;
}
getIncludes( /*builder*/ ) {
return this.includes;
}
generate( builder ) {
const includes = this.getIncludes( builder );
for ( const include of includes ) {
include.build( builder );
}
const nodeCode = builder.getCodeFromNode( this, this.getNodeType( builder ) );
nodeCode.code = this.code;
return nodeCode.code;
}
serialize( data ) {
super.serialize( data );
data.code = this.code;
data.language = this.language;
}
deserialize( data ) {
super.deserialize( data );
this.code = data.code;
this.language = data.language;
}
}
const code = nodeProxy( CodeNode );
const js = ( src, includes ) => code( src, includes, 'js' );
const wgsl = ( src, includes ) => code( src, includes, 'wgsl' );
const glsl = ( src, includes ) => code( src, includes, 'glsl' );
addNodeClass( 'CodeNode', CodeNode );
class FunctionNode extends CodeNode {
constructor( code = '', includes = [], language = '' ) {
super( code, includes, language );
this.keywords = {};
}
getNodeType( builder ) {
return this.getNodeFunction( builder ).type;
}
getInputs( builder ) {
return this.getNodeFunction( builder ).inputs;
}
getNodeFunction( builder ) {
const nodeData = builder.getDataFromNode( this );
let nodeFunction = nodeData.nodeFunction;
if ( nodeFunction === undefined ) {
nodeFunction = builder.parser.parseFunction( this.code );
nodeData.nodeFunction = nodeFunction;
}
return nodeFunction;
}
generate( builder, output ) {
super.generate( builder );
const nodeFunction = this.getNodeFunction( builder );
const name = nodeFunction.name;
const type = nodeFunction.type;
const nodeCode = builder.getCodeFromNode( this, type );
if ( name !== '' ) {
// use a custom property name
nodeCode.name = name;
}
const propertyName = builder.getPropertyName( nodeCode );
let code = this.getNodeFunction( builder ).getCode( propertyName );
const keywords = this.keywords;
const keywordsProperties = Object.keys( keywords );
if ( keywordsProperties.length > 0 ) {
for ( const property of keywordsProperties ) {
const propertyRegExp = new RegExp( `\\b${property}\\b`, 'g' );
const nodeProperty = keywords[ property ].build( builder, 'property' );
code = code.replace( propertyRegExp, nodeProperty );
}
}
nodeCode.code = code + '\n';
if ( output === 'property' ) {
return propertyName;
} else {
return builder.format( `${ propertyName }()`, type, output );
}
}
}
const nativeFn = ( code, includes = [], language = '' ) => {
for ( let i = 0; i < includes.length; i ++ ) {
const include = includes[ i ];
// TSL Function: glslFn, wgslFn
if ( typeof include === 'function' ) {
includes[ i ] = include.functionNode;
}
}
const functionNode = nodeObject( new FunctionNode( code, includes, language ) );
const fn = ( ...params ) => functionNode.call( ...params );
fn.functionNode = functionNode;
return fn;
};
const glslFn = ( code, includes ) => nativeFn( code, includes, 'glsl' );
const wgslFn = ( code, includes ) => nativeFn( code, includes, 'wgsl' );
addNodeClass( 'FunctionNode', FunctionNode );
class UniformGroupNode extends Node {
constructor( name, shared = false ) {
super( 'string' );
this.name = name;
this.version = 0;
this.shared = shared;
this.isUniformGroup = true;
}
set needsUpdate( value ) {
if ( value === true ) this.version ++;
}
serialize( data ) {
super.serialize( data );
data.name = this.name;
data.version = this.version;
data.shared = this.shared;
}
deserialize( data ) {
super.deserialize( data );
this.name = data.name;
this.version = data.version;
this.shared = data.shared;
}
}
const uniformGroup = ( name ) => new UniformGroupNode( name );
const sharedUniformGroup = ( name ) => new UniformGroupNode( name, true );
const frameGroup = sharedUniformGroup( 'frame' );
const renderGroup = sharedUniformGroup( 'render' );
const objectGroup = uniformGroup( 'object' );
addNodeClass( 'UniformGroupNode', UniformGroupNode );
class UniformNode extends InputNode {
constructor( value, nodeType = null ) {
super( value, nodeType );
this.isUniformNode = true;
this.name = '';
this.groupNode = objectGroup;
}
label( name ) {
this.name = name;
return this;
}
setGroup( group ) {
this.groupNode = group;
return this;
}
getGroup() {
return this.groupNode;
}
getUniformHash( builder ) {
return this.getHash( builder );
}
onUpdate( callback, updateType ) {
const self = this.getSelf();
callback = callback.bind( self );
return super.onUpdate( ( frame ) => {
const value = callback( frame, self );
if ( value !== undefined ) {
this.value = value;
}
}, updateType );
}
generate( builder, output ) {
const type = this.getNodeType( builder );
const hash = this.getUniformHash( builder );
let sharedNode = builder.getNodeFromHash( hash );
if ( sharedNode === undefined ) {
builder.setHashNode( this, hash );
sharedNode = this;
}
const sharedNodeType = sharedNode.getInputType( builder );
const nodeUniform = builder.getUniformFromNode( sharedNode, sharedNodeType, builder.shaderStage, this.name || builder.context.label );
const propertyName = builder.getPropertyName( nodeUniform );
if ( builder.context.label !== undefined ) delete builder.context.label;
return builder.format( propertyName, type, output );
}
}
const uniform = ( arg1, arg2 ) => {
const nodeType = getConstNodeType( arg2 || arg1 );
// @TODO: get ConstNode from .traverse() in the future
const value = ( arg1 && arg1.isNode === true ) ? ( arg1.node && arg1.node.value ) || arg1.value : arg1;
return nodeObject( new UniformNode( value, nodeType ) );
};
addNodeClass( 'UniformNode', UniformNode );
const uv = ( index ) => attribute( 'uv' + ( index > 0 ? index : '' ), 'vec2' );
class TextureSizeNode extends Node {
constructor( textureNode, levelNode = null ) {
super( 'uvec2' );
this.isTextureSizeNode = true;
this.textureNode = textureNode;
this.levelNode = levelNode;
}
generate( builder, output ) {
const textureProperty = this.textureNode.build( builder, 'property' );
const levelNode = this.levelNode.build( builder, 'int' );
return builder.format( `${ builder.getMethod( 'textureDimensions' ) }( ${ textureProperty }, ${ levelNode } )`, this.getNodeType( builder ), output );
}
}
const textureSize = nodeProxy( TextureSizeNode );
addNodeElement( 'textureSize', textureSize );
addNodeClass( 'TextureSizeNode', TextureSizeNode );
class OperatorNode extends TempNode {
constructor( op, aNode, bNode, ...params ) {
super();
if ( params.length > 0 ) {
let finalOp = new OperatorNode( op, aNode, bNode );
for ( let i = 0; i < params.length - 1; i ++ ) {
finalOp = new OperatorNode( op, finalOp, params[ i ] );
}
aNode = finalOp;
bNode = params[ params.length - 1 ];
}
this.op = op;
this.aNode = aNode;
this.bNode = bNode;
}
getNodeType( builder, output ) {
const op = this.op;
const aNode = this.aNode;
const bNode = this.bNode;
const typeA = aNode.getNodeType( builder );
const typeB = typeof bNode !== 'undefined' ? bNode.getNodeType( builder ) : null;
if ( typeA === 'void' || typeB === 'void' ) {
return 'void';
} else if ( op === '%' ) {
return typeA;
} else if ( op === '~' || op === '&' || op === '|' || op === '^' || op === '>>' || op === '<<' ) {
return builder.getIntegerType( typeA );
} else if ( op === '!' || op === '==' || op === '&&' || op === '||' || op === '^^' ) {
return 'bool';
} else if ( op === '<' || op === '>' || op === '<=' || op === '>=' ) {
const typeLength = output ? builder.getTypeLength( output ) : Math.max( builder.getTypeLength( typeA ), builder.getTypeLength( typeB ) );
return typeLength > 1 ? `bvec${ typeLength }` : 'bool';
} else {
if ( typeA === 'float' && builder.isMatrix( typeB ) ) {
return typeB;
} else if ( builder.isMatrix( typeA ) && builder.isVector( typeB ) ) {
// matrix x vector
return builder.getVectorFromMatrix( typeA );
} else if ( builder.isVector( typeA ) && builder.isMatrix( typeB ) ) {
// vector x matrix
return builder.getVectorFromMatrix( typeB );
} else if ( builder.getTypeLength( typeB ) > builder.getTypeLength( typeA ) ) {
// anytype x anytype: use the greater length vector
return typeB;
}
return typeA;
}
}
generate( builder, output ) {
const op = this.op;
const aNode = this.aNode;
const bNode = this.bNode;
const type = this.getNodeType( builder, output );
let typeA = null;
let typeB = null;
if ( type !== 'void' ) {
typeA = aNode.getNodeType( builder );
typeB = typeof bNode !== 'undefined' ? bNode.getNodeType( builder ) : null;
if ( op === '<' || op === '>' || op === '<=' || op === '>=' || op === '==' ) {
if ( builder.isVector( typeA ) ) {
typeB = typeA;
} else {
typeA = typeB = 'float';
}
} else if ( op === '>>' || op === '<<' ) {
typeA = type;
typeB = builder.changeComponentType( typeB, 'uint' );
} else if ( builder.isMatrix( typeA ) && builder.isVector( typeB ) ) {
// matrix x vector
typeB = builder.getVectorFromMatrix( typeA );
} else if ( builder.isVector( typeA ) && builder.isMatrix( typeB ) ) {
// vector x matrix
typeA = builder.getVectorFromMatrix( typeB );
} else {
// anytype x anytype
typeA = typeB = type;
}
} else {
typeA = typeB = type;
}
const a = aNode.build( builder, typeA );
const b = typeof bNode !== 'undefined' ? bNode.build( builder, typeB ) : null;
const outputLength = builder.getTypeLength( output );
const fnOpSnippet = builder.getFunctionOperator( op );
if ( output !== 'void' ) {
if ( op === '<' && outputLength > 1 ) {
return builder.format( `${ builder.getMethod( 'lessThan' ) }( ${ a }, ${ b } )`, type, output );
} else if ( op === '<=' && outputLength > 1 ) {
return builder.format( `${ builder.getMethod( 'lessThanEqual' ) }( ${ a }, ${ b } )`, type, output );
} else if ( op === '>' && outputLength > 1 ) {
return builder.format( `${ builder.getMethod( 'greaterThan' ) }( ${ a }, ${ b } )`, type, output );
} else if ( op === '>=' && outputLength > 1 ) {
return builder.format( `${ builder.getMethod( 'greaterThanEqual' ) }( ${ a }, ${ b } )`, type, output );
} else if ( op === '!' || op === '~' ) {
return builder.format( `(${op}${a})`, typeA, output );
} else if ( fnOpSnippet ) {
return builder.format( `${ fnOpSnippet }( ${ a }, ${ b } )`, type, output );
} else {
return builder.format( `( ${ a } ${ op } ${ b } )`, type, output );
}
} else if ( typeA !== 'void' ) {
if ( fnOpSnippet ) {
return builder.format( `${ fnOpSnippet }( ${ a }, ${ b } )`, type, output );
} else {
return builder.format( `${ a } ${ op } ${ b }`, type, output );
}
}
}
serialize( data ) {
super.serialize( data );
data.op = this.op;
}
deserialize( data ) {
super.deserialize( data );
this.op = data.op;
}
}
const add = nodeProxy( OperatorNode, '+' );
const sub = nodeProxy( OperatorNode, '-' );
const mul = nodeProxy( OperatorNode, '*' );
const div = nodeProxy( OperatorNode, '/' );
const remainder = nodeProxy( OperatorNode, '%' );
const equal = nodeProxy( OperatorNode, '==' );
const notEqual = nodeProxy( OperatorNode, '!=' );
const lessThan = nodeProxy( OperatorNode, '<' );
const greaterThan = nodeProxy( OperatorNode, '>' );
const lessThanEqual = nodeProxy( OperatorNode, '<=' );
const greaterThanEqual = nodeProxy( OperatorNode, '>=' );
const and = nodeProxy( OperatorNode, '&&' );
const or = nodeProxy( OperatorNode, '||' );
const not = nodeProxy( OperatorNode, '!' );
const xor = nodeProxy( OperatorNode, '^^' );
const bitAnd = nodeProxy( OperatorNode, '&' );
const bitNot = nodeProxy( OperatorNode, '~' );
const bitOr = nodeProxy( OperatorNode, '|' );
const bitXor = nodeProxy( OperatorNode, '^' );
const shiftLeft = nodeProxy( OperatorNode, '<<' );
const shiftRight = nodeProxy( OperatorNode, '>>' );
addNodeElement( 'add', add );
addNodeElement( 'sub', sub );
addNodeElement( 'mul', mul );
addNodeElement( 'div', div );
addNodeElement( 'remainder', remainder );
addNodeElement( 'equal', equal );
addNodeElement( 'notEqual', notEqual );
addNodeElement( 'lessThan', lessThan );
addNodeElement( 'greaterThan', greaterThan );
addNodeElement( 'lessThanEqual', lessThanEqual );
addNodeElement( 'greaterThanEqual', greaterThanEqual );
addNodeElement( 'and', and );
addNodeElement( 'or', or );
addNodeElement( 'not', not );
addNodeElement( 'xor', xor );
addNodeElement( 'bitAnd', bitAnd );
addNodeElement( 'bitNot', bitNot );
addNodeElement( 'bitOr', bitOr );
addNodeElement( 'bitXor', bitXor );
addNodeElement( 'shiftLeft', shiftLeft );
addNodeElement( 'shiftRight', shiftRight );
addNodeClass( 'OperatorNode', OperatorNode );
class MathNode extends TempNode {
constructor( method, aNode, bNode = null, cNode = null ) {
super();
this.method = method;
this.aNode = aNode;
this.bNode = bNode;
this.cNode = cNode;
}
getInputType( builder ) {
const aType = this.aNode.getNodeType( builder );
const bType = this.bNode ? this.bNode.getNodeType( builder ) : null;
const cType = this.cNode ? this.cNode.getNodeType( builder ) : null;
const aLen = builder.isMatrix( aType ) ? 0 : builder.getTypeLength( aType );
const bLen = builder.isMatrix( bType ) ? 0 : builder.getTypeLength( bType );
const cLen = builder.isMatrix( cType ) ? 0 : builder.getTypeLength( cType );
if ( aLen > bLen && aLen > cLen ) {
return aType;
} else if ( bLen > cLen ) {
return bType;
} else if ( cLen > aLen ) {
return cType;
}
return aType;
}
getNodeType( builder ) {
const method = this.method;
if ( method === MathNode.LENGTH || method === MathNode.DISTANCE || method === MathNode.DOT ) {
return 'float';
} else if ( method === MathNode.CROSS ) {
return 'vec3';
} else if ( method === MathNode.ALL ) {
return 'bool';
} else if ( method === MathNode.EQUALS ) {
return builder.changeComponentType( this.aNode.getNodeType( builder ), 'bool' );
} else if ( method === MathNode.MOD ) {
return this.aNode.getNodeType( builder );
} else {
return this.getInputType( builder );
}
}
generate( builder, output ) {
const method = this.method;
const type = this.getNodeType( builder );
const inputType = this.getInputType( builder );
const a = this.aNode;
const b = this.bNode;
const c = this.cNode;
const isWebGL = builder.renderer.isWebGLRenderer === true;
if ( method === MathNode.TRANSFORM_DIRECTION ) {
// dir can be either a direction vector or a normal vector
// upper-left 3x3 of matrix is assumed to be orthogonal
let tA = a;
let tB = b;
if ( builder.isMatrix( tA.getNodeType( builder ) ) ) {
tB = vec4( vec3( tB ), 0.0 );
} else {
tA = vec4( vec3( tA ), 0.0 );
}
const mulNode = mul( tA, tB ).xyz;
return normalize( mulNode ).build( builder, output );
} else if ( method === MathNode.NEGATE ) {
return builder.format( '( - ' + a.build( builder, inputType ) + ' )', type, output );
} else if ( method === MathNode.ONE_MINUS ) {
return sub( 1.0, a ).build( builder, output );
} else if ( method === MathNode.RECIPROCAL ) {
return div( 1.0, a ).build( builder, output );
} else if ( method === MathNode.DIFFERENCE ) {
return abs( sub( a, b ) ).build( builder, output );
} else {
const params = [];
if ( method === MathNode.CROSS || method === MathNode.MOD ) {
params.push(
a.build( builder, type ),
b.build( builder, type )
);
} else if ( method === MathNode.STEP ) {
params.push(
a.build( builder, builder.getTypeLength( a.getNodeType( builder ) ) === 1 ? 'float' : inputType ),
b.build( builder, inputType )
);
} else if ( ( isWebGL && ( method === MathNode.MIN || method === MathNode.MAX ) ) || method === MathNode.MOD ) {
params.push(
a.build( builder, inputType ),
b.build( builder, builder.getTypeLength( b.getNodeType( builder ) ) === 1 ? 'float' : inputType )
);
} else if ( method === MathNode.REFRACT ) {
params.push(
a.build( builder, inputType ),
b.build( builder, inputType ),
c.build( builder, 'float' )
);
} else if ( method === MathNode.MIX ) {
params.push(
a.build( builder, inputType ),
b.build( builder, inputType ),
c.build( builder, builder.getTypeLength( c.getNodeType( builder ) ) === 1 ? 'float' : inputType )
);
} else {
params.push( a.build( builder, inputType ) );
if ( b !== null ) params.push( b.build( builder, inputType ) );
if ( c !== null ) params.push( c.build( builder, inputType ) );
}
return builder.format( `${ builder.getMethod( method, type ) }( ${params.join( ', ' )} )`, type, output );
}
}
serialize( data ) {
super.serialize( data );
data.method = this.method;
}
deserialize( data ) {
super.deserialize( data );
this.method = data.method;
}
}
// 1 input
MathNode.ALL = 'all';
MathNode.ANY = 'any';
MathNode.EQUALS = 'equals';
MathNode.RADIANS = 'radians';
MathNode.DEGREES = 'degrees';
MathNode.EXP = 'exp';
MathNode.EXP2 = 'exp2';
MathNode.LOG = 'log';
MathNode.LOG2 = 'log2';
MathNode.SQRT = 'sqrt';
MathNode.INVERSE_SQRT = 'inversesqrt';
MathNode.FLOOR = 'floor';
MathNode.CEIL = 'ceil';
MathNode.NORMALIZE = 'normalize';
MathNode.FRACT = 'fract';
MathNode.SIN = 'sin';
MathNode.COS = 'cos';
MathNode.TAN = 'tan';
MathNode.ASIN = 'asin';
MathNode.ACOS = 'acos';
MathNode.ATAN = 'atan';
MathNode.ABS = 'abs';
MathNode.SIGN = 'sign';
MathNode.LENGTH = 'length';
MathNode.NEGATE = 'negate';
MathNode.ONE_MINUS = 'oneMinus';
MathNode.DFDX = 'dFdx';
MathNode.DFDY = 'dFdy';
MathNode.ROUND = 'round';
MathNode.RECIPROCAL = 'reciprocal';
MathNode.TRUNC = 'trunc';
MathNode.FWIDTH = 'fwidth';
MathNode.BITCAST = 'bitcast';
MathNode.TRANSPOSE = 'transpose';
// 2 inputs
MathNode.ATAN2 = 'atan2';
MathNode.MIN = 'min';
MathNode.MAX = 'max';
MathNode.MOD = 'mod';
MathNode.STEP = 'step';
MathNode.REFLECT = 'reflect';
MathNode.DISTANCE = 'distance';
MathNode.DIFFERENCE = 'difference';
MathNode.DOT = 'dot';
MathNode.CROSS = 'cross';
MathNode.POW = 'pow';
MathNode.TRANSFORM_DIRECTION = 'transformDirection';
// 3 inputs
MathNode.MIX = 'mix';
MathNode.CLAMP = 'clamp';
MathNode.REFRACT = 'refract';
MathNode.SMOOTHSTEP = 'smoothstep';
MathNode.FACEFORWARD = 'faceforward';
const EPSILON = float( 1e-6 );
const INFINITY = float( 1e6 );
const PI = float( Math.PI );
const PI2 = float( Math.PI * 2 );
const all = nodeProxy( MathNode, MathNode.ALL );
const any = nodeProxy( MathNode, MathNode.ANY );
const equals = nodeProxy( MathNode, MathNode.EQUALS );
const radians = nodeProxy( MathNode, MathNode.RADIANS );
const degrees = nodeProxy( MathNode, MathNode.DEGREES );
const exp = nodeProxy( MathNode, MathNode.EXP );
const exp2 = nodeProxy( MathNode, MathNode.EXP2 );
const log = nodeProxy( MathNode, MathNode.LOG );
const log2 = nodeProxy( MathNode, MathNode.LOG2 );
const sqrt = nodeProxy( MathNode, MathNode.SQRT );
const inverseSqrt = nodeProxy( MathNode, MathNode.INVERSE_SQRT );
const floor = nodeProxy( MathNode, MathNode.FLOOR );
const ceil = nodeProxy( MathNode, MathNode.CEIL );
const normalize = nodeProxy( MathNode, MathNode.NORMALIZE );
const fract = nodeProxy( MathNode, MathNode.FRACT );
const sin = nodeProxy( MathNode, MathNode.SIN );
const cos = nodeProxy( MathNode, MathNode.COS );
const tan = nodeProxy( MathNode, MathNode.TAN );
const asin = nodeProxy( MathNode, MathNode.ASIN );
const acos = nodeProxy( MathNode, MathNode.ACOS );
const atan = nodeProxy( MathNode, MathNode.ATAN );
const abs = nodeProxy( MathNode, MathNode.ABS );
const sign = nodeProxy( MathNode, MathNode.SIGN );
const length = nodeProxy( MathNode, MathNode.LENGTH );
const negate = nodeProxy( MathNode, MathNode.NEGATE );
const oneMinus = nodeProxy( MathNode, MathNode.ONE_MINUS );
const dFdx = nodeProxy( MathNode, MathNode.DFDX );
const dFdy = nodeProxy( MathNode, MathNode.DFDY );
const round = nodeProxy( MathNode, MathNode.ROUND );
const reciprocal = nodeProxy( MathNode, MathNode.RECIPROCAL );
const trunc = nodeProxy( MathNode, MathNode.TRUNC );
const fwidth = nodeProxy( MathNode, MathNode.FWIDTH );
const bitcast = nodeProxy( MathNode, MathNode.BITCAST );
const transpose = nodeProxy( MathNode, MathNode.TRANSPOSE );
const atan2 = nodeProxy( MathNode, MathNode.ATAN2 );
const min$1 = nodeProxy( MathNode, MathNode.MIN );
const max$1 = nodeProxy( MathNode, MathNode.MAX );
const mod = nodeProxy( MathNode, MathNode.MOD );
const step = nodeProxy( MathNode, MathNode.STEP );
const reflect = nodeProxy( MathNode, MathNode.REFLECT );
const distance = nodeProxy( MathNode, MathNode.DISTANCE );
const difference = nodeProxy( MathNode, MathNode.DIFFERENCE );
const dot = nodeProxy( MathNode, MathNode.DOT );
const cross = nodeProxy( MathNode, MathNode.CROSS );
const pow = nodeProxy( MathNode, MathNode.POW );
const pow2 = nodeProxy( MathNode, MathNode.POW, 2 );
const pow3 = nodeProxy( MathNode, MathNode.POW, 3 );
const pow4 = nodeProxy( MathNode, MathNode.POW, 4 );
const transformDirection = nodeProxy( MathNode, MathNode.TRANSFORM_DIRECTION );
const cbrt = ( a ) => mul( sign( a ), pow( abs( a ), 1.0 / 3.0 ) );
const lengthSq = ( a ) => dot( a, a );
const mix = nodeProxy( MathNode, MathNode.MIX );
const clamp = ( value, low = 0, high = 1 ) => nodeObject( new MathNode( MathNode.CLAMP, nodeObject( value ), nodeObject( low ), nodeObject( high ) ) );
const saturate = ( value ) => clamp( value );
const refract = nodeProxy( MathNode, MathNode.REFRACT );
const smoothstep = nodeProxy( MathNode, MathNode.SMOOTHSTEP );
const faceForward = nodeProxy( MathNode, MathNode.FACEFORWARD );
const rand = tslFn( ( [ uv ] ) => {
const a = 12.9898, b = 78.233, c = 43758.5453;
const dt = dot( uv.xy, vec2( a, b ) ), sn = mod( dt, PI );
return fract( sin( sn ).mul( c ) );
} );
const mixElement = ( t, e1, e2 ) => mix( e1, e2, t );
const smoothstepElement = ( x, low, high ) => smoothstep( low, high, x );
addNodeElement( 'all', all );
addNodeElement( 'any', any );
addNodeElement( 'equals', equals );
addNodeElement( 'radians', radians );
addNodeElement( 'degrees', degrees );
addNodeElement( 'exp', exp );
addNodeElement( 'exp2', exp2 );
addNodeElement( 'log', log );
addNodeElement( 'log2', log2 );
addNodeElement( 'sqrt', sqrt );
addNodeElement( 'inverseSqrt', inverseSqrt );
addNodeElement( 'floor', floor );
addNodeElement( 'ceil', ceil );
addNodeElement( 'normalize', normalize );
addNodeElement( 'fract', fract );
addNodeElement( 'sin', sin );
addNodeElement( 'cos', cos );
addNodeElement( 'tan', tan );
addNodeElement( 'asin', asin );
addNodeElement( 'acos', acos );
addNodeElement( 'atan', atan );
addNodeElement( 'abs', abs );
addNodeElement( 'sign', sign );
addNodeElement( 'length', length );
addNodeElement( 'lengthSq', lengthSq );
addNodeElement( 'negate', negate );
addNodeElement( 'oneMinus', oneMinus );
addNodeElement( 'dFdx', dFdx );
addNodeElement( 'dFdy', dFdy );
addNodeElement( 'round', round );
addNodeElement( 'reciprocal', reciprocal );
addNodeElement( 'trunc', trunc );
addNodeElement( 'fwidth', fwidth );
addNodeElement( 'atan2', atan2 );
addNodeElement( 'min', min$1 );
addNodeElement( 'max', max$1 );
addNodeElement( 'mod', mod );
addNodeElement( 'step', step );
addNodeElement( 'reflect', reflect );
addNodeElement( 'distance', distance );
addNodeElement( 'dot', dot );
addNodeElement( 'cross', cross );
addNodeElement( 'pow', pow );
addNodeElement( 'pow2', pow2 );
addNodeElement( 'pow3', pow3 );
addNodeElement( 'pow4', pow4 );
addNodeElement( 'transformDirection', transformDirection );
addNodeElement( 'mix', mixElement );
addNodeElement( 'clamp', clamp );
addNodeElement( 'refract', refract );
addNodeElement( 'smoothstep', smoothstepElement );
addNodeElement( 'faceForward', faceForward );
addNodeElement( 'difference', difference );
addNodeElement( 'saturate', saturate );
addNodeElement( 'cbrt', cbrt );
addNodeElement( 'transpose', transpose );
addNodeElement( 'rand', rand );
addNodeClass( 'MathNode', MathNode );
const sRGBToLinearShader = tslFn( ( inputs ) => {
const { value } = inputs;
const { rgb } = value;
const a = rgb.mul( 0.9478672986 ).add( 0.0521327014 ).pow( 2.4 );
const b = rgb.mul( 0.0773993808 );
const factor = rgb.lessThanEqual( 0.04045 );
const rgbResult = mix( a, b, factor );
return vec4( rgbResult, value.a );
} );
const LinearTosRGBShader = tslFn( ( inputs ) => {
const { value } = inputs;
const { rgb } = value;
const a = rgb.pow( 0.41666 ).mul( 1.055 ).sub( 0.055 );
const b = rgb.mul( 12.92 );
const factor = rgb.lessThanEqual( 0.0031308 );
const rgbResult = mix( a, b, factor );
return vec4( rgbResult, value.a );
} );
const getColorSpaceMethod = ( colorSpace ) => {
let method = null;
if ( colorSpace === LinearSRGBColorSpace ) {
method = 'Linear';
} else if ( colorSpace === SRGBColorSpace ) {
method = 'sRGB';
}
return method;
};
const getMethod = ( source, target ) => {
return getColorSpaceMethod( source ) + 'To' + getColorSpaceMethod( target );
};
class ColorSpaceNode extends TempNode {
constructor( method, node ) {
super( 'vec4' );
this.method = method;
this.node = node;
}
setup() {
const { method, node } = this;
if ( method === ColorSpaceNode.LINEAR_TO_LINEAR )
return node;
return Methods[ method ]( { value: node } );
}
}
ColorSpaceNode.LINEAR_TO_LINEAR = 'LinearToLinear';
ColorSpaceNode.LINEAR_TO_sRGB = 'LinearTosRGB';
ColorSpaceNode.sRGB_TO_LINEAR = 'sRGBToLinear';
const Methods = {
[ ColorSpaceNode.LINEAR_TO_sRGB ]: LinearTosRGBShader,
[ ColorSpaceNode.sRGB_TO_LINEAR ]: sRGBToLinearShader
};
const linearToColorSpace = ( node, colorSpace ) => nodeObject( new ColorSpaceNode( getMethod( LinearSRGBColorSpace, colorSpace ), nodeObject( node ) ) );
const colorSpaceToLinear = ( node, colorSpace ) => nodeObject( new ColorSpaceNode( getMethod( colorSpace, LinearSRGBColorSpace ), nodeObject( node ) ) );
const linearTosRGB = nodeProxy( ColorSpaceNode, ColorSpaceNode.LINEAR_TO_sRGB );
const sRGBToLinear = nodeProxy( ColorSpaceNode, ColorSpaceNode.sRGB_TO_LINEAR );
addNodeElement( 'linearTosRGB', linearTosRGB );
addNodeElement( 'sRGBToLinear', sRGBToLinear );
addNodeElement( 'linearToColorSpace', linearToColorSpace );
addNodeElement( 'colorSpaceToLinear', colorSpaceToLinear );
addNodeClass( 'ColorSpaceNode', ColorSpaceNode );
class ExpressionNode extends Node {
constructor( snippet = '', nodeType = 'void' ) {
super( nodeType );
this.snippet = snippet;
}
generate( builder, output ) {
const type = this.getNodeType( builder );
const snippet = this.snippet;
if ( type === 'void' ) {
builder.addLineFlowCode( snippet );
} else {
return builder.format( `( ${ snippet } )`, type, output );
}
}
}
const expression = nodeProxy( ExpressionNode );
addNodeClass( 'ExpressionNode', ExpressionNode );
class MaxMipLevelNode extends UniformNode {
constructor( textureNode ) {
super( 0 );
this._textureNode = textureNode;
this.updateType = NodeUpdateType.FRAME;
}
get textureNode() {
return this._textureNode;
}
get texture() {
return this._textureNode.value;
}
update() {
const texture = this.texture;
const images = texture.images;
const image = ( images && images.length > 0 ) ? ( ( images[ 0 ] && images[ 0 ].image ) || images[ 0 ] ) : texture.image;
if ( image && image.width !== undefined ) {
const { width, height } = image;
this.value = Math.log2( Math.max( width, height ) );
}
}
}
const maxMipLevel = nodeProxy( MaxMipLevelNode );
addNodeClass( 'MaxMipLevelNode', MaxMipLevelNode );
class TextureNode extends UniformNode {
constructor( value, uvNode = null, levelNode = null, biasNode = null ) {
super( value );
this.isTextureNode = true;
this.uvNode = uvNode;
this.levelNode = levelNode;
this.biasNode = biasNode;
this.compareNode = null;
this.depthNode = null;
this.gradNode = null;
this.sampler = true;
this.updateMatrix = false;
this.updateType = NodeUpdateType.NONE;
this.referenceNode = null;
this._value = value;
this._matrixUniform = null;
this.setUpdateMatrix( uvNode === null );
}
set value( value ) {
if ( this.referenceNode ) {
this.referenceNode.value = value;
} else {
this._value = value;
}
}
get value() {
return this.referenceNode ? this.referenceNode.value : this._value;
}
getUniformHash( /*builder*/ ) {
return this.value.uuid;
}
getNodeType( /*builder*/ ) {
if ( this.value.isDepthTexture === true ) return 'float';
if ( this.value.type === UnsignedIntType ) {
return 'uvec4';
} else if ( this.value.type === IntType ) {
return 'ivec4';
}
return 'vec4';
}
getInputType( /*builder*/ ) {
return 'texture';
}
getDefaultUV() {
return uv( this.value.channel );
}
updateReference( /*state*/ ) {
return this.value;
}
getTransformedUV( uvNode ) {
if ( this._matrixUniform === null ) this._matrixUniform = uniform( this.value.matrix );
return this._matrixUniform.mul( vec3( uvNode, 1 ) ).xy;
}
setUpdateMatrix( value ) {
this.updateMatrix = value;
this.updateType = value ? NodeUpdateType.FRAME : NodeUpdateType.NONE;
return this;
}
setupUV( builder, uvNode ) {
const texture = this.value;
if ( builder.isFlipY() && ( texture.isRenderTargetTexture === true || texture.isFramebufferTexture === true || texture.isDepthTexture === true ) ) {
uvNode = uvNode.setY( uvNode.y.oneMinus() );
}
return uvNode;
}
setup( builder ) {
const properties = builder.getNodeProperties( this );
properties.referenceNode = this.referenceNode;
//
let uvNode = this.uvNode;
if ( ( uvNode === null || builder.context.forceUVContext === true ) && builder.context.getUV ) {
uvNode = builder.context.getUV( this );
}
if ( ! uvNode ) uvNode = this.getDefaultUV();
if ( this.updateMatrix === true ) {
uvNode = this.getTransformedUV( uvNode );
}
uvNode = this.setupUV( builder, uvNode );
//
let levelNode = this.levelNode;
if ( levelNode === null && builder.context.getTextureLevel ) {
levelNode = builder.context.getTextureLevel( this );
}
//
properties.uvNode = uvNode;
properties.levelNode = levelNode;
properties.biasNode = this.biasNode;
properties.compareNode = this.compareNode;
properties.gradNode = this.gradNode;
properties.depthNode = this.depthNode;
}
generateUV( builder, uvNode ) {
return uvNode.build( builder, this.sampler === true ? 'vec2' : 'ivec2' );
}
generateSnippet( builder, textureProperty, uvSnippet, levelSnippet, biasSnippet, depthSnippet, compareSnippet, gradSnippet ) {
const texture = this.value;
let snippet;
if ( levelSnippet ) {
snippet = builder.generateTextureLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet );
} else if ( biasSnippet ) {
snippet = builder.generateTextureBias( texture, textureProperty, uvSnippet, biasSnippet, depthSnippet );
} else if ( gradSnippet ) {
snippet = builder.generateTextureGrad( texture, textureProperty, uvSnippet, gradSnippet, depthSnippet );
} else if ( compareSnippet ) {
snippet = builder.generateTextureCompare( texture, textureProperty, uvSnippet, compareSnippet, depthSnippet );
} else if ( this.sampler === false ) {
snippet = builder.generateTextureLoad( texture, textureProperty, uvSnippet, depthSnippet );
} else {
snippet = builder.generateTexture( texture, textureProperty, uvSnippet, depthSnippet );
}
return snippet;
}
generate( builder, output ) {
const properties = builder.getNodeProperties( this );
const texture = this.value;
if ( ! texture || texture.isTexture !== true ) {
throw new Error( 'TextureNode: Need a three.js texture.' );
}
const textureProperty = super.generate( builder, 'property' );
if ( output === 'sampler' ) {
return textureProperty + '_sampler';
} else if ( builder.isReference( output ) ) {
return textureProperty;
} else {
const nodeData = builder.getDataFromNode( this );
let propertyName = nodeData.propertyName;
if ( propertyName === undefined ) {
const { uvNode, levelNode, biasNode, compareNode, depthNode, gradNode } = properties;
const uvSnippet = this.generateUV( builder, uvNode );
const levelSnippet = levelNode ? levelNode.build( builder, 'float' ) : null;
const biasSnippet = biasNode ? biasNode.build( builder, 'float' ) : null;
const depthSnippet = depthNode ? depthNode.build( builder, 'int' ) : null;
const compareSnippet = compareNode ? compareNode.build( builder, 'float' ) : null;
const gradSnippet = gradNode ? [ gradNode[ 0 ].build( builder, 'vec2' ), gradNode[ 1 ].build( builder, 'vec2' ) ] : null;
const nodeVar = builder.getVarFromNode( this );
propertyName = builder.getPropertyName( nodeVar );
const snippet = this.generateSnippet( builder, textureProperty, uvSnippet, levelSnippet, biasSnippet, depthSnippet, compareSnippet, gradSnippet );
builder.addLineFlowCode( `${propertyName} = ${snippet}` );
nodeData.snippet = snippet;
nodeData.propertyName = propertyName;
}
let snippet = propertyName;
const nodeType = this.getNodeType( builder );
if ( builder.needsColorSpaceToLinear( texture ) ) {
snippet = colorSpaceToLinear( expression( snippet, nodeType ), texture.colorSpace ).setup( builder ).build( builder, nodeType );
}
return builder.format( snippet, nodeType, output );
}
}
setSampler( value ) {
this.sampler = value;
return this;
}
getSampler() {
return this.sampler;
}
// @TODO: Move to TSL
uv( uvNode ) {
const textureNode = this.clone();
textureNode.uvNode = nodeObject( uvNode );
textureNode.referenceNode = this;
return nodeObject( textureNode );
}
blur( amountNode ) {
const textureNode = this.clone();
textureNode.biasNode = nodeObject( amountNode ).mul( maxMipLevel( textureNode ) );
textureNode.referenceNode = this;
return nodeObject( textureNode );
}
level( levelNode ) {
const textureNode = this.clone();
textureNode.levelNode = nodeObject( levelNode );
textureNode.referenceNode = this;
return nodeObject( textureNode );
}
size( levelNode ) {
return textureSize( this, levelNode );
}
bias( biasNode ) {
const textureNode = this.clone();
textureNode.biasNode = nodeObject( biasNode );
textureNode.referenceNode = this;
return nodeObject( textureNode );
}
compare( compareNode ) {
const textureNode = this.clone();
textureNode.compareNode = nodeObject( compareNode );
textureNode.referenceNode = this;
return nodeObject( textureNode );
}
grad( gradNodeX, gradNodeY ) {
const textureNode = this.clone();
textureNode.gradNode = [ nodeObject( gradNodeX ), nodeObject( gradNodeY ) ];
textureNode.referenceNode = this;
return nodeObject( textureNode );
}
depth( depthNode ) {
const textureNode = this.clone();
textureNode.depthNode = nodeObject( depthNode );
textureNode.referenceNode = this;
return nodeObject( textureNode );
}
// --
serialize( data ) {
super.serialize( data );
data.value = this.value.toJSON( data.meta ).uuid;
data.sampler = this.sampler;
data.updateMatrix = this.updateMatrix;
data.updateType = this.updateType;
}
deserialize( data ) {
super.deserialize( data );
this.value = data.meta.textures[ data.value ];
this.sampler = data.sampler;
this.updateMatrix = data.updateMatrix;
this.updateType = data.updateType;
}
update() {
const texture = this.value;
const matrixUniform = this._matrixUniform;
if ( matrixUniform !== null ) matrixUniform.value = texture.matrix;
if ( texture.matrixAutoUpdate === true ) {
texture.updateMatrix();
}
}
clone() {
const newNode = new this.constructor( this.value, this.uvNode, this.levelNode, this.biasNode );
newNode.sampler = this.sampler;
return newNode;
}
}
const texture = nodeProxy( TextureNode );
const textureLoad = ( ...params ) => texture( ...params ).setSampler( false );
//export const textureLevel = ( value, uv, level ) => texture( value, uv ).level( level );
const sampler = ( aTexture ) => ( aTexture.isNode === true ? aTexture : texture( aTexture ) ).convert( 'sampler' );
addNodeElement( 'texture', texture );
//addNodeElement( 'textureLevel', textureLevel );
addNodeClass( 'TextureNode', TextureNode );
class BufferNode extends UniformNode {
constructor( value, bufferType, bufferCount = 0 ) {
super( value, bufferType );
this.isBufferNode = true;
this.bufferType = bufferType;
this.bufferCount = bufferCount;
}
getElementType( builder ) {
return this.getNodeType( builder );
}
getInputType( /*builder*/ ) {
return 'buffer';
}
}
const buffer = ( value, type, count ) => nodeObject( new BufferNode( value, type, count ) );
addNodeClass( 'BufferNode', BufferNode );
class UniformsElementNode extends ArrayElementNode {
constructor( arrayBuffer, indexNode ) {
super( arrayBuffer, indexNode );
this.isArrayBufferElementNode = true;
}
getNodeType( builder ) {
return this.node.getElementType( builder );
}
generate( builder ) {
const snippet = super.generate( builder );
const type = this.getNodeType();
return builder.format( snippet, 'vec4', type );
}
}
class UniformsNode extends BufferNode {
constructor( value, elementType = null ) {
super( null, 'vec4' );
this.array = value;
this.elementType = elementType;
this._elementType = null;
this._elementLength = 0;
this.updateType = NodeUpdateType.RENDER;
this.isArrayBufferNode = true;
}
getElementType() {
return this.elementType || this._elementType;
}
getElementLength() {
return this._elementLength;
}
update( /*frame*/ ) {
const { array, value } = this;
const elementLength = this.getElementLength();
const elementType = this.getElementType();
if ( elementLength === 1 ) {
for ( let i = 0; i < array.length; i ++ ) {
const index = i * 4;
value[ index ] = array[ i ];
}
} else if ( elementType === 'color' ) {
for ( let i = 0; i < array.length; i ++ ) {
const index = i * 4;
const vector = array[ i ];
value[ index ] = vector.r;
value[ index + 1 ] = vector.g;
value[ index + 2 ] = vector.b || 0;
//value[ index + 3 ] = vector.a || 0;
}
} else {
for ( let i = 0; i < array.length; i ++ ) {
const index = i * 4;
const vector = array[ i ];
value[ index ] = vector.x;
value[ index + 1 ] = vector.y;
value[ index + 2 ] = vector.z || 0;
value[ index + 3 ] = vector.w || 0;
}
}
}
setup( builder ) {
const length = this.array.length;
this._elementType = this.elementType === null ? getValueType( this.array[ 0 ] ) : this.elementType;
this._elementLength = builder.getTypeLength( this._elementType );
let arrayType = Float32Array;
if ( this._elementType.charAt( 0 ) === 'i' ) arrayType = Int32Array;
else if ( this._elementType.charAt( 0 ) === 'u' ) arrayType = Uint32Array;
this.value = new arrayType( length * 4 );
this.bufferCount = length;
this.bufferType = builder.changeComponentType( 'vec4', builder.getComponentType( this._elementType ) );
return super.setup( builder );
}
element( indexNode ) {
return nodeObject( new UniformsElementNode( this, nodeObject( indexNode ) ) );
}
}
const uniforms = ( values, nodeType ) => nodeObject( new UniformsNode( values, nodeType ) );
addNodeClass( 'UniformsNode', UniformsNode );
class ReferenceElementNode extends ArrayElementNode {
constructor( referenceNode, indexNode ) {
super( referenceNode, indexNode );
this.referenceNode = referenceNode;
this.isReferenceElementNode = true;
}
getNodeType() {
return this.referenceNode.uniformType;
}
generate( builder ) {
const snippet = super.generate( builder );
const arrayType = this.referenceNode.getNodeType();
const elementType = this.getNodeType();
return builder.format( snippet, arrayType, elementType );
}
}
class ReferenceNode extends Node {
constructor( property, uniformType, object = null, count = null ) {
super();
this.property = property;
this.uniformType = uniformType;
this.object = object;
this.count = count;
this.properties = property.split( '.' );
this.reference = object;
this.node = null;
this.updateType = NodeUpdateType.OBJECT;
}
element( indexNode ) {
return nodeObject( new ReferenceElementNode( this, nodeObject( indexNode ) ) );
}
setNodeType( uniformType ) {
let node = null;
if ( this.count !== null ) {
node = buffer( null, uniformType, this.count );
} else if ( Array.isArray( this.getValueFromReference() ) ) {
node = uniforms( null, uniformType );
} else if ( uniformType === 'texture' ) {
node = texture( null );
} else {
node = uniform( null, uniformType );
}
this.node = node;
}
getNodeType( builder ) {
if ( this.node === null ) {
this.updateValue();
}
return this.node.getNodeType( builder );
}
getValueFromReference( object = this.reference ) {
const { properties } = this;
let value = object[ properties[ 0 ] ];
for ( let i = 1; i < properties.length; i ++ ) {
value = value[ properties[ i ] ];
}
return value;
}
updateReference( state ) {
this.reference = this.object !== null ? this.object : state.object;
return this.reference;
}
setup() {
this.updateValue();
return this.node;
}
update( /*frame*/ ) {
this.updateValue();
}
updateValue() {
if ( this.node === null ) this.setNodeType( this.uniformType );
const value = this.getValueFromReference();
if ( Array.isArray( value ) ) {
this.node.array = value;
} else {
this.node.value = value;
}
}
}
const reference = ( name, type, object ) => nodeObject( new ReferenceNode( name, type, object ) );
const referenceBuffer = ( name, type, count, object ) => nodeObject( new ReferenceNode( name, type, object, count ) );
addNodeClass( 'ReferenceNode', ReferenceNode );
class MaterialReferenceNode extends ReferenceNode {
constructor( property, inputType, material = null ) {
super( property, inputType, material );
this.material = material;
//this.updateType = NodeUpdateType.RENDER;
}
/*setNodeType( node ) {
super.setNodeType( node );
this.node.groupNode = renderGroup;
}*/
updateReference( state ) {
this.reference = this.material !== null ? this.material : state.material;
return this.reference;
}
}
const materialReference = ( name, type, material ) => nodeObject( new MaterialReferenceNode( name, type, material ) );
addNodeClass( 'MaterialReferenceNode', MaterialReferenceNode );
const cameraGroup = /*#__PURE__*/ sharedUniformGroup( 'camera' ).onRenderUpdate( () => {
cameraGroup.needsUpdate = true;
} );
const cameraNear = /*#__PURE__*/ uniform( 'float' ).label( 'cameraNear' ).setGroup( cameraGroup ).onRenderUpdate( ( { camera } ) => camera.near );
const cameraFar = /*#__PURE__*/ uniform( 'float' ).label( 'cameraFar' ).setGroup( cameraGroup ).onRenderUpdate( ( { camera } ) => camera.far );
const cameraLogDepth = /*#__PURE__*/ uniform( 'float' ).label( 'cameraLogDepth' ).setGroup( cameraGroup ).onRenderUpdate( ( { camera } ) => 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) );
const cameraProjectionMatrix = /*#__PURE__*/ uniform( 'mat4' ).label( 'cameraProjectionMatrix' ).setGroup( cameraGroup ).onRenderUpdate( ( { camera } ) => camera.projectionMatrix );
const cameraProjectionMatrixInverse = /*#__PURE__*/ uniform( 'mat4' ).label( 'cameraProjectionMatrixInverse' ).setGroup( cameraGroup ).onRenderUpdate( ( { camera } ) => camera.projectionMatrixInverse );
const cameraViewMatrix = /*#__PURE__*/ uniform( 'mat4' ).label( 'cameraViewMatrix' ).setGroup( cameraGroup ).onRenderUpdate( ( { camera } ) => camera.matrixWorldInverse );
const cameraWorldMatrix = /*#__PURE__*/ uniform( 'mat4' ).label( 'cameraWorldMatrix' ).setGroup( cameraGroup ).onRenderUpdate( ( { camera } ) => camera.matrixWorld );
const cameraNormalMatrix = /*#__PURE__*/ uniform( 'mat3' ).label( 'cameraNormalMatrix' ).setGroup( cameraGroup ).onRenderUpdate( ( { camera } ) => camera.normalMatrix );
const cameraPosition = /*#__PURE__*/ uniform( new Vector3() ).label( 'cameraPosition' ).setGroup( cameraGroup ).onRenderUpdate( ( { camera }, self ) => self.value.setFromMatrixPosition( camera.matrixWorld ) );
class Object3DNode extends Node {
constructor( scope = Object3DNode.VIEW_MATRIX, object3d = null ) {
super();
this.scope = scope;
this.object3d = object3d;
this.updateType = NodeUpdateType.OBJECT;
this._uniformNode = new UniformNode( null );
}
getNodeType() {
const scope = this.scope;
if ( scope === Object3DNode.WORLD_MATRIX || scope === Object3DNode.VIEW_MATRIX ) {
return 'mat4';
} else if ( scope === Object3DNode.NORMAL_MATRIX ) {
return 'mat3';
} else if ( scope === Object3DNode.POSITION || scope === Object3DNode.VIEW_POSITION || scope === Object3DNode.DIRECTION || scope === Object3DNode.SCALE ) {
return 'vec3';
}
}
update( frame ) {
const object = this.object3d;
const uniformNode = this._uniformNode;
const scope = this.scope;
if ( scope === Object3DNode.VIEW_MATRIX ) {
uniformNode.value = object.modelViewMatrix;
} else if ( scope === Object3DNode.NORMAL_MATRIX ) {
uniformNode.value = object.normalMatrix;
} else if ( scope === Object3DNode.WORLD_MATRIX ) {
uniformNode.value = object.matrixWorld;
} else if ( scope === Object3DNode.POSITION ) {
uniformNode.value = uniformNode.value || new Vector3();
uniformNode.value.setFromMatrixPosition( object.matrixWorld );
} else if ( scope === Object3DNode.SCALE ) {
uniformNode.value = uniformNode.value || new Vector3();
uniformNode.value.setFromMatrixScale( object.matrixWorld );
} else if ( scope === Object3DNode.DIRECTION ) {
uniformNode.value = uniformNode.value || new Vector3();
object.getWorldDirection( uniformNode.value );
} else if ( scope === Object3DNode.VIEW_POSITION ) {
const camera = frame.camera;
uniformNode.value = uniformNode.value || new Vector3();
uniformNode.value.setFromMatrixPosition( object.matrixWorld );
uniformNode.value.applyMatrix4( camera.matrixWorldInverse );
}
}
generate( builder ) {
const scope = this.scope;
if ( scope === Object3DNode.WORLD_MATRIX || scope === Object3DNode.VIEW_MATRIX ) {
this._uniformNode.nodeType = 'mat4';
} else if ( scope === Object3DNode.NORMAL_MATRIX ) {
this._uniformNode.nodeType = 'mat3';
} else if ( scope === Object3DNode.POSITION || scope === Object3DNode.VIEW_POSITION || scope === Object3DNode.DIRECTION || scope === Object3DNode.SCALE ) {
this._uniformNode.nodeType = 'vec3';
}
return this._uniformNode.build( builder );
}
serialize( data ) {
super.serialize( data );
data.scope = this.scope;
}
deserialize( data ) {
super.deserialize( data );
this.scope = data.scope;
}
}
Object3DNode.VIEW_MATRIX = 'viewMatrix';
Object3DNode.NORMAL_MATRIX = 'normalMatrix';
Object3DNode.WORLD_MATRIX = 'worldMatrix';
Object3DNode.POSITION = 'position';
Object3DNode.SCALE = 'scale';
Object3DNode.VIEW_POSITION = 'viewPosition';
Object3DNode.DIRECTION = 'direction';
const objectDirection = nodeProxy( Object3DNode, Object3DNode.DIRECTION );
const objectViewMatrix = nodeProxy( Object3DNode, Object3DNode.VIEW_MATRIX );
const objectNormalMatrix = nodeProxy( Object3DNode, Object3DNode.NORMAL_MATRIX );
const objectWorldMatrix = nodeProxy( Object3DNode, Object3DNode.WORLD_MATRIX );
const objectPosition = nodeProxy( Object3DNode, Object3DNode.POSITION );
const objectScale = nodeProxy( Object3DNode, Object3DNode.SCALE );
const objectViewPosition = nodeProxy( Object3DNode, Object3DNode.VIEW_POSITION );
addNodeClass( 'Object3DNode', Object3DNode );
class ModelNode extends Object3DNode {
constructor( scope = ModelNode.VIEW_MATRIX ) {
super( scope );
}
update( frame ) {
this.object3d = frame.object;
super.update( frame );
}
}
const modelDirection = nodeImmutable( ModelNode, ModelNode.DIRECTION );
const modelViewMatrix = nodeImmutable( ModelNode, ModelNode.VIEW_MATRIX ).label( 'modelViewMatrix' ).temp( 'ModelViewMatrix' );
const modelNormalMatrix = nodeImmutable( ModelNode, ModelNode.NORMAL_MATRIX );
const modelWorldMatrix = nodeImmutable( ModelNode, ModelNode.WORLD_MATRIX );
const modelPosition = nodeImmutable( ModelNode, ModelNode.POSITION );
const modelScale = nodeImmutable( ModelNode, ModelNode.SCALE );
const modelViewPosition = nodeImmutable( ModelNode, ModelNode.VIEW_POSITION );
const modelWorldMatrixInverse = uniform( new Matrix4() ).onObjectUpdate( ( { object }, self ) => self.value.copy( object.matrixWorld ).invert() );
addNodeClass( 'ModelNode', ModelNode );
const normalGeometry = /*#__PURE__*/ attribute( 'normal', 'vec3', vec3( 0, 1, 0 ) );
const normalLocal = /*#__PURE__*/ normalGeometry.toVar( 'normalLocal' );
const normalView = /*#__PURE__*/ varying( modelNormalMatrix.mul( normalLocal ), 'v_normalView' ).normalize().toVar( 'normalView' );
const normalWorld = /*#__PURE__*/ varying( normalView.transformDirection( cameraViewMatrix ), 'v_normalWorld' ).normalize().toVar( 'normalWorld' );
const transformedNormalView = /*#__PURE__*/ property( 'vec3', 'transformedNormalView' );
const transformedNormalWorld = /*#__PURE__*/ transformedNormalView.transformDirection( cameraViewMatrix ).normalize().toVar( 'transformedNormalWorld' );
const transformedClearcoatNormalView = /*#__PURE__*/ property( 'vec3', 'transformedClearcoatNormalView' );
const _propertyCache = new Map();
class MaterialNode extends Node {
constructor( scope ) {
super();
this.scope = scope;
}
getCache( property, type ) {
let node = _propertyCache.get( property );
if ( node === undefined ) {
node = materialReference( property, type );
_propertyCache.set( property, node );
}
return node;
}
getFloat( property ) {
return this.getCache( property, 'float' );
}
getColor( property ) {
return this.getCache( property, 'color' );
}
getTexture( property ) {
return this.getCache( property === 'map' ? 'map' : property + 'Map', 'texture' );
}
setup( builder ) {
const material = builder.context.material;
const scope = this.scope;
let node = null;
if ( scope === MaterialNode.COLOR ) {
const colorNode = this.getColor( scope );
if ( material.map && material.map.isTexture === true ) {
node = colorNode.mul( this.getTexture( 'map' ) );
} else {
node = colorNode;
}
} else if ( scope === MaterialNode.OPACITY ) {
const opacityNode = this.getFloat( scope );
if ( material.alphaMap && material.alphaMap.isTexture === true ) {
node = opacityNode.mul( this.getTexture( 'alpha' ) );
} else {
node = opacityNode;
}
} else if ( scope === MaterialNode.SPECULAR_STRENGTH ) {
if ( material.specularMap && material.specularMap.isTexture === true ) {
node = this.getTexture( 'specular' ).r;
} else {
node = float( 1 );
}
} else if ( scope === MaterialNode.SPECULAR_INTENSITY ) {
const specularIntensity = this.getFloat( scope );
if ( material.specularMap ) {
node = specularIntensity.mul( this.getTexture( scope ).a );
} else {
node = specularIntensity;
}
} else if ( scope === MaterialNode.SPECULAR_COLOR ) {
const specularColorNode = this.getColor( scope );
if ( material.specularColorMap && material.specularColorMap.isTexture === true ) {
node = specularColorNode.mul( this.getTexture( scope ).rgb );
} else {
node = specularColorNode;
}
} else if ( scope === MaterialNode.ROUGHNESS ) { // TODO: cleanup similar branches
const roughnessNode = this.getFloat( scope );
if ( material.roughnessMap && material.roughnessMap.isTexture === true ) {
node = roughnessNode.mul( this.getTexture( scope ).g );
} else {
node = roughnessNode;
}
} else if ( scope === MaterialNode.METALNESS ) {
const metalnessNode = this.getFloat( scope );
if ( material.metalnessMap && material.metalnessMap.isTexture === true ) {
node = metalnessNode.mul( this.getTexture( scope ).b );
} else {
node = metalnessNode;
}
} else if ( scope === MaterialNode.EMISSIVE ) {
const emissiveIntensityNode = this.getFloat( 'emissiveIntensity' );
const emissiveNode = this.getColor( scope ).mul( emissiveIntensityNode );
if ( material.emissiveMap && material.emissiveMap.isTexture === true ) {
node = emissiveNode.mul( this.getTexture( scope ) );
} else {
node = emissiveNode;
}
} else if ( scope === MaterialNode.NORMAL ) {
if ( material.normalMap ) {
node = this.getTexture( 'normal' ).normalMap( this.getCache( 'normalScale', 'vec2' ) );
} else if ( material.bumpMap ) {
node = this.getTexture( 'bump' ).r.bumpMap( this.getFloat( 'bumpScale' ) );
} else {
node = normalView;
}
} else if ( scope === MaterialNode.CLEARCOAT ) {
const clearcoatNode = this.getFloat( scope );
if ( material.clearcoatMap && material.clearcoatMap.isTexture === true ) {
node = clearcoatNode.mul( this.getTexture( scope ).r );
} else {
node = clearcoatNode;
}
} else if ( scope === MaterialNode.CLEARCOAT_ROUGHNESS ) {
const clearcoatRoughnessNode = this.getFloat( scope );
if ( material.clearcoatRoughnessMap && material.clearcoatRoughnessMap.isTexture === true ) {
node = clearcoatRoughnessNode.mul( this.getTexture( scope ).r );
} else {
node = clearcoatRoughnessNode;
}
} else if ( scope === MaterialNode.CLEARCOAT_NORMAL ) {
if ( material.clearcoatNormalMap ) {
node = this.getTexture( scope ).normalMap( this.getCache( scope + 'Scale', 'vec2' ) );
} else {
node = normalView;
}
} else if ( scope === MaterialNode.SHEEN ) {
const sheenNode = this.getColor( 'sheenColor' ).mul( this.getFloat( 'sheen' ) ); // Move this mul() to CPU
if ( material.sheenColorMap && material.sheenColorMap.isTexture === true ) {
node = sheenNode.mul( this.getTexture( 'sheenColor' ).rgb );
} else {
node = sheenNode;
}
} else if ( scope === MaterialNode.SHEEN_ROUGHNESS ) {
const sheenRoughnessNode = this.getFloat( scope );
if ( material.sheenRoughnessMap && material.sheenRoughnessMap.isTexture === true ) {
node = sheenRoughnessNode.mul( this.getTexture( scope ).a );
} else {
node = sheenRoughnessNode;
}
node = node.clamp( 0.07, 1.0 );
} else if ( scope === MaterialNode.ANISOTROPY ) {
if ( material.anisotropyMap && material.anisotropyMap.isTexture === true ) {
const anisotropyPolar = this.getTexture( scope );
const anisotropyMat = mat2( materialAnisotropyVector.x, materialAnisotropyVector.y, materialAnisotropyVector.y.negate(), materialAnisotropyVector.x );
node = anisotropyMat.mul( anisotropyPolar.rg.mul( 2.0 ).sub( vec2( 1.0 ) ).normalize().mul( anisotropyPolar.b ) );
} else {
node = materialAnisotropyVector;
}
} else if ( scope === MaterialNode.IRIDESCENCE_THICKNESS ) {
const iridescenceThicknessMaximum = reference( '1', 'float', material.iridescenceThicknessRange );
if ( material.iridescenceThicknessMap ) {
const iridescenceThicknessMinimum = reference( '0', 'float', material.iridescenceThicknessRange );
node = iridescenceThicknessMaximum.sub( iridescenceThicknessMinimum ).mul( this.getTexture( scope ).g ).add( iridescenceThicknessMinimum );
} else {
node = iridescenceThicknessMaximum;
}
} else if ( scope === MaterialNode.TRANSMISSION ) {
const transmissionNode = this.getFloat( scope );
if ( material.transmissionMap ) {
node = transmissionNode.mul( this.getTexture( scope ).r );
} else {
node = transmissionNode;
}
} else if ( scope === MaterialNode.THICKNESS ) {
const thicknessNode = this.getFloat( scope );
if ( material.thicknessMap ) {
node = thicknessNode.mul( this.getTexture( scope ).g );
} else {
node = thicknessNode;
}
} else if ( scope === MaterialNode.IOR ) {
node = this.getFloat( scope );
} else if ( scope === MaterialNode.REFRACTION_RATIO ) {
node = this.getFloat( scope );
} else if ( scope === MaterialNode.LIGHT_MAP ) {
node = this.getTexture( scope ).rgb.mul( this.getFloat( 'lightMapIntensity' ) );
} else if ( scope === MaterialNode.AO_MAP ) {
node = this.getTexture( scope ).r.sub( 1.0 ).mul( this.getFloat( 'aoMapIntensity' ) ).add( 1.0 );
} else {
const outputType = this.getNodeType( builder );
node = this.getCache( scope, outputType );
}
return node;
}
}
MaterialNode.ALPHA_TEST = 'alphaTest';
MaterialNode.COLOR = 'color';
MaterialNode.OPACITY = 'opacity';
MaterialNode.SHININESS = 'shininess';
MaterialNode.SPECULAR = 'specular';
MaterialNode.SPECULAR_STRENGTH = 'specularStrength';
MaterialNode.SPECULAR_INTENSITY = 'specularIntensity';
MaterialNode.SPECULAR_COLOR = 'specularColor';
MaterialNode.REFLECTIVITY = 'reflectivity';
MaterialNode.ROUGHNESS = 'roughness';
MaterialNode.METALNESS = 'metalness';
MaterialNode.NORMAL = 'normal';
MaterialNode.CLEARCOAT = 'clearcoat';
MaterialNode.CLEARCOAT_ROUGHNESS = 'clearcoatRoughness';
MaterialNode.CLEARCOAT_NORMAL = 'clearcoatNormal';
MaterialNode.EMISSIVE = 'emissive';
MaterialNode.ROTATION = 'rotation';
MaterialNode.SHEEN = 'sheen';
MaterialNode.SHEEN_ROUGHNESS = 'sheenRoughness';
MaterialNode.ANISOTROPY = 'anisotropy';
MaterialNode.IRIDESCENCE = 'iridescence';
MaterialNode.IRIDESCENCE_IOR = 'iridescenceIOR';
MaterialNode.IRIDESCENCE_THICKNESS = 'iridescenceThickness';
MaterialNode.IOR = 'ior';
MaterialNode.TRANSMISSION = 'transmission';
MaterialNode.THICKNESS = 'thickness';
MaterialNode.ATTENUATION_DISTANCE = 'attenuationDistance';
MaterialNode.ATTENUATION_COLOR = 'attenuationColor';
MaterialNode.LINE_SCALE = 'scale';
MaterialNode.LINE_DASH_SIZE = 'dashSize';
MaterialNode.LINE_GAP_SIZE = 'gapSize';
MaterialNode.LINE_WIDTH = 'linewidth';
MaterialNode.LINE_DASH_OFFSET = 'dashOffset';
MaterialNode.POINT_WIDTH = 'pointWidth';
MaterialNode.DISPERSION = 'dispersion';
MaterialNode.LIGHT_MAP = 'light';
MaterialNode.AO_MAP = 'ao';
MaterialNode.REFRACTION_RATIO = 'refractionRatio';
const materialAlphaTest = nodeImmutable( MaterialNode, MaterialNode.ALPHA_TEST );
const materialColor = nodeImmutable( MaterialNode, MaterialNode.COLOR );
const materialShininess = nodeImmutable( MaterialNode, MaterialNode.SHININESS );
const materialEmissive = nodeImmutable( MaterialNode, MaterialNode.EMISSIVE );
const materialOpacity = nodeImmutable( MaterialNode, MaterialNode.OPACITY );
const materialSpecular = nodeImmutable( MaterialNode, MaterialNode.SPECULAR );
const materialSpecularIntensity = nodeImmutable( MaterialNode, MaterialNode.SPECULAR_INTENSITY );
const materialSpecularColor = nodeImmutable( MaterialNode, MaterialNode.SPECULAR_COLOR );
const materialSpecularStrength = nodeImmutable( MaterialNode, MaterialNode.SPECULAR_STRENGTH );
const materialReflectivity = nodeImmutable( MaterialNode, MaterialNode.REFLECTIVITY );
const materialRoughness = nodeImmutable( MaterialNode, MaterialNode.ROUGHNESS );
const materialMetalness = nodeImmutable( MaterialNode, MaterialNode.METALNESS );
const materialNormal = nodeImmutable( MaterialNode, MaterialNode.NORMAL );
const materialClearcoat = nodeImmutable( MaterialNode, MaterialNode.CLEARCOAT );
const materialClearcoatRoughness = nodeImmutable( MaterialNode, MaterialNode.CLEARCOAT_ROUGHNESS );
const materialClearcoatNormal = nodeImmutable( MaterialNode, MaterialNode.CLEARCOAT_NORMAL );
const materialRotation = nodeImmutable( MaterialNode, MaterialNode.ROTATION );
const materialSheen = nodeImmutable( MaterialNode, MaterialNode.SHEEN );
const materialSheenRoughness = nodeImmutable( MaterialNode, MaterialNode.SHEEN_ROUGHNESS );
const materialAnisotropy = nodeImmutable( MaterialNode, MaterialNode.ANISOTROPY );
const materialIridescence = nodeImmutable( MaterialNode, MaterialNode.IRIDESCENCE );
const materialIridescenceIOR = nodeImmutable( MaterialNode, MaterialNode.IRIDESCENCE_IOR );
const materialIridescenceThickness = nodeImmutable( MaterialNode, MaterialNode.IRIDESCENCE_THICKNESS );
const materialTransmission = nodeImmutable( MaterialNode, MaterialNode.TRANSMISSION );
const materialThickness = nodeImmutable( MaterialNode, MaterialNode.THICKNESS );
const materialIOR = nodeImmutable( MaterialNode, MaterialNode.IOR );
const materialAttenuationDistance = nodeImmutable( MaterialNode, MaterialNode.ATTENUATION_DISTANCE );
const materialAttenuationColor = nodeImmutable( MaterialNode, MaterialNode.ATTENUATION_COLOR );
const materialLineScale = nodeImmutable( MaterialNode, MaterialNode.LINE_SCALE );
const materialLineDashSize = nodeImmutable( MaterialNode, MaterialNode.LINE_DASH_SIZE );
const materialLineGapSize = nodeImmutable( MaterialNode, MaterialNode.LINE_GAP_SIZE );
const materialLineWidth = nodeImmutable( MaterialNode, MaterialNode.LINE_WIDTH );
const materialLineDashOffset = nodeImmutable( MaterialNode, MaterialNode.LINE_DASH_OFFSET );
const materialPointWidth = nodeImmutable( MaterialNode, MaterialNode.POINT_WIDTH );
const materialDispersion = nodeImmutable( MaterialNode, MaterialNode.DISPERSION );
const materialLightMap = nodeImmutable( MaterialNode, MaterialNode.LIGHT_MAP );
const materialAOMap = nodeImmutable( MaterialNode, MaterialNode.AO_MAP );
const materialRefractionRatio = nodeImmutable( MaterialNode, MaterialNode.REFRACTION_RATIO );
const materialAnisotropyVector = uniform( new Vector2() ).onReference( function ( frame ) {
return frame.material;
} ).onRenderUpdate( function ( { material } ) {
this.value.set( material.anisotropy * Math.cos( material.anisotropyRotation ), material.anisotropy * Math.sin( material.anisotropyRotation ) );
} );
addNodeClass( 'MaterialNode', MaterialNode );
const positionGeometry = /*#__PURE__*/ attribute( 'position', 'vec3' );
const positionLocal = /*#__PURE__*/ positionGeometry.toVar( 'positionLocal' );
const positionWorld = /*#__PURE__*/ varying( modelWorldMatrix.mul( positionLocal ).xyz, 'v_positionWorld' );
const positionWorldDirection = /*#__PURE__*/ varying( positionLocal.transformDirection( modelWorldMatrix ), 'v_positionWorldDirection' ).normalize().toVar( 'positionWorldDirection' );
const positionView = /*#__PURE__*/ varying( modelViewMatrix.mul( positionLocal ).xyz, 'v_positionView' );
const positionViewDirection = /*#__PURE__*/ varying( positionView.negate(), 'v_positionViewDirection' ).normalize().toVar( 'positionViewDirection' );
class ModelViewProjectionNode extends TempNode {
constructor( positionNode = null ) {
super( 'vec4' );
this.positionNode = positionNode;
}
setup( builder ) {
if ( builder.shaderStage === 'fragment' ) {
return varying( builder.context.mvp );
}
const position = this.positionNode || positionLocal;
return cameraProjectionMatrix.mul( modelViewMatrix ).mul( position );
}
}
const modelViewProjection = nodeProxy( ModelViewProjectionNode );
addNodeClass( 'ModelViewProjectionNode', ModelViewProjectionNode );
class BufferAttributeNode extends InputNode {
constructor( value, bufferType = null, bufferStride = 0, bufferOffset = 0 ) {
super( value, bufferType );
this.isBufferNode = true;
this.bufferType = bufferType;
this.bufferStride = bufferStride;
this.bufferOffset = bufferOffset;
this.usage = StaticDrawUsage;
this.instanced = false;
this.attribute = null;
this.global = true;
if ( value && value.isBufferAttribute === true ) {
this.attribute = value;
this.usage = value.usage;
this.instanced = value.isInstancedBufferAttribute;
}
}
getHash( builder ) {
if ( this.bufferStride === 0 && this.bufferOffset === 0 ) {
let bufferData = builder.globalCache.getData( this.value );
if ( bufferData === undefined ) {
bufferData = {
node: this
};
builder.globalCache.setData( this.value, bufferData );
}
return bufferData.node.uuid;
}
return this.uuid;
}
getNodeType( builder ) {
if ( this.bufferType === null ) {
this.bufferType = builder.getTypeFromAttribute( this.attribute );
}
return this.bufferType;
}
setup( builder ) {
if ( this.attribute !== null ) return;
const type = this.getNodeType( builder );
const array = this.value;
const itemSize = builder.getTypeLength( type );
const stride = this.bufferStride || itemSize;
const offset = this.bufferOffset;
const buffer = array.isInterleavedBuffer === true ? array : new InterleavedBuffer( array, stride );
const bufferAttribute = new InterleavedBufferAttribute( buffer, itemSize, offset );
buffer.setUsage( this.usage );
this.attribute = bufferAttribute;
this.attribute.isInstancedBufferAttribute = this.instanced; // @TODO: Add a possible: InstancedInterleavedBufferAttribute
}
generate( builder ) {
const nodeType = this.getNodeType( builder );
const nodeAttribute = builder.getBufferAttributeFromNode( this, nodeType );
const propertyName = builder.getPropertyName( nodeAttribute );
let output = null;
if ( builder.shaderStage === 'vertex' || builder.shaderStage === 'compute' ) {
this.name = propertyName;
output = propertyName;
} else {
const nodeVarying = varying( this );
output = nodeVarying.build( builder, nodeType );
}
return output;
}
getInputType( /*builder*/ ) {
return 'bufferAttribute';
}
setUsage( value ) {
this.usage = value;
if ( this.attribute && this.attribute.isBufferAttribute === true ) {
this.attribute.usage = value;
}
return this;
}
setInstanced( value ) {
this.instanced = value;
return this;
}
}
const bufferAttribute = ( array, type, stride, offset ) => nodeObject( new BufferAttributeNode( array, type, stride, offset ) );
const dynamicBufferAttribute = ( array, type, stride, offset ) => bufferAttribute( array, type, stride, offset ).setUsage( DynamicDrawUsage );
const instancedBufferAttribute = ( array, type, stride, offset ) => bufferAttribute( array, type, stride, offset ).setInstanced( true );
const instancedDynamicBufferAttribute = ( array, type, stride, offset ) => dynamicBufferAttribute( array, type, stride, offset ).setInstanced( true );
addNodeElement( 'toAttribute', ( bufferNode ) => bufferAttribute( bufferNode.value ) );
addNodeClass( 'BufferAttributeNode', BufferAttributeNode );
class InstanceNode extends Node {
constructor( instanceMesh ) {
super( 'void' );
this.instanceMesh = instanceMesh;
this.instanceMatrixNode = null;
this.instanceColorNode = null;
this.updateType = NodeUpdateType.FRAME;
this.buffer = null;
this.bufferColor = null;
}
setup( /*builder*/ ) {
let instanceMatrixNode = this.instanceMatrixNode;
let instanceColorNode = this.instanceColorNode;
const instanceMesh = this.instanceMesh;
if ( instanceMatrixNode === null ) {
const instanceAttribute = instanceMesh.instanceMatrix;
// Both WebGPU and WebGL backends have UBO max limited to 64kb. Matrix count number bigger than 1000 ( 16 * 4 * 1000 = 64kb ) will fallback to attribute.
if ( instanceMesh.count <= 1000 ) {
instanceMatrixNode = buffer( instanceAttribute.array, 'mat4', instanceMesh.count ).element( instanceIndex );
} else {
const buffer = new InstancedInterleavedBuffer( instanceAttribute.array, 16, 1 );
this.buffer = buffer;
const bufferFn = instanceAttribute.usage === DynamicDrawUsage ? instancedDynamicBufferAttribute : instancedBufferAttribute;
const instanceBuffers = [
// F.Signature -> bufferAttribute( array, type, stride, offset )
bufferFn( buffer, 'vec4', 16, 0 ),
bufferFn( buffer, 'vec4', 16, 4 ),
bufferFn( buffer, 'vec4', 16, 8 ),
bufferFn( buffer, 'vec4', 16, 12 )
];
instanceMatrixNode = mat4( ...instanceBuffers );
}
this.instanceMatrixNode = instanceMatrixNode;
}
const instanceColorAttribute = instanceMesh.instanceColor;
if ( instanceColorAttribute && instanceColorNode === null ) {
const buffer = new InstancedBufferAttribute( instanceColorAttribute.array, 3 );
const bufferFn = instanceColorAttribute.usage === DynamicDrawUsage ? instancedDynamicBufferAttribute : instancedBufferAttribute;
this.bufferColor = buffer;
instanceColorNode = vec3( bufferFn( buffer, 'vec3', 3, 0 ) );
this.instanceColorNode = instanceColorNode;
}
// POSITION
const instancePosition = instanceMatrixNode.mul( positionLocal ).xyz;
// NORMAL
const m = mat3( instanceMatrixNode );
const transformedNormal = normalLocal.div( vec3( m[ 0 ].dot( m[ 0 ] ), m[ 1 ].dot( m[ 1 ] ), m[ 2 ].dot( m[ 2 ] ) ) );
const instanceNormal = m.mul( transformedNormal ).xyz;
// ASSIGNS
positionLocal.assign( instancePosition );
normalLocal.assign( instanceNormal );
// COLOR
if ( this.instanceColorNode !== null ) {
varyingProperty( 'vec3', 'vInstanceColor' ).assign( this.instanceColorNode );
}
}
update( /*frame*/ ) {
if ( this.instanceMesh.instanceMatrix.usage !== DynamicDrawUsage && this.buffer != null && this.instanceMesh.instanceMatrix.version !== this.buffer.version ) {
this.buffer.version = this.instanceMesh.instanceMatrix.version;
}
if ( this.instanceMesh.instanceColor && this.instanceMesh.instanceColor.usage !== DynamicDrawUsage && this.bufferColor != null && this.instanceMesh.instanceColor.version !== this.bufferColor.version ) {
this.bufferColor.version = this.instanceMesh.instanceColor.version;
}
}
}
const instance = nodeProxy( InstanceNode );
addNodeClass( 'InstanceNode', InstanceNode );
const tangentGeometry = /*#__PURE__*/ tslFn( ( stack, builder ) => {
if ( builder.geometry.hasAttribute( 'tangent' ) === false ) {
builder.geometry.computeTangents();
}
return attribute( 'tangent', 'vec4' );
} )();
const tangentLocal = /*#__PURE__*/ tangentGeometry.xyz.toVar( 'tangentLocal' );
const tangentView = /*#__PURE__*/ varying( modelViewMatrix.mul( vec4( tangentLocal, 0 ) ).xyz, 'v_tangentView' ).normalize().toVar( 'tangentView' );
const tangentWorld = /*#__PURE__*/ varying( tangentView.transformDirection( cameraViewMatrix ), 'v_tangentWorld' ).normalize().toVar( 'tangentWorld' );
const transformedTangentView = /*#__PURE__*/ tangentView.toVar( 'transformedTangentView' );
const transformedTangentWorld = /*#__PURE__*/ transformedTangentView.transformDirection( cameraViewMatrix ).normalize().toVar( 'transformedTangentWorld' );
class BatchNode extends Node {
constructor( batchMesh ) {
super( 'void' );
this.batchMesh = batchMesh;
this.instanceColorNode = null;
this.batchingIdNode = null;
}
setup( builder ) {
// POSITION
if ( this.batchingIdNode === null ) {
if ( builder.getDrawIndex() === null ) {
this.batchingIdNode = instanceIndex;
} else {
this.batchingIdNode = drawIndex;
}
}
const getIndirectIndex = tslFn( ( [ id ] ) => {
const size = textureSize( textureLoad( this.batchMesh._indirectTexture ), 0 );
const x = int( id ).remainder( int( size ) );
const y = int( id ).div( int( size ) );
return textureLoad( this.batchMesh._indirectTexture, ivec2( x, y ) ).x;
} ).setLayout( {
name: 'getIndirectIndex',
type: 'uint',
inputs: [
{ name: 'id', type: 'int' }
]
} );
const matriceTexture = this.batchMesh._matricesTexture;
const size = textureSize( textureLoad( matriceTexture ), 0 );
const j = float( getIndirectIndex( int( this.batchingIdNode ) ) ).mul( 4 ).toVar();
const x = int( j.mod( size ) );
const y = int( j ).div( int( size ) );
const batchingMatrix = mat4(
textureLoad( matriceTexture, ivec2( x, y ) ),
textureLoad( matriceTexture, ivec2( x.add( 1 ), y ) ),
textureLoad( matriceTexture, ivec2( x.add( 2 ), y ) ),
textureLoad( matriceTexture, ivec2( x.add( 3 ), y ) )
);
const bm = mat3( batchingMatrix );
positionLocal.assign( batchingMatrix.mul( positionLocal ) );
const transformedNormal = normalLocal.div( vec3( bm[ 0 ].dot( bm[ 0 ] ), bm[ 1 ].dot( bm[ 1 ] ), bm[ 2 ].dot( bm[ 2 ] ) ) );
const batchingNormal = bm.mul( transformedNormal ).xyz;
normalLocal.assign( batchingNormal );
if ( builder.hasGeometryAttribute( 'tangent' ) ) {
tangentLocal.mulAssign( bm );
}
}
}
const batch = nodeProxy( BatchNode );
addNodeClass( 'batch', BatchNode );
class SkinningNode extends Node {
constructor( skinnedMesh, useReference = false ) {
super( 'void' );
this.skinnedMesh = skinnedMesh;
this.useReference = useReference;
this.updateType = NodeUpdateType.OBJECT;
//
this.skinIndexNode = attribute( 'skinIndex', 'uvec4' );
this.skinWeightNode = attribute( 'skinWeight', 'vec4' );
let bindMatrixNode, bindMatrixInverseNode, boneMatricesNode;
if ( useReference ) {
bindMatrixNode = reference( 'bindMatrix', 'mat4' );
bindMatrixInverseNode = reference( 'bindMatrixInverse', 'mat4' );
boneMatricesNode = referenceBuffer( 'skeleton.boneMatrices', 'mat4', skinnedMesh.skeleton.bones.length );
} else {
bindMatrixNode = uniform( skinnedMesh.bindMatrix, 'mat4' );
bindMatrixInverseNode = uniform( skinnedMesh.bindMatrixInverse, 'mat4' );
boneMatricesNode = buffer( skinnedMesh.skeleton.boneMatrices, 'mat4', skinnedMesh.skeleton.bones.length );
}
this.bindMatrixNode = bindMatrixNode;
this.bindMatrixInverseNode = bindMatrixInverseNode;
this.boneMatricesNode = boneMatricesNode;
}
setup( builder ) {
const { skinIndexNode, skinWeightNode, bindMatrixNode, bindMatrixInverseNode, boneMatricesNode } = this;
const boneMatX = boneMatricesNode.element( skinIndexNode.x );
const boneMatY = boneMatricesNode.element( skinIndexNode.y );
const boneMatZ = boneMatricesNode.element( skinIndexNode.z );
const boneMatW = boneMatricesNode.element( skinIndexNode.w );
// POSITION
const skinVertex = bindMatrixNode.mul( positionLocal );
const skinned = add(
boneMatX.mul( skinWeightNode.x ).mul( skinVertex ),
boneMatY.mul( skinWeightNode.y ).mul( skinVertex ),
boneMatZ.mul( skinWeightNode.z ).mul( skinVertex ),
boneMatW.mul( skinWeightNode.w ).mul( skinVertex )
);
const skinPosition = bindMatrixInverseNode.mul( skinned ).xyz;
// NORMAL
let skinMatrix = add(
skinWeightNode.x.mul( boneMatX ),
skinWeightNode.y.mul( boneMatY ),
skinWeightNode.z.mul( boneMatZ ),
skinWeightNode.w.mul( boneMatW )
);
skinMatrix = bindMatrixInverseNode.mul( skinMatrix ).mul( bindMatrixNode );
const skinNormal = skinMatrix.transformDirection( normalLocal ).xyz;
// ASSIGNS
positionLocal.assign( skinPosition );
normalLocal.assign( skinNormal );
if ( builder.hasGeometryAttribute( 'tangent' ) ) {
tangentLocal.assign( skinNormal );
}
}
generate( builder, output ) {
if ( output !== 'void' ) {
return positionLocal.build( builder, output );
}
}
update( frame ) {
const object = this.useReference ? frame.object : this.skinnedMesh;
object.skeleton.update();
}
}
const skinning = ( skinnedMesh ) => nodeObject( new SkinningNode( skinnedMesh ) );
const skinningReference = ( skinnedMesh ) => nodeObject( new SkinningNode( skinnedMesh, true ) );
addNodeClass( 'SkinningNode', SkinningNode );
class LoopNode extends Node {
constructor( params = [] ) {
super();
this.params = params;
}
getVarName( index ) {
return String.fromCharCode( 'i'.charCodeAt() + index );
}
getProperties( builder ) {
const properties = builder.getNodeProperties( this );
if ( properties.stackNode !== undefined ) return properties;
//
const inputs = {};
for ( let i = 0, l = this.params.length - 1; i < l; i ++ ) {
const param = this.params[ i ];
const name = ( param.isNode !== true && param.name ) || this.getVarName( i );
const type = ( param.isNode !== true && param.type ) || 'int';
inputs[ name ] = expression( name, type );
}
const stack = builder.addStack(); // TODO: cache() it
properties.returnsNode = this.params[ this.params.length - 1 ]( inputs, stack, builder );
properties.stackNode = stack;
builder.removeStack();
return properties;
}
getNodeType( builder ) {
const { returnsNode } = this.getProperties( builder );
return returnsNode ? returnsNode.getNodeType( builder ) : 'void';
}
setup( builder ) {
// setup properties
this.getProperties( builder );
}
generate( builder ) {
const properties = this.getProperties( builder );
const params = this.params;
const stackNode = properties.stackNode;
for ( let i = 0, l = params.length - 1; i < l; i ++ ) {
const param = params[ i ];
let start = null, end = null, name = null, type = null, condition = null, update = null;
if ( param.isNode ) {
type = 'int';
name = this.getVarName( i );
start = '0';
end = param.build( builder, type );
condition = '<';
} else {
type = param.type || 'int';
name = param.name || this.getVarName( i );
start = param.start;
end = param.end;
condition = param.condition;
update = param.update;
if ( typeof start === 'number' ) start = start.toString();
else if ( start && start.isNode ) start = start.build( builder, type );
if ( typeof end === 'number' ) end = end.toString();
else if ( end && end.isNode ) end = end.build( builder, type );
if ( start !== undefined && end === undefined ) {
start = start + ' - 1';
end = '0';
condition = '>=';
} else if ( end !== undefined && start === undefined ) {
start = '0';
condition = '<';
}
if ( condition === undefined ) {
if ( Number( start ) > Number( end ) ) {
condition = '>=';
} else {
condition = '<';
}
}
}
const internalParam = { start, end, condition };
//
const startSnippet = internalParam.start;
const endSnippet = internalParam.end;
let declarationSnippet = '';
let conditionalSnippet = '';
let updateSnippet = '';
if ( ! update ) {
if ( type === 'int' || type === 'uint' ) {
if ( condition.includes( '<' ) ) update = '++';
else update = '--';
} else {
if ( condition.includes( '<' ) ) update = '+= 1.';
else update = '-= 1.';
}
}
declarationSnippet += builder.getVar( type, name ) + ' = ' + startSnippet;
conditionalSnippet += name + ' ' + condition + ' ' + endSnippet;
updateSnippet += name + ' ' + update;
const forSnippet = `for ( ${ declarationSnippet }; ${ conditionalSnippet }; ${ updateSnippet } )`;
builder.addFlowCode( ( i === 0 ? '\n' : '' ) + builder.tab + forSnippet + ' {\n\n' ).addFlowTab();
}
const stackSnippet = stackNode.build( builder, 'void' );
const returnsSnippet = properties.returnsNode ? properties.returnsNode.build( builder ) : '';
builder.removeFlowTab().addFlowCode( '\n' + builder.tab + stackSnippet );
for ( let i = 0, l = this.params.length - 1; i < l; i ++ ) {
builder.addFlowCode( ( i === 0 ? '' : builder.tab ) + '}\n\n' ).removeFlowTab();
}
builder.addFlowTab();
return returnsSnippet;
}
}
const loop = ( ...params ) => nodeObject( new LoopNode( nodeArray( params, 'int' ) ) ).append();
const Continue = () => expression( 'continue' ).append();
const Break = () => expression( 'break' ).append();
addNodeElement( 'loop', ( returns, ...params ) => bypass( returns, loop( ...params ) ) );
addNodeClass( 'LoopNode', LoopNode );
const _morphTextures = new WeakMap();
const _morphVec4 = /*@__PURE__*/ new Vector4();
const getMorph = tslFn( ( { bufferMap, influence, stride, width, depth, offset } ) => {
const texelIndex = int( vertexIndex ).mul( stride ).add( offset );
const y = texelIndex.div( width );
const x = texelIndex.sub( y.mul( width ) );
const bufferAttrib = textureLoad( bufferMap, ivec2( x, y ) ).depth( depth );
return bufferAttrib.mul( influence );
} );
function getEntry( geometry ) {
const hasMorphPosition = geometry.morphAttributes.position !== undefined;
const hasMorphNormals = geometry.morphAttributes.normal !== undefined;
const hasMorphColors = geometry.morphAttributes.color !== undefined;
// instead of using attributes, the WebGL 2 code path encodes morph targets
// into an array of data textures. Each layer represents a single morph target.
const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color;
const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0;
let entry = _morphTextures.get( geometry );
if ( entry === undefined || entry.count !== morphTargetsCount ) {
if ( entry !== undefined ) entry.texture.dispose();
const morphTargets = geometry.morphAttributes.position || [];
const morphNormals = geometry.morphAttributes.normal || [];
const morphColors = geometry.morphAttributes.color || [];
let vertexDataCount = 0;
if ( hasMorphPosition === true ) vertexDataCount = 1;
if ( hasMorphNormals === true ) vertexDataCount = 2;
if ( hasMorphColors === true ) vertexDataCount = 3;
let width = geometry.attributes.position.count * vertexDataCount;
let height = 1;
const maxTextureSize = 4096; // @TODO: Use 'capabilities.maxTextureSize'
if ( width > maxTextureSize ) {
height = Math.ceil( width / maxTextureSize );
width = maxTextureSize;
}
const buffer = new Float32Array( width * height * 4 * morphTargetsCount );
const bufferTexture = new DataArrayTexture( buffer, width, height, morphTargetsCount );
bufferTexture.type = FloatType;
bufferTexture.needsUpdate = true;
// fill buffer
const vertexDataStride = vertexDataCount * 4;
for ( let i = 0; i < morphTargetsCount; i ++ ) {
const morphTarget = morphTargets[ i ];
const morphNormal = morphNormals[ i ];
const morphColor = morphColors[ i ];
const offset = width * height * 4 * i;
for ( let j = 0; j < morphTarget.count; j ++ ) {
const stride = j * vertexDataStride;
if ( hasMorphPosition === true ) {
_morphVec4.fromBufferAttribute( morphTarget, j );
buffer[ offset + stride + 0 ] = _morphVec4.x;
buffer[ offset + stride + 1 ] = _morphVec4.y;
buffer[ offset + stride + 2 ] = _morphVec4.z;
buffer[ offset + stride + 3 ] = 0;
}
if ( hasMorphNormals === true ) {
_morphVec4.fromBufferAttribute( morphNormal, j );
buffer[ offset + stride + 4 ] = _morphVec4.x;
buffer[ offset + stride + 5 ] = _morphVec4.y;
buffer[ offset + stride + 6 ] = _morphVec4.z;
buffer[ offset + stride + 7 ] = 0;
}
if ( hasMorphColors === true ) {
_morphVec4.fromBufferAttribute( morphColor, j );
buffer[ offset + stride + 8 ] = _morphVec4.x;
buffer[ offset + stride + 9 ] = _morphVec4.y;
buffer[ offset + stride + 10 ] = _morphVec4.z;
buffer[ offset + stride + 11 ] = ( morphColor.itemSize === 4 ) ? _morphVec4.w : 1;
}
}
}
entry = {
count: morphTargetsCount,
texture: bufferTexture,
stride: vertexDataCount,
size: new Vector2( width, height )
};
_morphTextures.set( geometry, entry );
function disposeTexture() {
bufferTexture.dispose();
_morphTextures.delete( geometry );
geometry.removeEventListener( 'dispose', disposeTexture );
}
geometry.addEventListener( 'dispose', disposeTexture );
}
return entry;
}
class MorphNode extends Node {
constructor( mesh ) {
super( 'void' );
this.mesh = mesh;
this.morphBaseInfluence = uniform( 1 );
this.updateType = NodeUpdateType.OBJECT;
}
setup( builder ) {
const { geometry } = builder;
const hasMorphPosition = geometry.morphAttributes.position !== undefined;
const hasMorphNormals = geometry.morphAttributes.normal !== undefined;
const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color;
const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0;
// nodes
const { texture: bufferMap, stride, size } = getEntry( geometry );
if ( hasMorphPosition === true ) positionLocal.mulAssign( this.morphBaseInfluence );
if ( hasMorphNormals === true ) normalLocal.mulAssign( this.morphBaseInfluence );
const width = int( size.width );
loop( morphTargetsCount, ( { i } ) => {
const influence = float( 0 ).toVar();
if ( this.mesh.count > 1 && ( this.mesh.morphTexture !== null && this.mesh.morphTexture !== undefined ) ) {
influence.assign( textureLoad( this.mesh.morphTexture, ivec2( int( i ).add( 1 ), int( instanceIndex ) ) ).r );
} else {
influence.assign( reference( 'morphTargetInfluences', 'float' ).element( i ).toVar() );
}
if ( hasMorphPosition === true ) {
positionLocal.addAssign( getMorph( {
bufferMap,
influence,
stride,
width,
depth: i,
offset: int( 0 )
} ) );
}
if ( hasMorphNormals === true ) {
normalLocal.addAssign( getMorph( {
bufferMap,
influence,
stride,
width,
depth: i,
offset: int( 1 )
} ) );
}
} );
}
update() {
const morphBaseInfluence = this.morphBaseInfluence;
if ( this.mesh.geometry.morphTargetsRelative ) {
morphBaseInfluence.value = 1;
} else {
morphBaseInfluence.value = 1 - this.mesh.morphTargetInfluences.reduce( ( a, b ) => a + b, 0 );
}
}
}
const morphReference = nodeProxy( MorphNode );
addNodeClass( 'MorphNode', MorphNode );
const reflectView = /*#__PURE__*/ positionViewDirection.negate().reflect( transformedNormalView );
const refractView = /*#__PURE__*/ positionViewDirection.negate().refract( transformedNormalView, materialRefractionRatio );
const reflectVector = /*#__PURE__*/ reflectView.transformDirection( cameraViewMatrix ).toVar( 'reflectVector' );
const refractVector = /*#__PURE__*/ refractView.transformDirection( cameraViewMatrix ).toVar( 'reflectVector' );
class CubeTextureNode extends TextureNode {
constructor( value, uvNode = null, levelNode = null, biasNode = null ) {
super( value, uvNode, levelNode, biasNode );
this.isCubeTextureNode = true;
}
getInputType( /*builder*/ ) {
return 'cubeTexture';
}
getDefaultUV() {
const texture = this.value;
if ( texture.mapping === CubeReflectionMapping ) {
return reflectVector;
} else if ( texture.mapping === CubeRefractionMapping ) {
return refractVector;
} else {
console.error( 'THREE.CubeTextureNode: Mapping "%s" not supported.', texture.mapping );
return vec3( 0, 0, 0 );
}
}
setUpdateMatrix( /*updateMatrix*/ ) { } // Ignore .updateMatrix for CubeTextureNode
setupUV( builder, uvNode ) {
const texture = this.value;
if ( builder.renderer.coordinateSystem === WebGPUCoordinateSystem || ! texture.isRenderTargetTexture ) {
return vec3( uvNode.x.negate(), uvNode.yz );
} else {
return uvNode;
}
}
generateUV( builder, cubeUV ) {
return cubeUV.build( builder, 'vec3' );
}
}
const cubeTexture = nodeProxy( CubeTextureNode );
addNodeElement( 'cubeTexture', cubeTexture );
addNodeClass( 'CubeTextureNode', CubeTextureNode );
class LightingNode extends Node {
constructor() {
super( 'vec3' );
this.isLightingNode = true;
}
generate( /*builder*/ ) {
console.warn( 'Abstract function.' );
}
}
addNodeClass( 'LightingNode', LightingNode );
const BasicShadowMap = tslFn( ( { depthTexture, shadowCoord } ) => {
return texture( depthTexture, shadowCoord.xy ).compare( shadowCoord.z );
} );
const PCFShadowMap = tslFn( ( { depthTexture, shadowCoord, shadow } ) => {
const depthCompare = ( uv, compare ) => texture( depthTexture, uv ).compare( compare );
const mapSize = reference( 'mapSize', 'vec2', shadow );
const radius = reference( 'radius', 'float', shadow );
const texelSize = vec2( 1 ).div( mapSize );
const dx0 = texelSize.x.negate().mul( radius );
const dy0 = texelSize.y.negate().mul( radius );
const dx1 = texelSize.x.mul( radius );
const dy1 = texelSize.y.mul( radius );
const dx2 = dx0.div( 2 );
const dy2 = dy0.div( 2 );
const dx3 = dx1.div( 2 );
const dy3 = dy1.div( 2 );
return add(
depthCompare( shadowCoord.xy.add( vec2( dx0, dy0 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( 0, dy0 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( dx1, dy0 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( dx2, dy2 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( 0, dy2 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( dx3, dy2 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( dx0, 0 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( dx2, 0 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy, shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( dx3, 0 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( dx1, 0 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( dx2, dy3 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( 0, dy3 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( dx3, dy3 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( dx0, dy1 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( 0, dy1 ) ), shadowCoord.z ),
depthCompare( shadowCoord.xy.add( vec2( dx1, dy1 ) ), shadowCoord.z )
).mul( 1 / 17 );
} );
const PCFSoftShadowMap = tslFn( ( { depthTexture, shadowCoord, shadow } ) => {
const depthCompare = ( uv, compare ) => texture( depthTexture, uv ).compare( compare );
const mapSize = reference( 'mapSize', 'vec2', shadow );
const texelSize = vec2( 1 ).div( mapSize );
const dx = texelSize.x;
const dy = texelSize.y;
const uv = shadowCoord.xy;
const f = fract( uv.mul( mapSize ).add( 0.5 ) );
uv.subAssign( f.mul( texelSize ) );
return add(
depthCompare( uv, shadowCoord.z ),
depthCompare( uv.add( vec2( dx, 0 ) ), shadowCoord.z ),
depthCompare( uv.add( vec2( 0, dy ) ), shadowCoord.z ),
depthCompare( uv.add( texelSize ), shadowCoord.z ),
mix(
depthCompare( uv.add( vec2( dx.negate(), 0 ) ), shadowCoord.z ),
depthCompare( uv.add( vec2( dx.mul( 2 ), 0 ) ), shadowCoord.z ),
f.x
),
mix(
depthCompare( uv.add( vec2( dx.negate(), dy ) ), shadowCoord.z ),
depthCompare( uv.add( vec2( dx.mul( 2 ), dy ) ), shadowCoord.z ),
f.x
),
mix(
depthCompare( uv.add( vec2( 0, dy.negate() ) ), shadowCoord.z ),
depthCompare( uv.add( vec2( 0, dy.mul( 2 ) ) ), shadowCoord.z ),
f.y
),
mix(
depthCompare( uv.add( vec2( dx, dy.negate() ) ), shadowCoord.z ),
depthCompare( uv.add( vec2( dx, dy.mul( 2 ) ) ), shadowCoord.z ),
f.y
),
mix(
mix(
depthCompare( uv.add( vec2( dx.negate(), dy.negate() ) ), shadowCoord.z ),
depthCompare( uv.add( vec2( dx.mul( 2 ), dy.negate() ) ), shadowCoord.z ),
f.x
),
mix(
depthCompare( uv.add( vec2( dx.negate(), dy.mul( 2 ) ) ), shadowCoord.z ),
depthCompare( uv.add( vec2( dx.mul( 2 ), dy.mul( 2 ) ) ), shadowCoord.z ),
f.x
),
f.y
)
).mul( 1 / 9 );
} );
const shadowFilterLib = [ BasicShadowMap, PCFShadowMap, PCFSoftShadowMap ];
//
let overrideMaterial = null;
class AnalyticLightNode extends LightingNode {
constructor( light = null ) {
super();
this.updateType = NodeUpdateType.FRAME;
this.light = light;
this.color = new Color();
this.colorNode = uniform( this.color );
this.baseColorNode = null;
this.shadowMap = null;
this.shadowNode = null;
this.shadowColorNode = null;
this.isAnalyticLightNode = true;
}
getCacheKey() {
return super.getCacheKey() + '-' + ( this.light.id + '-' + ( this.light.castShadow ? '1' : '0' ) );
}
getHash() {
return this.light.uuid;
}
setupShadow( builder ) {
const { object, renderer } = builder;
let shadowColorNode = this.shadowColorNode;
if ( shadowColorNode === null ) {
if ( overrideMaterial === null ) {
overrideMaterial = builder.createNodeMaterial();
overrideMaterial.fragmentNode = vec4( 0, 0, 0, 1 );
overrideMaterial.isShadowNodeMaterial = true; // Use to avoid other overrideMaterial override material.fragmentNode unintentionally when using material.shadowNode
}
const depthTexture = new DepthTexture();
depthTexture.compareFunction = LessCompare;
const shadow = this.light.shadow;
const shadowMap = builder.createRenderTarget( shadow.mapSize.width, shadow.mapSize.height );
shadowMap.depthTexture = depthTexture;
shadow.camera.updateProjectionMatrix();
//
const shadowIntensity = reference( 'intensity', 'float', shadow );
const bias = reference( 'bias', 'float', shadow );
const normalBias = reference( 'normalBias', 'float', shadow );
const position = object.material.shadowPositionNode || positionWorld;
let shadowCoord = uniform( shadow.matrix ).mul( position.add( normalWorld.mul( normalBias ) ) );
shadowCoord = shadowCoord.xyz.div( shadowCoord.w );
let coordZ = shadowCoord.z.add( bias );
if ( renderer.coordinateSystem === WebGPUCoordinateSystem ) {
coordZ = coordZ.mul( 2 ).sub( 1 ); // WebGPU: Convertion [ 0, 1 ] to [ - 1, 1 ]
}
shadowCoord = vec3(
shadowCoord.x,
shadowCoord.y.oneMinus(), // follow webgpu standards
coordZ
);
const frustumTest = shadowCoord.x.greaterThanEqual( 0 )
.and( shadowCoord.x.lessThanEqual( 1 ) )
.and( shadowCoord.y.greaterThanEqual( 0 ) )
.and( shadowCoord.y.lessThanEqual( 1 ) )
.and( shadowCoord.z.lessThanEqual( 1 ) );
//
const filterFn = shadow.filterNode || shadowFilterLib[ renderer.shadowMap.type ] || null;
if ( filterFn === null ) {
throw new Error( 'THREE.WebGPURenderer: Shadow map type not supported yet.' );
}
const shadowNode = frustumTest.cond( filterFn( { depthTexture, shadowCoord, shadow } ), float( 1 ) );
this.shadowMap = shadowMap;
this.shadowNode = shadowNode;
this.shadowColorNode = shadowColorNode = this.colorNode.mul( mix( 1, shadowNode, shadowIntensity ) );
this.baseColorNode = this.colorNode;
}
//
this.colorNode = shadowColorNode;
this.updateBeforeType = NodeUpdateType.RENDER;
}
setup( builder ) {
this.colorNode = this.baseColorNode || this.colorNode;
if ( this.light.castShadow ) {
if ( builder.object.receiveShadow ) {
this.setupShadow( builder );
}
} else if ( this.shadowNode !== null ) {
this.disposeShadow();
}
}
updateShadow( frame ) {
const { shadowMap, light } = this;
const { renderer, scene, camera } = frame;
const currentOverrideMaterial = scene.overrideMaterial;
scene.overrideMaterial = overrideMaterial;
shadowMap.setSize( light.shadow.mapSize.width, light.shadow.mapSize.height );
light.shadow.updateMatrices( light );
light.shadow.camera.layers.mask = camera.layers.mask;
const currentRenderTarget = renderer.getRenderTarget();
const currentRenderObjectFunction = renderer.getRenderObjectFunction();
renderer.setRenderObjectFunction( ( object, ...params ) => {
if ( object.castShadow === true ) {
renderer.renderObject( object, ...params );
}
} );
renderer.setRenderTarget( shadowMap );
renderer.render( scene, light.shadow.camera );
renderer.setRenderTarget( currentRenderTarget );
renderer.setRenderObjectFunction( currentRenderObjectFunction );
scene.overrideMaterial = currentOverrideMaterial;
}
disposeShadow() {
this.shadowMap.dispose();
this.shadowMap = null;
this.shadowNode = null;
this.shadowColorNode = null;
this.baseColorNode = null;
this.updateBeforeType = NodeUpdateType.NONE;
}
updateBefore( frame ) {
this.updateShadow( frame );
}
update( /*frame*/ ) {
const { light } = this;
this.color.copy( light.color ).multiplyScalar( light.intensity );
}
}
addNodeClass( 'AnalyticLightNode', AnalyticLightNode );
const LightNodes = new WeakMap();
const sortLights = ( lights ) => {
return lights.sort( ( a, b ) => a.id - b.id );
};
class LightsNode extends Node {
constructor( lightNodes = [] ) {
super( 'vec3' );
this.totalDiffuseNode = vec3().temp( 'totalDiffuse' );
this.totalSpecularNode = vec3().temp( 'totalSpecular' );
this.outgoingLightNode = vec3().temp( 'outgoingLight' );
this.lightNodes = lightNodes;
this._hash = null;
}
get hasLight() {
return this.lightNodes.length > 0;
}
getHash() {
if ( this._hash === null ) {
const hash = [];
for ( const lightNode of this.lightNodes ) {
hash.push( lightNode.getHash() );
}
this._hash = 'lights-' + hash.join( ',' );
}
return this._hash;
}
analyze( builder ) {
const properties = builder.getDataFromNode( this );
for ( const node of properties.nodes ) {
node.build( builder );
}
}
setup( builder ) {
const context = builder.context;
const lightingModel = context.lightingModel;
let outgoingLightNode = this.outgoingLightNode;
if ( lightingModel ) {
const { lightNodes, totalDiffuseNode, totalSpecularNode } = this;
context.outgoingLight = outgoingLightNode;
const stack = builder.addStack();
//
const properties = builder.getDataFromNode( this );
properties.nodes = stack.nodes;
//
lightingModel.start( context, stack, builder );
// lights
for ( const lightNode of lightNodes ) {
lightNode.build( builder );
}
//
lightingModel.indirect( context, stack, builder );
//
const { backdrop, backdropAlpha } = context;
const { directDiffuse, directSpecular, indirectDiffuse, indirectSpecular } = context.reflectedLight;
let totalDiffuse = directDiffuse.add( indirectDiffuse );
if ( backdrop !== null ) {
if ( backdropAlpha !== null ) {
totalDiffuse = vec3( backdropAlpha.mix( totalDiffuse, backdrop ) );
} else {
totalDiffuse = vec3( backdrop );
}
context.material.transparent = true;
}
totalDiffuseNode.assign( totalDiffuse );
totalSpecularNode.assign( directSpecular.add( indirectSpecular ) );
outgoingLightNode.assign( totalDiffuseNode.add( totalSpecularNode ) );
//
lightingModel.finish( context, stack, builder );
//
outgoingLightNode = outgoingLightNode.bypass( builder.removeStack() );
}
return outgoingLightNode;
}
_getLightNodeById( id ) {
for ( const lightNode of this.lightNodes ) {
if ( lightNode.isAnalyticLightNode && lightNode.light.id === id ) {
return lightNode;
}
}
return null;
}
fromLights( lights = [] ) {
const lightNodes = [];
lights = sortLights( lights );
for ( const light of lights ) {
let lightNode = this._getLightNodeById( light.id );
if ( lightNode === null ) {
const lightClass = light.constructor;
const lightNodeClass = LightNodes.has( lightClass ) ? LightNodes.get( lightClass ) : AnalyticLightNode;
lightNode = nodeObject( new lightNodeClass( light ) );
}
lightNodes.push( lightNode );
}
this.lightNodes = lightNodes;
this._hash = null;
return this;
}
}
const lights = ( lights ) => nodeObject( new LightsNode().fromLights( lights ) );
const lightsNode = nodeProxy( LightsNode );
function addLightNode( lightClass, lightNodeClass ) {
if ( LightNodes.has( lightClass ) ) {
console.warn( `Redefinition of light node ${ lightNodeClass.type }` );
return;
}
if ( typeof lightClass !== 'function' ) throw new Error( `Light ${ lightClass.name } is not a class` );
if ( typeof lightNodeClass !== 'function' || ! lightNodeClass.type ) throw new Error( `Light node ${ lightNodeClass.type } is not a class` );
LightNodes.set( lightClass, lightNodeClass );
}
class AONode extends LightingNode {
constructor( aoNode = null ) {
super();
this.aoNode = aoNode;
}
setup( builder ) {
builder.context.ambientOcclusion.mulAssign( this.aoNode );
}
}
addNodeClass( 'AONode', AONode );
class LightingContextNode extends ContextNode {
constructor( node, lightingModel = null, backdropNode = null, backdropAlphaNode = null ) {
super( node );
this.lightingModel = lightingModel;
this.backdropNode = backdropNode;
this.backdropAlphaNode = backdropAlphaNode;
this._context = null;
}
getContext() {
const { backdropNode, backdropAlphaNode } = this;
const directDiffuse = vec3().temp( 'directDiffuse' ),
directSpecular = vec3().temp( 'directSpecular' ),
indirectDiffuse = vec3().temp( 'indirectDiffuse' ),
indirectSpecular = vec3().temp( 'indirectSpecular' );
const reflectedLight = {
directDiffuse,
directSpecular,
indirectDiffuse,
indirectSpecular
};
const context = {
radiance: vec3().temp( 'radiance' ),
irradiance: vec3().temp( 'irradiance' ),
iblIrradiance: vec3().temp( 'iblIrradiance' ),
ambientOcclusion: float( 1 ).temp( 'ambientOcclusion' ),
reflectedLight,
backdrop: backdropNode,
backdropAlpha: backdropAlphaNode
};
return context;
}
setup( builder ) {
this.context = this._context || ( this._context = this.getContext() );
this.context.lightingModel = this.lightingModel || builder.context.lightingModel;
return super.setup( builder );
}
}
const lightingContext = nodeProxy( LightingContextNode );
addNodeElement( 'lightingContext', lightingContext );
addNodeClass( 'LightingContextNode', LightingContextNode );
class IrradianceNode extends LightingNode {
constructor( node ) {
super();
this.node = node;
}
setup( builder ) {
builder.context.irradiance.addAssign( this.node );
}
}
addNodeClass( 'IrradianceNode', IrradianceNode );
let resolution, viewportResult;
class ViewportNode extends Node {
constructor( scope ) {
super();
this.scope = scope;
this.isViewportNode = true;
}
getNodeType() {
if ( this.scope === ViewportNode.VIEWPORT ) return 'vec4';
else if ( this.scope === ViewportNode.COORDINATE ) return 'vec3';
else return 'vec2';
}
getUpdateType() {
let updateType = NodeUpdateType.NONE;
if ( this.scope === ViewportNode.RESOLUTION || this.scope === ViewportNode.VIEWPORT ) {
updateType = NodeUpdateType.RENDER;
}
this.updateType = updateType;
return updateType;
}
update( { renderer } ) {
if ( this.scope === ViewportNode.VIEWPORT ) {
renderer.getViewport( viewportResult );
} else {
renderer.getDrawingBufferSize( resolution );
}
}
setup( /*builder*/ ) {
const scope = this.scope;
let output = null;
if ( scope === ViewportNode.RESOLUTION ) {
output = uniform( resolution || ( resolution = new Vector2() ) );
} else if ( scope === ViewportNode.VIEWPORT ) {
output = uniform( viewportResult || ( viewportResult = new Vector4() ) );
} else {
output = viewportCoordinate.div( viewportResolution );
let outX = output.x;
let outY = output.y;
if ( /bottom/i.test( scope ) ) outY = outY.oneMinus();
if ( /right/i.test( scope ) ) outX = outX.oneMinus();
output = vec2( outX, outY );
}
return output;
}
generate( builder ) {
if ( this.scope === ViewportNode.COORDINATE ) {
let coord = builder.getFragCoord();
if ( builder.isFlipY() ) {
// follow webgpu standards
const resolution = builder.getNodeProperties( viewportResolution ).outputNode.build( builder );
coord = `${ builder.getType( 'vec3' ) }( ${ coord }.x, ${ resolution }.y - ${ coord }.y, ${ coord }.z )`;
}
return coord;
}
return super.generate( builder );
}
}
ViewportNode.COORDINATE = 'coordinate';
ViewportNode.RESOLUTION = 'resolution';
ViewportNode.VIEWPORT = 'viewport';
ViewportNode.TOP_LEFT = 'topLeft';
ViewportNode.BOTTOM_LEFT = 'bottomLeft';
ViewportNode.TOP_RIGHT = 'topRight';
ViewportNode.BOTTOM_RIGHT = 'bottomRight';
const viewportCoordinate = nodeImmutable( ViewportNode, ViewportNode.COORDINATE );
const viewportResolution = nodeImmutable( ViewportNode, ViewportNode.RESOLUTION );
const viewport = nodeImmutable( ViewportNode, ViewportNode.VIEWPORT );
const viewportTopLeft = nodeImmutable( ViewportNode, ViewportNode.TOP_LEFT );
const viewportBottomLeft = nodeImmutable( ViewportNode, ViewportNode.BOTTOM_LEFT );
const viewportTopRight = nodeImmutable( ViewportNode, ViewportNode.TOP_RIGHT );
const viewportBottomRight = nodeImmutable( ViewportNode, ViewportNode.BOTTOM_RIGHT );
addNodeClass( 'ViewportNode', ViewportNode );
const _size$7 = /*@__PURE__*/ new Vector2();
class ViewportTextureNode extends TextureNode {
constructor( uvNode = viewportTopLeft, levelNode = null, framebufferTexture = null ) {
if ( framebufferTexture === null ) {
framebufferTexture = new FramebufferTexture();
framebufferTexture.minFilter = LinearMipmapLinearFilter;
}
super( framebufferTexture, uvNode, levelNode );
this.generateMipmaps = false;
this.isOutputTextureNode = true;
this.updateBeforeType = NodeUpdateType.FRAME;
}
updateBefore( frame ) {
const renderer = frame.renderer;
renderer.getDrawingBufferSize( _size$7 );
//
const framebufferTexture = this.value;
if ( framebufferTexture.image.width !== _size$7.width || framebufferTexture.image.height !== _size$7.height ) {
framebufferTexture.image.width = _size$7.width;
framebufferTexture.image.height = _size$7.height;
framebufferTexture.needsUpdate = true;
}
//
const currentGenerateMipmaps = framebufferTexture.generateMipmaps;
framebufferTexture.generateMipmaps = this.generateMipmaps;
renderer.copyFramebufferToTexture( framebufferTexture );
framebufferTexture.generateMipmaps = currentGenerateMipmaps;
}
clone() {
const viewportTextureNode = new this.constructor( this.uvNode, this.levelNode, this.value );
viewportTextureNode.generateMipmaps = this.generateMipmaps;
return viewportTextureNode;
}
}
const viewportTexture = nodeProxy( ViewportTextureNode );
const viewportMipTexture = nodeProxy( ViewportTextureNode, null, null, { generateMipmaps: true } );
addNodeElement( 'viewportTexture', viewportTexture );
addNodeElement( 'viewportMipTexture', viewportMipTexture );
addNodeClass( 'ViewportTextureNode', ViewportTextureNode );
let sharedDepthbuffer = null;
class ViewportDepthTextureNode extends ViewportTextureNode {
constructor( uvNode = viewportTopLeft, levelNode = null ) {
if ( sharedDepthbuffer === null ) {
sharedDepthbuffer = new DepthTexture();
}
super( uvNode, levelNode, sharedDepthbuffer );
}
}
const viewportDepthTexture = nodeProxy( ViewportDepthTextureNode );
addNodeElement( 'viewportDepthTexture', viewportDepthTexture );
addNodeClass( 'ViewportDepthTextureNode', ViewportDepthTextureNode );
class ViewportDepthNode extends Node {
constructor( scope, valueNode = null ) {
super( 'float' );
this.scope = scope;
this.valueNode = valueNode;
this.isViewportDepthNode = true;
}
generate( builder ) {
const { scope } = this;
if ( scope === ViewportDepthNode.DEPTH ) {
return builder.getFragDepth();
}
return super.generate( builder );
}
setup( { camera } ) {
const { scope } = this;
const texture = this.valueNode;
let node = null;
if ( scope === ViewportDepthNode.DEPTH ) {
if ( texture !== null ) {
node = depthBase().assign( texture );
} else {
if ( camera.isPerspectiveCamera ) {
node = viewZToPerspectiveDepth( positionView.z, cameraNear, cameraFar );
} else {
node = viewZToOrthographicDepth( positionView.z, cameraNear, cameraFar );
}
}
} else if ( scope === ViewportDepthNode.LINEAR_DEPTH ) {
if ( texture !== null ) {
if ( camera.isPerspectiveCamera ) {
const viewZ = perspectiveDepthToViewZ( texture, cameraNear, cameraFar );
node = viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
} else {
node = texture;
}
} else {
node = viewZToOrthographicDepth( positionView.z, cameraNear, cameraFar );
}
}
return node;
}
}
// NOTE: viewZ, the z-coordinate in camera space, is negative for points in front of the camera
// -near maps to 0; -far maps to 1
const viewZToOrthographicDepth = ( viewZ, near, far ) => viewZ.add( near ).div( near.sub( far ) );
// maps orthographic depth in [ 0, 1 ] to viewZ
const orthographicDepthToViewZ = ( depth, near, far ) => near.sub( far ).mul( depth ).sub( near );
// NOTE: https://twitter.com/gonnavis/status/1377183786949959682
// -near maps to 0; -far maps to 1
const viewZToPerspectiveDepth = ( viewZ, near, far ) => near.add( viewZ ).mul( far ).div( far.sub( near ).mul( viewZ ) );
// maps perspective depth in [ 0, 1 ] to viewZ
const perspectiveDepthToViewZ = ( depth, near, far ) => near.mul( far ).div( far.sub( near ).mul( depth ).sub( far ) );
ViewportDepthNode.DEPTH = 'depth';
ViewportDepthNode.LINEAR_DEPTH = 'linearDepth';
const depthBase = nodeProxy( ViewportDepthNode, ViewportDepthNode.DEPTH );
const depth = nodeImmutable( ViewportDepthNode, ViewportDepthNode.DEPTH );
const linearDepth = nodeProxy( ViewportDepthNode, ViewportDepthNode.LINEAR_DEPTH );
const viewportLinearDepth = linearDepth( viewportDepthTexture() );
depth.assign = ( value ) => depthBase( value );
addNodeClass( 'ViewportDepthNode', ViewportDepthNode );
class ClippingNode extends Node {
constructor( scope = ClippingNode.DEFAULT ) {
super();
this.scope = scope;
}
setup( builder ) {
super.setup( builder );
const clippingContext = builder.clippingContext;
const { localClipIntersection, localClippingCount, globalClippingCount } = clippingContext;
const numClippingPlanes = globalClippingCount + localClippingCount;
const numUnionClippingPlanes = localClipIntersection ? numClippingPlanes - localClippingCount : numClippingPlanes;
if ( this.scope === ClippingNode.ALPHA_TO_COVERAGE ) {
return this.setupAlphaToCoverage( clippingContext.planes, numClippingPlanes, numUnionClippingPlanes );
} else {
return this.setupDefault( clippingContext.planes, numClippingPlanes, numUnionClippingPlanes );
}
}
setupAlphaToCoverage( planes, numClippingPlanes, numUnionClippingPlanes ) {
return tslFn( () => {
const clippingPlanes = uniforms( planes );
const distanceToPlane = property( 'float', 'distanceToPlane' );
const distanceGradient = property( 'float', 'distanceToGradient' );
const clipOpacity = property( 'float', 'clipOpacity' );
clipOpacity.assign( 1 );
let plane;
loop( numUnionClippingPlanes, ( { i } ) => {
plane = clippingPlanes.element( i );
distanceToPlane.assign( positionView.dot( plane.xyz ).negate().add( plane.w ) );
distanceGradient.assign( distanceToPlane.fwidth().div( 2.0 ) );
clipOpacity.mulAssign( smoothstep( distanceGradient.negate(), distanceGradient, distanceToPlane ) );
clipOpacity.equal( 0.0 ).discard();
} );
if ( numUnionClippingPlanes < numClippingPlanes ) {
const unionClipOpacity = property( 'float', 'unionclipOpacity' );
unionClipOpacity.assign( 1 );
loop( { start: numUnionClippingPlanes, end: numClippingPlanes }, ( { i } ) => {
plane = clippingPlanes.element( i );
distanceToPlane.assign( positionView.dot( plane.xyz ).negate().add( plane.w ) );
distanceGradient.assign( distanceToPlane.fwidth().div( 2.0 ) );
unionClipOpacity.mulAssign( smoothstep( distanceGradient.negate(), distanceGradient, distanceToPlane ).oneMinus() );
} );
clipOpacity.mulAssign( unionClipOpacity.oneMinus() );
}
diffuseColor.a.mulAssign( clipOpacity );
diffuseColor.a.equal( 0.0 ).discard();
} )();
}
setupDefault( planes, numClippingPlanes, numUnionClippingPlanes ) {
return tslFn( () => {
const clippingPlanes = uniforms( planes );
let plane;
loop( numUnionClippingPlanes, ( { i } ) => {
plane = clippingPlanes.element( i );
positionView.dot( plane.xyz ).greaterThan( plane.w ).discard();
} );
if ( numUnionClippingPlanes < numClippingPlanes ) {
const clipped = property( 'bool', 'clipped' );
clipped.assign( true );
loop( { start: numUnionClippingPlanes, end: numClippingPlanes }, ( { i } ) => {
plane = clippingPlanes.element( i );
clipped.assign( positionView.dot( plane.xyz ).greaterThan( plane.w ).and( clipped ) );
} );
clipped.discard();
}
} )();
}
}
ClippingNode.ALPHA_TO_COVERAGE = 'alphaToCoverage';
ClippingNode.DEFAULT = 'default';
const clipping = () => nodeObject( new ClippingNode() );
const clippingAlpha = () => nodeObject( new ClippingNode( ClippingNode.ALPHA_TO_COVERAGE ) );
class FrontFacingNode extends Node {
constructor() {
super( 'bool' );
this.isFrontFacingNode = true;
}
generate( builder ) {
const { renderer, material } = builder;
if ( renderer.coordinateSystem === WebGLCoordinateSystem ) {
if ( material.side === BackSide ) {
return 'false';
}
}
return builder.getFrontFacing();
}
}
const frontFacing = nodeImmutable( FrontFacingNode );
const faceDirection = float( frontFacing ).mul( 2.0 ).sub( 1.0 );
addNodeClass( 'FrontFacingNode', FrontFacingNode );
const NodeMaterials = new Map();
class NodeMaterial extends Material {
constructor() {
super();
this.isNodeMaterial = true;
this.type = this.constructor.type;
this.forceSinglePass = false;
this.fog = true;
this.lights = false;
this.normals = true;
this.lightsNode = null;
this.envNode = null;
this.aoNode = null;
this.colorNode = null;
this.normalNode = null;
this.opacityNode = null;
this.backdropNode = null;
this.backdropAlphaNode = null;
this.alphaTestNode = null;
this.positionNode = null;
this.depthNode = null;
this.shadowNode = null;
this.shadowPositionNode = null;
this.outputNode = null;
this.mrtNode = null;
this.fragmentNode = null;
this.vertexNode = null;
}
customProgramCacheKey() {
return this.type + getCacheKey( this );
}
build( builder ) {
this.setup( builder );
}
setup( builder ) {
// < VERTEX STAGE >
builder.addStack();
builder.stack.outputNode = this.vertexNode || this.setupPosition( builder );
builder.addFlow( 'vertex', builder.removeStack() );
// < FRAGMENT STAGE >
builder.addStack();
let resultNode;
const clippingNode = this.setupClipping( builder );
if ( this.depthWrite === true ) this.setupDepth( builder );
if ( this.fragmentNode === null ) {
if ( this.normals === true ) this.setupNormal( builder );
this.setupDiffuseColor( builder );
this.setupVariants( builder );
const outgoingLightNode = this.setupLighting( builder );
if ( clippingNode !== null ) builder.stack.add( clippingNode );
// force unsigned floats - useful for RenderTargets
const basicOutput = vec4( outgoingLightNode, diffuseColor.a ).max( 0 );
resultNode = this.setupOutput( builder, basicOutput );
// OUTPUT NODE
output.assign( resultNode );
//
if ( this.outputNode !== null ) resultNode = this.outputNode;
// MRT
const renderTarget = builder.renderer.getRenderTarget();
if ( renderTarget !== null ) {
const mrt = builder.renderer.getMRT();
const materialMRT = this.mrtNode;
if ( mrt !== null ) {
resultNode = mrt;
if ( materialMRT !== null ) {
resultNode = mrt.merge( materialMRT );
}
} else if ( materialMRT !== null ) {
resultNode = materialMRT;
}
}
} else {
let fragmentNode = this.fragmentNode;
if ( fragmentNode.isOutputStructNode !== true ) {
fragmentNode = vec4( fragmentNode );
}
resultNode = this.setupOutput( builder, fragmentNode );
}
builder.stack.outputNode = resultNode;
builder.addFlow( 'fragment', builder.removeStack() );
}
setupClipping( builder ) {
if ( builder.clippingContext === null ) return null;
const { globalClippingCount, localClippingCount } = builder.clippingContext;
let result = null;
if ( globalClippingCount || localClippingCount ) {
if ( this.alphaToCoverage ) {
// to be added to flow when the color/alpha value has been determined
result = clippingAlpha();
} else {
builder.stack.add( clipping() );
}
}
return result;
}
setupDepth( builder ) {
const { renderer } = builder;
// Depth
let depthNode = this.depthNode;
if ( depthNode === null && renderer.logarithmicDepthBuffer === true ) {
const fragDepth = modelViewProjection().w.add( 1 );
depthNode = fragDepth.log2().mul( cameraLogDepth ).mul( 0.5 );
}
if ( depthNode !== null ) {
depth.assign( depthNode ).append();
}
}
setupPosition( builder ) {
const { object } = builder;
const geometry = object.geometry;
builder.addStack();
// Vertex
if ( geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color ) {
morphReference( object ).append();
}
if ( object.isSkinnedMesh === true ) {
skinningReference( object ).append();
}
if ( this.displacementMap ) {
const displacementMap = materialReference( 'displacementMap', 'texture' );
const displacementScale = materialReference( 'displacementScale', 'float' );
const displacementBias = materialReference( 'displacementBias', 'float' );
positionLocal.addAssign( normalLocal.normalize().mul( ( displacementMap.x.mul( displacementScale ).add( displacementBias ) ) ) );
}
if ( object.isBatchedMesh ) {
batch( object ).append();
}
if ( ( object.instanceMatrix && object.instanceMatrix.isInstancedBufferAttribute === true ) ) {
instance( object ).append();
}
if ( this.positionNode !== null ) {
positionLocal.assign( this.positionNode );
}
const mvp = modelViewProjection();
builder.context.vertex = builder.removeStack();
builder.context.mvp = mvp;
return mvp;
}
setupDiffuseColor( { object, geometry } ) {
let colorNode = this.colorNode ? vec4( this.colorNode ) : materialColor;
// VERTEX COLORS
if ( this.vertexColors === true && geometry.hasAttribute( 'color' ) ) {
colorNode = vec4( colorNode.xyz.mul( attribute( 'color', 'vec3' ) ), colorNode.a );
}
// Instanced colors
if ( object.instanceColor ) {
const instanceColor = varyingProperty( 'vec3', 'vInstanceColor' );
colorNode = instanceColor.mul( colorNode );
}
// COLOR
diffuseColor.assign( colorNode );
// OPACITY
const opacityNode = this.opacityNode ? float( this.opacityNode ) : materialOpacity;
diffuseColor.a.assign( diffuseColor.a.mul( opacityNode ) );
// ALPHA TEST
if ( this.alphaTestNode !== null || this.alphaTest > 0 ) {
const alphaTestNode = this.alphaTestNode !== null ? float( this.alphaTestNode ) : materialAlphaTest;
diffuseColor.a.lessThanEqual( alphaTestNode ).discard();
}
if ( this.transparent === false && this.blending === NormalBlending && this.alphaToCoverage === false ) {
diffuseColor.a.assign( 1.0 );
}
}
setupVariants( /*builder*/ ) {
// Interface function.
}
setupOutgoingLight() {
return ( this.lights === true ) ? vec3( 0 ) : diffuseColor.rgb;
}
setupNormal() {
// NORMAL VIEW
if ( this.flatShading === true ) {
const normalNode = positionView.dFdx().cross( positionView.dFdy() ).normalize();
transformedNormalView.assign( normalNode.mul( faceDirection ) );
} else {
const normalNode = this.normalNode ? vec3( this.normalNode ) : materialNormal;
transformedNormalView.assign( normalNode.mul( faceDirection ) );
}
}
setupEnvironment( builder ) {
let node = null;
if ( this.envNode ) {
node = this.envNode;
} else if ( this.envMap ) {
node = this.envMap.isCubeTexture ? cubeTexture( this.envMap ) : texture( this.envMap );
} else if ( builder.environmentNode ) {
node = builder.environmentNode;
}
return node;
}
setupLightMap( builder ) {
let node = null;
if ( builder.material.lightMap ) {
node = new IrradianceNode( materialLightMap );
}
return node;
}
setupLights( builder ) {
const materialLightsNode = [];
//
const envNode = this.setupEnvironment( builder );
if ( envNode && envNode.isLightingNode ) {
materialLightsNode.push( envNode );
}
const lightMapNode = this.setupLightMap( builder );
if ( lightMapNode && lightMapNode.isLightingNode ) {
materialLightsNode.push( lightMapNode );
}
if ( this.aoNode !== null || builder.material.aoMap ) {
const aoNode = this.aoNode !== null ? this.aoNode : materialAOMap;
materialLightsNode.push( new AONode( aoNode ) );
}
let lightsN = this.lightsNode || builder.lightsNode;
if ( materialLightsNode.length > 0 ) {
lightsN = lightsNode( [ ...lightsN.lightNodes, ...materialLightsNode ] );
}
return lightsN;
}
setupLightingModel( /*builder*/ ) {
// Interface function.
}
setupLighting( builder ) {
const { material } = builder;
const { backdropNode, backdropAlphaNode, emissiveNode } = this;
// OUTGOING LIGHT
const lights = this.lights === true || this.lightsNode !== null;
const lightsNode = lights ? this.setupLights( builder ) : null;
let outgoingLightNode = this.setupOutgoingLight( builder );
if ( lightsNode && lightsNode.hasLight !== false ) {
const lightingModel = this.setupLightingModel( builder );
outgoingLightNode = lightingContext( lightsNode, lightingModel, backdropNode, backdropAlphaNode );
} else if ( backdropNode !== null ) {
outgoingLightNode = vec3( backdropAlphaNode !== null ? mix( outgoingLightNode, backdropNode, backdropAlphaNode ) : backdropNode );
}
// EMISSIVE
if ( ( emissiveNode && emissiveNode.isNode === true ) || ( material.emissive && material.emissive.isColor === true ) ) {
emissive.assign( vec3( emissiveNode ? emissiveNode : materialEmissive ) );
outgoingLightNode = outgoingLightNode.add( emissive );
}
return outgoingLightNode;
}
setupOutput( builder, outputNode ) {
// FOG
if ( this.fog === true ) {
const fogNode = builder.fogNode;
if ( fogNode ) outputNode = vec4( fogNode.mix( outputNode.rgb, fogNode.colorNode ), outputNode.a );
}
return outputNode;
}
setDefaultValues( material ) {
// This approach is to reuse the native refreshUniforms*
// and turn available the use of features like transmission and environment in core
for ( const property in material ) {
const value = material[ property ];
if ( this[ property ] === undefined ) {
this[ property ] = value;
if ( value && value.clone ) this[ property ] = value.clone();
}
}
const descriptors = Object.getOwnPropertyDescriptors( material.constructor.prototype );
for ( const key in descriptors ) {
if ( Object.getOwnPropertyDescriptor( this.constructor.prototype, key ) === undefined &&
descriptors[ key ].get !== undefined ) {
Object.defineProperty( this.constructor.prototype, key, descriptors[ key ] );
}
}
}
toJSON( meta ) {
const isRoot = ( meta === undefined || typeof meta === 'string' );
if ( isRoot ) {
meta = {
textures: {},
images: {},
nodes: {}
};
}
const data = Material.prototype.toJSON.call( this, meta );
const nodeChildren = getNodeChildren( this );
data.inputNodes = {};
for ( const { property, childNode } of nodeChildren ) {
data.inputNodes[ property ] = childNode.toJSON( meta ).uuid;
}
// TODO: Copied from Object3D.toJSON
function extractFromCache( cache ) {
const values = [];
for ( const key in cache ) {
const data = cache[ key ];
delete data.metadata;
values.push( data );
}
return values;
}
if ( isRoot ) {
const textures = extractFromCache( meta.textures );
const images = extractFromCache( meta.images );
const nodes = extractFromCache( meta.nodes );
if ( textures.length > 0 ) data.textures = textures;
if ( images.length > 0 ) data.images = images;
if ( nodes.length > 0 ) data.nodes = nodes;
}
return data;
}
copy( source ) {
this.lightsNode = source.lightsNode;
this.envNode = source.envNode;
this.colorNode = source.colorNode;
this.normalNode = source.normalNode;
this.opacityNode = source.opacityNode;
this.backdropNode = source.backdropNode;
this.backdropAlphaNode = source.backdropAlphaNode;
this.alphaTestNode = source.alphaTestNode;
this.positionNode = source.positionNode;
this.depthNode = source.depthNode;
this.shadowNode = source.shadowNode;
this.shadowPositionNode = source.shadowPositionNode;
this.outputNode = source.outputNode;
this.mrtNode = source.mrtNode;
this.fragmentNode = source.fragmentNode;
this.vertexNode = source.vertexNode;
return super.copy( source );
}
static fromMaterial( material ) {
if ( material.isNodeMaterial === true ) { // is already a node material
return material;
}
const type = material.type.replace( 'Material', 'NodeMaterial' );
const nodeMaterial = createNodeMaterialFromType( type );
if ( nodeMaterial === undefined ) {
throw new Error( `NodeMaterial: Material "${ material.type }" is not compatible.` );
}
for ( const key in material ) {
nodeMaterial[ key ] = material[ key ];
}
return nodeMaterial;
}
}
function addNodeMaterial( type, nodeMaterial ) {
if ( typeof nodeMaterial !== 'function' || ! type ) throw new Error( `Node material ${ type } is not a class` );
if ( NodeMaterials.has( type ) ) {
console.warn( `Redefinition of node material ${ type }` );
return;
}
NodeMaterials.set( type, nodeMaterial );
nodeMaterial.type = type;
}
function createNodeMaterialFromType( type ) {
const Material = NodeMaterials.get( type );
if ( Material !== undefined ) {
return new Material();
}
}
addNodeMaterial( 'NodeMaterial', NodeMaterial );
class Uniform {
constructor( name, value ) {
this.name = name;
this.value = value;
this.boundary = 0; // used to build the uniform buffer according to the STD140 layout
this.itemSize = 0;
this.offset = 0; // this property is set by WebGPUUniformsGroup and marks the start position in the uniform buffer
}
setValue( value ) {
this.value = value;
}
getValue() {
return this.value;
}
}
class NumberUniform extends Uniform {
constructor( name, value = 0 ) {
super( name, value );
this.isNumberUniform = true;
this.boundary = 4;
this.itemSize = 1;
}
}
class Vector2Uniform extends Uniform {
constructor( name, value = new Vector2() ) {
super( name, value );
this.isVector2Uniform = true;
this.boundary = 8;
this.itemSize = 2;
}
}
class Vector3Uniform extends Uniform {
constructor( name, value = new Vector3() ) {
super( name, value );
this.isVector3Uniform = true;
this.boundary = 16;
this.itemSize = 3;
}
}
class Vector4Uniform extends Uniform {
constructor( name, value = new Vector4() ) {
super( name, value );
this.isVector4Uniform = true;
this.boundary = 16;
this.itemSize = 4;
}
}
class ColorUniform extends Uniform {
constructor( name, value = new Color() ) {
super( name, value );
this.isColorUniform = true;
this.boundary = 16;
this.itemSize = 3;
}
}
class Matrix3Uniform extends Uniform {
constructor( name, value = new Matrix3() ) {
super( name, value );
this.isMatrix3Uniform = true;
this.boundary = 48;
this.itemSize = 12;
}
}
class Matrix4Uniform extends Uniform {
constructor( name, value = new Matrix4() ) {
super( name, value );
this.isMatrix4Uniform = true;
this.boundary = 64;
this.itemSize = 16;
}
}
class NumberNodeUniform extends NumberUniform {
constructor( nodeUniform ) {
super( nodeUniform.name, nodeUniform.value );
this.nodeUniform = nodeUniform;
}
getValue() {
return this.nodeUniform.value;
}
}
class Vector2NodeUniform extends Vector2Uniform {
constructor( nodeUniform ) {
super( nodeUniform.name, nodeUniform.value );
this.nodeUniform = nodeUniform;
}
getValue() {
return this.nodeUniform.value;
}
}
class Vector3NodeUniform extends Vector3Uniform {
constructor( nodeUniform ) {
super( nodeUniform.name, nodeUniform.value );
this.nodeUniform = nodeUniform;
}
getValue() {
return this.nodeUniform.value;
}
}
class Vector4NodeUniform extends Vector4Uniform {
constructor( nodeUniform ) {
super( nodeUniform.name, nodeUniform.value );
this.nodeUniform = nodeUniform;
}
getValue() {
return this.nodeUniform.value;
}
}
class ColorNodeUniform extends ColorUniform {
constructor( nodeUniform ) {
super( nodeUniform.name, nodeUniform.value );
this.nodeUniform = nodeUniform;
}
getValue() {
return this.nodeUniform.value;
}
}
class Matrix3NodeUniform extends Matrix3Uniform {
constructor( nodeUniform ) {
super( nodeUniform.name, nodeUniform.value );
this.nodeUniform = nodeUniform;
}
getValue() {
return this.nodeUniform.value;
}
}
class Matrix4NodeUniform extends Matrix4Uniform {
constructor( nodeUniform ) {
super( nodeUniform.name, nodeUniform.value );
this.nodeUniform = nodeUniform;
}
getValue() {
return this.nodeUniform.value;
}
}
class CondNode extends Node {
constructor( condNode, ifNode, elseNode = null ) {
super();
this.condNode = condNode;
this.ifNode = ifNode;
this.elseNode = elseNode;
}
getNodeType( builder ) {
const ifType = this.ifNode.getNodeType( builder );
if ( this.elseNode !== null ) {
const elseType = this.elseNode.getNodeType( builder );
if ( builder.getTypeLength( elseType ) > builder.getTypeLength( ifType ) ) {
return elseType;
}
}
return ifType;
}
setup( builder ) {
const properties = builder.getNodeProperties( this );
properties.condNode = this.condNode.cache();
properties.ifNode = this.ifNode.cache();
properties.elseNode = this.elseNode ? this.elseNode.cache() : null;
}
generate( builder, output ) {
const type = this.getNodeType( builder );
const nodeData = builder.getDataFromNode( this );
if ( nodeData.nodeProperty !== undefined ) {
return nodeData.nodeProperty;
}
const { condNode, ifNode, elseNode } = builder.getNodeProperties( this );
const needsOutput = output !== 'void';
const nodeProperty = needsOutput ? property( type ).build( builder ) : '';
nodeData.nodeProperty = nodeProperty;
const nodeSnippet = condNode.build( builder, 'bool' );
builder.addFlowCode( `\n${ builder.tab }if ( ${ nodeSnippet } ) {\n\n` ).addFlowTab();
let ifSnippet = ifNode.build( builder, type );
if ( ifSnippet ) {
if ( needsOutput ) {
ifSnippet = nodeProperty + ' = ' + ifSnippet + ';';
} else {
ifSnippet = 'return ' + ifSnippet + ';';
}
}
builder.removeFlowTab().addFlowCode( builder.tab + '\t' + ifSnippet + '\n\n' + builder.tab + '}' );
if ( elseNode !== null ) {
builder.addFlowCode( ' else {\n\n' ).addFlowTab();
let elseSnippet = elseNode.build( builder, type );
if ( elseSnippet ) {
if ( needsOutput ) {
elseSnippet = nodeProperty + ' = ' + elseSnippet + ';';
} else {
elseSnippet = 'return ' + elseSnippet + ';';
}
}
builder.removeFlowTab().addFlowCode( builder.tab + '\t' + elseSnippet + '\n\n' + builder.tab + '}\n\n' );
} else {
builder.addFlowCode( '\n\n' );
}
return builder.format( nodeProperty, type, output );
}
}
const cond = nodeProxy( CondNode );
addNodeElement( 'cond', cond );
addNodeClass( 'CondNode', CondNode );
class StackNode extends Node {
constructor( parent = null ) {
super();
this.nodes = [];
this.outputNode = null;
this.parent = parent;
this._currentCond = null;
this.isStackNode = true;
}
getNodeType( builder ) {
return this.outputNode ? this.outputNode.getNodeType( builder ) : 'void';
}
add( node ) {
this.nodes.push( node );
return this;
}
if( boolNode, method ) {
const methodNode = new ShaderNode( method );
this._currentCond = cond( boolNode, methodNode );
return this.add( this._currentCond );
}
elseif( boolNode, method ) {
const methodNode = new ShaderNode( method );
const ifNode = cond( boolNode, methodNode );
this._currentCond.elseNode = ifNode;
this._currentCond = ifNode;
return this;
}
else( method ) {
this._currentCond.elseNode = new ShaderNode( method );
return this;
}
build( builder, ...params ) {
const previousStack = getCurrentStack();
setCurrentStack( this );
for ( const node of this.nodes ) {
node.build( builder, 'void' );
}
setCurrentStack( previousStack );
return this.outputNode ? this.outputNode.build( builder, ...params ) : super.build( builder, ...params );
}
}
const stack = nodeProxy( StackNode );
addNodeClass( 'StackNode', StackNode );
class EquirectUVNode extends TempNode {
constructor( dirNode = positionWorldDirection ) {
super( 'vec2' );
this.dirNode = dirNode;
}
setup() {
const dir = this.dirNode;
const u = dir.z.atan2( dir.x ).mul( 1 / ( Math.PI * 2 ) ).add( 0.5 );
const v = dir.y.clamp( - 1.0, 1.0 ).asin().mul( 1 / Math.PI ).add( 0.5 );
return vec2( u, v );
}
}
const equirectUV = nodeProxy( EquirectUVNode );
addNodeClass( 'EquirectUVNode', EquirectUVNode );
// @TODO: Consider rename WebGLCubeRenderTarget to just CubeRenderTarget
class CubeRenderTarget extends WebGLCubeRenderTarget {
constructor( size = 1, options = {} ) {
super( size, options );
this.isCubeRenderTarget = true;
}
fromEquirectangularTexture( renderer, texture$1 ) {
const currentMinFilter = texture$1.minFilter;
const currentGenerateMipmaps = texture$1.generateMipmaps;
texture$1.generateMipmaps = true;
this.texture.type = texture$1.type;
this.texture.colorSpace = texture$1.colorSpace;
this.texture.generateMipmaps = texture$1.generateMipmaps;
this.texture.minFilter = texture$1.minFilter;
this.texture.magFilter = texture$1.magFilter;
const geometry = new BoxGeometry( 5, 5, 5 );
const uvNode = equirectUV( positionWorldDirection );
const material = createNodeMaterialFromType( 'MeshBasicNodeMaterial' );
material.colorNode = texture( texture$1, uvNode, 0 );
material.side = BackSide;
material.blending = NoBlending;
const mesh = new Mesh( geometry, material );
const scene = new Scene();
scene.add( mesh );
// Avoid blurred poles
if ( texture$1.minFilter === LinearMipmapLinearFilter ) texture$1.minFilter = LinearFilter;
const camera = new CubeCamera( 1, 10, this );
camera.update( renderer, scene );
texture$1.minFilter = currentMinFilter;
texture$1.currentGenerateMipmaps = currentGenerateMipmaps;
mesh.geometry.dispose();
mesh.material.dispose();
return this;
}
}
// These defines must match with PMREMGenerator
const cubeUV_r0 = float( 1.0 );
const cubeUV_m0 = float( - 2.0 );
const cubeUV_r1 = float( 0.8 );
const cubeUV_m1 = float( - 1.0 );
const cubeUV_r4 = float( 0.4 );
const cubeUV_m4 = float( 2.0 );
const cubeUV_r5 = float( 0.305 );
const cubeUV_m5 = float( 3.0 );
const cubeUV_r6 = float( 0.21 );
const cubeUV_m6 = float( 4.0 );
const cubeUV_minMipLevel = float( 4.0 );
const cubeUV_minTileSize = float( 16.0 );
// These shader functions convert between the UV coordinates of a single face of
// a cubemap, the 0-5 integer index of a cube face, and the direction vector for
// sampling a textureCube (not generally normalized ).
const getFace = tslFn( ( [ direction ] ) => {
const absDirection = vec3( abs( direction ) ).toVar();
const face = float( - 1.0 ).toVar();
If( absDirection.x.greaterThan( absDirection.z ), () => {
If( absDirection.x.greaterThan( absDirection.y ), () => {
face.assign( cond( direction.x.greaterThan( 0.0 ), 0.0, 3.0 ) );
} ).else( () => {
face.assign( cond( direction.y.greaterThan( 0.0 ), 1.0, 4.0 ) );
} );
} ).else( () => {
If( absDirection.z.greaterThan( absDirection.y ), () => {
face.assign( cond( direction.z.greaterThan( 0.0 ), 2.0, 5.0 ) );
} ).else( () => {
face.assign( cond( direction.y.greaterThan( 0.0 ), 1.0, 4.0 ) );
} );
} );
return face;
} ).setLayout( {
name: 'getFace',
type: 'float',
inputs: [
{ name: 'direction', type: 'vec3' }
]
} );
// RH coordinate system; PMREM face-indexing convention
const getUV = tslFn( ( [ direction, face ] ) => {
const uv = vec2().toVar();
If( face.equal( 0.0 ), () => {
uv.assign( vec2( direction.z, direction.y ).div( abs( direction.x ) ) ); // pos x
} ).elseif( face.equal( 1.0 ), () => {
uv.assign( vec2( direction.x.negate(), direction.z.negate() ).div( abs( direction.y ) ) ); // pos y
} ).elseif( face.equal( 2.0 ), () => {
uv.assign( vec2( direction.x.negate(), direction.y ).div( abs( direction.z ) ) ); // pos z
} ).elseif( face.equal( 3.0 ), () => {
uv.assign( vec2( direction.z.negate(), direction.y ).div( abs( direction.x ) ) ); // neg x
} ).elseif( face.equal( 4.0 ), () => {
uv.assign( vec2( direction.x.negate(), direction.z ).div( abs( direction.y ) ) ); // neg y
} ).else( () => {
uv.assign( vec2( direction.x, direction.y ).div( abs( direction.z ) ) ); // neg z
} );
return mul( 0.5, uv.add( 1.0 ) );
} ).setLayout( {
name: 'getUV',
type: 'vec2',
inputs: [
{ name: 'direction', type: 'vec3' },
{ name: 'face', type: 'float' }
]
} );
const roughnessToMip = tslFn( ( [ roughness ] ) => {
const mip = float( 0.0 ).toVar();
If( roughness.greaterThanEqual( cubeUV_r1 ), () => {
mip.assign( cubeUV_r0.sub( roughness ).mul( cubeUV_m1.sub( cubeUV_m0 ) ).div( cubeUV_r0.sub( cubeUV_r1 ) ).add( cubeUV_m0 ) );
} ).elseif( roughness.greaterThanEqual( cubeUV_r4 ), () => {
mip.assign( cubeUV_r1.sub( roughness ).mul( cubeUV_m4.sub( cubeUV_m1 ) ).div( cubeUV_r1.sub( cubeUV_r4 ) ).add( cubeUV_m1 ) );
} ).elseif( roughness.greaterThanEqual( cubeUV_r5 ), () => {
mip.assign( cubeUV_r4.sub( roughness ).mul( cubeUV_m5.sub( cubeUV_m4 ) ).div( cubeUV_r4.sub( cubeUV_r5 ) ).add( cubeUV_m4 ) );
} ).elseif( roughness.greaterThanEqual( cubeUV_r6 ), () => {
mip.assign( cubeUV_r5.sub( roughness ).mul( cubeUV_m6.sub( cubeUV_m5 ) ).div( cubeUV_r5.sub( cubeUV_r6 ) ).add( cubeUV_m5 ) );
} ).else( () => {
mip.assign( float( - 2.0 ).mul( log2( mul( 1.16, roughness ) ) ) ); // 1.16 = 1.79^0.25
} );
return mip;
} ).setLayout( {
name: 'roughnessToMip',
type: 'float',
inputs: [
{ name: 'roughness', type: 'float' }
]
} );
// RH coordinate system; PMREM face-indexing convention
const getDirection = tslFn( ( [ uv_immutable, face ] ) => {
const uv = uv_immutable.toVar();
uv.assign( mul( 2.0, uv ).sub( 1.0 ) );
const direction = vec3( uv, 1.0 ).toVar();
If( face.equal( 0.0 ), () => {
direction.assign( direction.zyx ); // ( 1, v, u ) pos x
} ).elseif( face.equal( 1.0 ), () => {
direction.assign( direction.xzy );
direction.xz.mulAssign( - 1.0 ); // ( -u, 1, -v ) pos y
} ).elseif( face.equal( 2.0 ), () => {
direction.x.mulAssign( - 1.0 ); // ( -u, v, 1 ) pos z
} ).elseif( face.equal( 3.0 ), () => {
direction.assign( direction.zyx );
direction.xz.mulAssign( - 1.0 ); // ( -1, v, -u ) neg x
} ).elseif( face.equal( 4.0 ), () => {
direction.assign( direction.xzy );
direction.xy.mulAssign( - 1.0 ); // ( -u, -1, v ) neg y
} ).elseif( face.equal( 5.0 ), () => {
direction.z.mulAssign( - 1.0 ); // ( u, v, -1 ) neg zS
} );
return direction;
} ).setLayout( {
name: 'getDirection',
type: 'vec3',
inputs: [
{ name: 'uv', type: 'vec2' },
{ name: 'face', type: 'float' }
]
} );
//
const textureCubeUV = tslFn( ( [ envMap, sampleDir_immutable, roughness_immutable, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ] ) => {
const roughness = float( roughness_immutable );
const sampleDir = vec3( sampleDir_immutable );
const mip = clamp( roughnessToMip( roughness ), cubeUV_m0, CUBEUV_MAX_MIP );
const mipF = fract( mip );
const mipInt = floor( mip );
const color0 = vec3( bilinearCubeUV( envMap, sampleDir, mipInt, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ) ).toVar();
If( mipF.notEqual( 0.0 ), () => {
const color1 = vec3( bilinearCubeUV( envMap, sampleDir, mipInt.add( 1.0 ), CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ) ).toVar();
color0.assign( mix( color0, color1, mipF ) );
} );
return color0;
} );
const bilinearCubeUV = tslFn( ( [ envMap, direction_immutable, mipInt_immutable, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ] ) => {
const mipInt = float( mipInt_immutable ).toVar();
const direction = vec3( direction_immutable );
const face = float( getFace( direction ) ).toVar();
const filterInt = float( max$1( cubeUV_minMipLevel.sub( mipInt ), 0.0 ) ).toVar();
mipInt.assign( max$1( mipInt, cubeUV_minMipLevel ) );
const faceSize = float( exp2( mipInt ) ).toVar();
const uv = vec2( getUV( direction, face ).mul( faceSize.sub( 2.0 ) ).add( 1.0 ) ).toVar();
If( face.greaterThan( 2.0 ), () => {
uv.y.addAssign( faceSize );
face.subAssign( 3.0 );
} );
uv.x.addAssign( face.mul( faceSize ) );
uv.x.addAssign( filterInt.mul( mul( 3.0, cubeUV_minTileSize ) ) );
uv.y.addAssign( mul( 4.0, exp2( CUBEUV_MAX_MIP ).sub( faceSize ) ) );
uv.x.mulAssign( CUBEUV_TEXEL_WIDTH );
uv.y.mulAssign( CUBEUV_TEXEL_HEIGHT );
return envMap.uv( uv ).grad( vec2(), vec2() ); // disable anisotropic filtering
} );
const getSample = tslFn( ( { envMap, mipInt, outputDirection, theta, axis, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) => {
const cosTheta = cos( theta );
// Rodrigues' axis-angle rotation
const sampleDirection = outputDirection.mul( cosTheta )
.add( axis.cross( outputDirection ).mul( sin( theta ) ) )
.add( axis.mul( axis.dot( outputDirection ).mul( cosTheta.oneMinus() ) ) );
return bilinearCubeUV( envMap, sampleDirection, mipInt, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP );
} );
const blur = tslFn( ( { n, latitudinal, poleAxis, outputDirection, weights, samples, dTheta, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) => {
const axis = vec3( cond( latitudinal, poleAxis, cross( poleAxis, outputDirection ) ) ).toVar();
If( all( axis.equals( vec3( 0.0 ) ) ), () => {
axis.assign( vec3( outputDirection.z, 0.0, outputDirection.x.negate() ) );
} );
axis.assign( normalize( axis ) );
const gl_FragColor = vec3().toVar();
gl_FragColor.addAssign( weights.element( int( 0 ) ).mul( getSample( { theta: 0.0, axis, outputDirection, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) ) );
loop( { start: int( 1 ), end: n }, ( { i } ) => {
If( i.greaterThanEqual( samples ), () => {
Break();
} );
const theta = float( dTheta.mul( float( i ) ) ).toVar();
gl_FragColor.addAssign( weights.element( i ).mul( getSample( { theta: theta.mul( - 1.0 ), axis, outputDirection, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) ) );
gl_FragColor.addAssign( weights.element( i ).mul( getSample( { theta, axis, outputDirection, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) ) );
} );
return vec4( gl_FragColor, 1 );
} );
const LOD_MIN = 4;
// The standard deviations (radians) associated with the extra mips. These are
// chosen to approximate a Trowbridge-Reitz distribution function times the
// geometric shadowing function. These sigma values squared must match the
// variance #defines in cube_uv_reflection_fragment.glsl.js.
const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
// The maximum length of the blur for loop. Smaller sigmas will use fewer
// samples and exit early, but not recompile the shader.
const MAX_SAMPLES = 20;
const _flatCamera = /*@__PURE__*/ new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );
const _cubeCamera = /*@__PURE__*/ new PerspectiveCamera( 90, 1 );
const _clearColor$2 = /*@__PURE__*/ new Color();
let _oldTarget = null;
let _oldActiveCubeFace = 0;
let _oldActiveMipmapLevel = 0;
// Golden Ratio
const PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
const INV_PHI = 1 / PHI;
// Vertices of a dodecahedron (except the opposites, which represent the
// same axis), used as axis directions evenly spread on a sphere.
const _axisDirections = [
/*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ),
/*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ),
/*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ),
/*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ),
/*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ),
/*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ),
/*@__PURE__*/ new Vector3( - 1, 1, - 1 ),
/*@__PURE__*/ new Vector3( 1, 1, - 1 ),
/*@__PURE__*/ new Vector3( - 1, 1, 1 ),
/*@__PURE__*/ new Vector3( 1, 1, 1 )
];
//
// WebGPU Face indices
const _faceLib = [
3, 1, 5,
0, 4, 2
];
const direction = getDirection( uv(), attribute( 'faceIndex' ) ).normalize();
const outputDirection = vec3( direction.x, direction.y.negate(), direction.z );
/**
* This class generates a Prefiltered, Mipmapped Radiance Environment Map
* (PMREM) from a cubeMap environment texture. This allows different levels of
* blur to be quickly accessed based on material roughness. It is packed into a
* special CubeUV format that allows us to perform custom interpolation so that
* we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
* chain, it only goes down to the LOD_MIN level (above), and then creates extra
* even more filtered 'mips' at the same LOD_MIN resolution, associated with
* higher roughness levels. In this way we maintain resolution to smoothly
* interpolate diffuse lighting while limiting sampling computation.
*
* Paper: Fast, Accurate Image-Based Lighting
* https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
*/
class PMREMGenerator {
constructor( renderer ) {
this._renderer = renderer;
this._pingPongRenderTarget = null;
this._lodMax = 0;
this._cubeSize = 0;
this._lodPlanes = [];
this._sizeLods = [];
this._sigmas = [];
this._lodMeshes = [];
this._blurMaterial = null;
this._cubemapMaterial = null;
this._equirectMaterial = null;
this._backgroundBox = null;
}
/**
* Generates a PMREM from a supplied Scene, which can be faster than using an
* image if networking bandwidth is low. Optional sigma specifies a blur radius
* in radians to be applied to the scene before PMREM generation. Optional near
* and far planes ensure the scene is rendered in its entirety (the cubeCamera
* is placed at the origin).
*/
fromScene( scene, sigma = 0, near = 0.1, far = 100 ) {
_oldTarget = this._renderer.getRenderTarget();
_oldActiveCubeFace = this._renderer.getActiveCubeFace();
_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
this._setSize( 256 );
const cubeUVRenderTarget = this._allocateTargets();
cubeUVRenderTarget.depthBuffer = true;
this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
if ( sigma > 0 ) {
this._blur( cubeUVRenderTarget, 0, 0, sigma );
}
this._applyPMREM( cubeUVRenderTarget );
this._cleanup( cubeUVRenderTarget );
return cubeUVRenderTarget;
}
/**
* Generates a PMREM from an equirectangular texture, which can be either LDR
* or HDR. The ideal input image size is 1k (1024 x 512),
* as this matches best with the 256 x 256 cubemap output.
*/
fromEquirectangular( equirectangular, renderTarget = null ) {
return this._fromTexture( equirectangular, renderTarget );
}
/**
* Generates a PMREM from an cubemap texture, which can be either LDR
* or HDR. The ideal input cube size is 256 x 256,
* as this matches best with the 256 x 256 cubemap output.
*/
fromCubemap( cubemap, renderTarget = null ) {
return this._fromTexture( cubemap, renderTarget );
}
/**
* Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
compileCubemapShader() {
if ( this._cubemapMaterial === null ) {
this._cubemapMaterial = _getCubemapMaterial();
this._compileMaterial( this._cubemapMaterial );
}
}
/**
* Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
compileEquirectangularShader() {
if ( this._equirectMaterial === null ) {
this._equirectMaterial = _getEquirectMaterial();
this._compileMaterial( this._equirectMaterial );
}
}
/**
* Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
* so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
* one of them will cause any others to also become unusable.
*/
dispose() {
this._dispose();
if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose();
if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose();
if ( this._backgroundBox !== null ) {
this._backgroundBox.geometry.dispose();
this._backgroundBox.material.dispose();
}
}
// private interface
_setSize( cubeSize ) {
this._lodMax = Math.floor( Math.log2( cubeSize ) );
this._cubeSize = Math.pow( 2, this._lodMax );
}
_dispose() {
if ( this._blurMaterial !== null ) this._blurMaterial.dispose();
if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose();
for ( let i = 0; i < this._lodPlanes.length; i ++ ) {
this._lodPlanes[ i ].dispose();
}
}
_cleanup( outputTarget ) {
this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel );
outputTarget.scissorTest = false;
_setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height );
}
_fromTexture( texture, renderTarget ) {
if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) {
this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) );
} else { // Equirectangular
this._setSize( texture.image.width / 4 );
}
_oldTarget = this._renderer.getRenderTarget();
_oldActiveCubeFace = this._renderer.getActiveCubeFace();
_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
const cubeUVRenderTarget = renderTarget || this._allocateTargets();
this._textureToCubeUV( texture, cubeUVRenderTarget );
this._applyPMREM( cubeUVRenderTarget );
this._cleanup( cubeUVRenderTarget );
return cubeUVRenderTarget;
}
_allocateTargets() {
const width = 3 * Math.max( this._cubeSize, 16 * 7 );
const height = 4 * this._cubeSize;
const params = {
magFilter: LinearFilter,
minFilter: LinearFilter,
generateMipmaps: false,
type: HalfFloatType,
format: RGBAFormat,
colorSpace: LinearSRGBColorSpace,
//depthBuffer: false
};
const cubeUVRenderTarget = _createRenderTarget( width, height, params );
if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height ) {
if ( this._pingPongRenderTarget !== null ) {
this._dispose();
}
this._pingPongRenderTarget = _createRenderTarget( width, height, params );
const { _lodMax } = this;
( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas, lodMeshes: this._lodMeshes } = _createPlanes( _lodMax ) );
this._blurMaterial = _getBlurShader( _lodMax, width, height );
}
return cubeUVRenderTarget;
}
_compileMaterial( material ) {
const tmpMesh = this._lodMeshes[ 0 ];
tmpMesh.material = material;
this._renderer.compile( tmpMesh, _flatCamera );
}
_sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) {
const cubeCamera = _cubeCamera;
cubeCamera.near = near;
cubeCamera.far = far;
// px, py, pz, nx, ny, nz
const upSign = [ - 1, 1, - 1, - 1, - 1, - 1 ];
const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ];
const renderer = this._renderer;
const originalAutoClear = renderer.autoClear;
renderer.getClearColor( _clearColor$2 );
renderer.autoClear = false;
let backgroundBox = this._backgroundBox;
if ( backgroundBox === null ) {
const backgroundMaterial = new MeshBasicMaterial( {
name: 'PMREM.Background',
side: BackSide,
depthWrite: false,
depthTest: false
} );
backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial );
}
let useSolidColor = false;
const background = scene.background;
if ( background ) {
if ( background.isColor ) {
backgroundBox.material.color.copy( background );
scene.background = null;
useSolidColor = true;
}
} else {
backgroundBox.material.color.copy( _clearColor$2 );
useSolidColor = true;
}
renderer.setRenderTarget( cubeUVRenderTarget );
renderer.clear();
if ( useSolidColor ) {
renderer.render( backgroundBox, cubeCamera );
}
for ( let i = 0; i < 6; i ++ ) {
const col = i % 3;
if ( col === 0 ) {
cubeCamera.up.set( 0, upSign[ i ], 0 );
cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
} else if ( col === 1 ) {
cubeCamera.up.set( 0, 0, upSign[ i ] );
cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
} else {
cubeCamera.up.set( 0, upSign[ i ], 0 );
cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
}
const size = this._cubeSize;
_setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size );
renderer.render( scene, cubeCamera );
}
renderer.autoClear = originalAutoClear;
scene.background = background;
}
_textureToCubeUV( texture, cubeUVRenderTarget ) {
const renderer = this._renderer;
const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping );
if ( isCubeTexture ) {
if ( this._cubemapMaterial === null ) {
this._cubemapMaterial = _getCubemapMaterial( texture );
}
} else {
if ( this._equirectMaterial === null ) {
this._equirectMaterial = _getEquirectMaterial( texture );
}
}
const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial;
material.fragmentNode.value = texture;
const mesh = this._lodMeshes[ 0 ];
mesh.material = material;
const size = this._cubeSize;
_setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size );
renderer.setRenderTarget( cubeUVRenderTarget );
renderer.render( mesh, _flatCamera );
}
_applyPMREM( cubeUVRenderTarget ) {
const renderer = this._renderer;
const autoClear = renderer.autoClear;
renderer.autoClear = false;
const n = this._lodPlanes.length;
for ( let i = 1; i < n; i ++ ) {
const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] );
const poleAxis = _axisDirections[ ( n - i - 1 ) % _axisDirections.length ];
this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
}
renderer.autoClear = autoClear;
}
/**
* This is a two-pass Gaussian blur for a cubemap. Normally this is done
* vertically and horizontally, but this breaks down on a cube. Here we apply
* the blur latitudinally (around the poles), and then longitudinally (towards
* the poles) to approximate the orthogonally-separable blur. It is least
* accurate at the poles, but still does a decent job.
*/
_blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
const pingPongRenderTarget = this._pingPongRenderTarget;
this._halfBlur(
cubeUVRenderTarget,
pingPongRenderTarget,
lodIn,
lodOut,
sigma,
'latitudinal',
poleAxis );
this._halfBlur(
pingPongRenderTarget,
cubeUVRenderTarget,
lodOut,
lodOut,
sigma,
'longitudinal',
poleAxis );
}
_halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
const renderer = this._renderer;
const blurMaterial = this._blurMaterial;
if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
console.error( 'blur direction must be either latitudinal or longitudinal!' );
}
// Number of standard deviations at which to cut off the discrete approximation.
const STANDARD_DEVIATIONS = 3;
const blurMesh = this._lodMeshes[ lodOut ];
blurMesh.material = blurMaterial;
const blurUniforms = blurMaterial.uniforms;
const pixels = this._sizeLods[ lodIn ] - 1;
const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
const sigmaPixels = sigmaRadians / radiansPerPixel;
const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
if ( samples > MAX_SAMPLES ) {
console.warn( `sigmaRadians, ${
sigmaRadians}, is too large and will clip, as it requested ${
samples} samples when the maximum is set to ${MAX_SAMPLES}` );
}
const weights = [];
let sum = 0;
for ( let i = 0; i < MAX_SAMPLES; ++ i ) {
const x = i / sigmaPixels;
const weight = Math.exp( - x * x / 2 );
weights.push( weight );
if ( i === 0 ) {
sum += weight;
} else if ( i < samples ) {
sum += 2 * weight;
}
}
for ( let i = 0; i < weights.length; i ++ ) {
weights[ i ] = weights[ i ] / sum;
}
targetIn.texture.frame = ( targetIn.texture.frame || 0 ) + 1;
blurUniforms.envMap.value = targetIn.texture;
blurUniforms.samples.value = samples;
blurUniforms.weights.array = weights;
blurUniforms.latitudinal.value = direction === 'latitudinal' ? 1 : 0;
if ( poleAxis ) {
blurUniforms.poleAxis.value = poleAxis;
}
const { _lodMax } = this;
blurUniforms.dTheta.value = radiansPerPixel;
blurUniforms.mipInt.value = _lodMax - lodIn;
const outputSize = this._sizeLods[ lodOut ];
const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 );
const y = 4 * ( this._cubeSize - outputSize );
_setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize );
renderer.setRenderTarget( targetOut );
renderer.render( blurMesh, _flatCamera );
}
}
function _createPlanes( lodMax ) {
const lodPlanes = [];
const sizeLods = [];
const sigmas = [];
const lodMeshes = [];
let lod = lodMax;
const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
for ( let i = 0; i < totalLods; i ++ ) {
const sizeLod = Math.pow( 2, lod );
sizeLods.push( sizeLod );
let sigma = 1.0 / sizeLod;
if ( i > lodMax - LOD_MIN ) {
sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ];
} else if ( i === 0 ) {
sigma = 0;
}
sigmas.push( sigma );
const texelSize = 1.0 / ( sizeLod - 2 );
const min = - texelSize;
const max = 1 + texelSize;
const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
const cubeFaces = 6;
const vertices = 6;
const positionSize = 3;
const uvSize = 2;
const faceIndexSize = 1;
const position = new Float32Array( positionSize * vertices * cubeFaces );
const uv = new Float32Array( uvSize * vertices * cubeFaces );
const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
for ( let face = 0; face < cubeFaces; face ++ ) {
const x = ( face % 3 ) * 2 / 3 - 1;
const y = face > 2 ? 0 : - 1;
const coordinates = [
x, y, 0,
x + 2 / 3, y, 0,
x + 2 / 3, y + 1, 0,
x, y, 0,
x + 2 / 3, y + 1, 0,
x, y + 1, 0
];
const faceIdx = _faceLib[ face ];
position.set( coordinates, positionSize * vertices * faceIdx );
uv.set( uv1, uvSize * vertices * faceIdx );
const fill = [ faceIdx, faceIdx, faceIdx, faceIdx, faceIdx, faceIdx ];
faceIndex.set( fill, faceIndexSize * vertices * faceIdx );
}
const planes = new BufferGeometry();
planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
lodPlanes.push( planes );
lodMeshes.push( new Mesh( planes, null ) );
if ( lod > LOD_MIN ) {
lod --;
}
}
return { lodPlanes, sizeLods, sigmas, lodMeshes };
}
function _createRenderTarget( width, height, params ) {
const cubeUVRenderTarget = new RenderTarget( width, height, params );
cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
cubeUVRenderTarget.texture.isPMREMTexture = true;
cubeUVRenderTarget.scissorTest = true;
return cubeUVRenderTarget;
}
function _setViewport( target, x, y, width, height ) {
const viewY = target.height - height - y;
target.viewport.set( x, viewY, width, height );
target.scissor.set( x, viewY, width, height );
}
function _getMaterial() {
const material = new NodeMaterial();
material.depthTest = false;
material.depthWrite = false;
material.blending = NoBlending;
return material;
}
function _getBlurShader( lodMax, width, height ) {
const weights = uniforms( new Array( MAX_SAMPLES ).fill( 0 ) );
const poleAxis = uniform( new Vector3( 0, 1, 0 ) );
const dTheta = uniform( 0 );
const n = float( MAX_SAMPLES );
const latitudinal = uniform( 0 ); // false, bool
const samples = uniform( 1 ); // int
const envMap = texture( null );
const mipInt = uniform( 0 ); // int
const CUBEUV_TEXEL_WIDTH = float( 1 / width );
const CUBEUV_TEXEL_HEIGHT = float( 1 / height );
const CUBEUV_MAX_MIP = float( lodMax );
const materialUniforms = {
n,
latitudinal,
weights,
poleAxis,
outputDirection,
dTheta,
samples,
envMap,
mipInt,
CUBEUV_TEXEL_WIDTH,
CUBEUV_TEXEL_HEIGHT,
CUBEUV_MAX_MIP
};
const material = _getMaterial();
material.uniforms = materialUniforms; // TODO: Move to outside of the material
material.fragmentNode = blur( { ...materialUniforms, latitudinal: latitudinal.equal( 1 ) } );
return material;
}
function _getCubemapMaterial( envTexture ) {
const material = _getMaterial();
material.fragmentNode = cubeTexture( envTexture, outputDirection );
return material;
}
function _getEquirectMaterial( envTexture ) {
const material = _getMaterial();
material.fragmentNode = texture( envTexture, equirectUV( outputDirection ), 0 );
return material;
}
let _id$5 = 0;
class BindGroup {
constructor( name = '', bindings = [] ) {
this.name = name;
this.bindings = bindings;
this.id = _id$5 ++;
}
}
const rendererCache = new WeakMap();
const typeFromLength = new Map( [
[ 2, 'vec2' ],
[ 3, 'vec3' ],
[ 4, 'vec4' ],
[ 9, 'mat3' ],
[ 16, 'mat4' ]
] );
const typeFromArray = new Map( [
[ Int8Array, 'int' ],
[ Int16Array, 'int' ],
[ Int32Array, 'int' ],
[ Uint8Array, 'uint' ],
[ Uint16Array, 'uint' ],
[ Uint32Array, 'uint' ],
[ Float32Array, 'float' ]
] );
const toFloat = ( value ) => {
value = Number( value );
return value + ( value % 1 ? '' : '.0' );
};
class NodeBuilder {
constructor( object, renderer, parser ) {
this.object = object;
this.material = ( object && object.material ) || null;
this.geometry = ( object && object.geometry ) || null;
this.renderer = renderer;
this.parser = parser;
this.scene = null;
this.camera = null;
this.nodes = [];
this.updateNodes = [];
this.updateBeforeNodes = [];
this.updateAfterNodes = [];
this.hashNodes = {};
this.lightsNode = null;
this.environmentNode = null;
this.fogNode = null;
this.clippingContext = null;
this.vertexShader = null;
this.fragmentShader = null;
this.computeShader = null;
this.flowNodes = { vertex: [], fragment: [], compute: [] };
this.flowCode = { vertex: '', fragment: '', compute: '' };
this.uniforms = { vertex: [], fragment: [], compute: [], index: 0 };
this.structs = { vertex: [], fragment: [], compute: [], index: 0 };
this.bindings = { vertex: {}, fragment: {}, compute: {} };
this.bindingsIndexes = {};
this.bindGroups = null;
this.attributes = [];
this.bufferAttributes = [];
this.varyings = [];
this.codes = {};
this.vars = {};
this.flow = { code: '' };
this.chaining = [];
this.stack = stack();
this.stacks = [];
this.tab = '\t';
this.instanceBindGroups = true;
this.currentFunctionNode = null;
this.context = {
keywords: new NodeKeywords(),
material: this.material
};
this.cache = new NodeCache();
this.globalCache = this.cache;
this.flowsData = new WeakMap();
this.shaderStage = null;
this.buildStage = null;
}
getBingGroupsCache() {
let bindGroupsCache = rendererCache.get( this.renderer );
if ( bindGroupsCache === undefined ) {
bindGroupsCache = new ChainMap();
rendererCache.set( this.renderer, bindGroupsCache );
}
return bindGroupsCache;
}
createRenderTarget( width, height, options ) {
return new RenderTarget( width, height, options );
}
createCubeRenderTarget( size, options ) {
return new CubeRenderTarget( size, options );
}
createPMREMGenerator() {
// TODO: Move Materials.js to outside of the Nodes.js in order to remove this function and improve tree-shaking support
return new PMREMGenerator( this.renderer );
}
includes( node ) {
return this.nodes.includes( node );
}
_getBindGroup( groupName, bindings ) {
const bindGroupsCache = this.getBingGroupsCache();
//
const bindingsArray = [];
let sharedGroup = true;
for ( const binding of bindings ) {
bindingsArray.push( binding );
sharedGroup = sharedGroup && binding.groupNode.shared !== true;
}
//
let bindGroup;
if ( sharedGroup ) {
bindGroup = bindGroupsCache.get( bindingsArray );
if ( bindGroup === undefined ) {
bindGroup = new BindGroup( groupName, bindingsArray );
bindGroupsCache.set( bindingsArray, bindGroup );
}
} else {
bindGroup = new BindGroup( groupName, bindingsArray );
}
return bindGroup;
}
getBindGroupArray( groupName, shaderStage ) {
const bindings = this.bindings[ shaderStage ];
let bindGroup = bindings[ groupName ];
if ( bindGroup === undefined ) {
if ( this.bindingsIndexes[ groupName ] === undefined ) {
this.bindingsIndexes[ groupName ] = { binding: 0, group: Object.keys( this.bindingsIndexes ).length };
}
bindings[ groupName ] = bindGroup = [];
}
return bindGroup;
}
getBindings() {
let bindingsGroups = this.bindGroups;
if ( bindingsGroups === null ) {
const groups = {};
const bindings = this.bindings;
for ( const shaderStage of shaderStages ) {
for ( const groupName in bindings[ shaderStage ] ) {
const uniforms = bindings[ shaderStage ][ groupName ];
const groupUniforms = groups[ groupName ] || ( groups[ groupName ] = [] );
groupUniforms.push( ...uniforms );
}
}
bindingsGroups = [];
for ( const groupName in groups ) {
const group = groups[ groupName ];
const bindingsGroup = this._getBindGroup( groupName, group );
bindingsGroups.push( bindingsGroup );
}
this.bindGroups = bindingsGroups;
}
return bindingsGroups;
}
setHashNode( node, hash ) {
this.hashNodes[ hash ] = node;
}
addNode( node ) {
if ( this.nodes.includes( node ) === false ) {
this.nodes.push( node );
this.setHashNode( node, node.getHash( this ) );
}
}
buildUpdateNodes() {
for ( const node of this.nodes ) {
const updateType = node.getUpdateType();
const updateBeforeType = node.getUpdateBeforeType();
const updateAfterType = node.getUpdateAfterType();
if ( updateType !== NodeUpdateType.NONE ) {
this.updateNodes.push( node.getSelf() );
}
if ( updateBeforeType !== NodeUpdateType.NONE ) {
this.updateBeforeNodes.push( node );
}
if ( updateAfterType !== NodeUpdateType.NONE ) {
this.updateAfterNodes.push( node );
}
}
}
get currentNode() {
return this.chaining[ this.chaining.length - 1 ];
}
isFilteredTexture( texture ) {
return ( texture.magFilter === LinearFilter || texture.magFilter === LinearMipmapNearestFilter || texture.magFilter === NearestMipmapLinearFilter || texture.magFilter === LinearMipmapLinearFilter ||
texture.minFilter === LinearFilter || texture.minFilter === LinearMipmapNearestFilter || texture.minFilter === NearestMipmapLinearFilter || texture.minFilter === LinearMipmapLinearFilter );
}
addChain( node ) {
/*
if ( this.chaining.indexOf( node ) !== - 1 ) {
console.warn( 'Recursive node: ', node );
}
*/
this.chaining.push( node );
}
removeChain( node ) {
const lastChain = this.chaining.pop();
if ( lastChain !== node ) {
throw new Error( 'NodeBuilder: Invalid node chaining!' );
}
}
getMethod( method ) {
return method;
}
getNodeFromHash( hash ) {
return this.hashNodes[ hash ];
}
addFlow( shaderStage, node ) {
this.flowNodes[ shaderStage ].push( node );
return node;
}
setContext( context ) {
this.context = context;
}
getContext() {
return this.context;
}
getSharedContext() {
({ ...this.context });
return this.context;
}
setCache( cache ) {
this.cache = cache;
}
getCache() {
return this.cache;
}
getCacheFromNode( node, parent = true ) {
const data = this.getDataFromNode( node );
if ( data.cache === undefined ) data.cache = new NodeCache( parent ? this.getCache() : null );
return data.cache;
}
isAvailable( /*name*/ ) {
return false;
}
getVertexIndex() {
console.warn( 'Abstract function.' );
}
getInstanceIndex() {
console.warn( 'Abstract function.' );
}
getDrawIndex() {
console.warn( 'Abstract function.' );
}
getFrontFacing() {
console.warn( 'Abstract function.' );
}
getFragCoord() {
console.warn( 'Abstract function.' );
}
isFlipY() {
return false;
}
generateTexture( /* texture, textureProperty, uvSnippet */ ) {
console.warn( 'Abstract function.' );
}
generateTextureLod( /* texture, textureProperty, uvSnippet, levelSnippet */ ) {
console.warn( 'Abstract function.' );
}
generateConst( type, value = null ) {
if ( value === null ) {
if ( type === 'float' || type === 'int' || type === 'uint' ) value = 0;
else if ( type === 'bool' ) value = false;
else if ( type === 'color' ) value = new Color();
else if ( type === 'vec2' ) value = new Vector2();
else if ( type === 'vec3' ) value = new Vector3();
else if ( type === 'vec4' ) value = new Vector4();
}
if ( type === 'float' ) return toFloat( value );
if ( type === 'int' ) return `${ Math.round( value ) }`;
if ( type === 'uint' ) return value >= 0 ? `${ Math.round( value ) }u` : '0u';
if ( type === 'bool' ) return value ? 'true' : 'false';
if ( type === 'color' ) return `${ this.getType( 'vec3' ) }( ${ toFloat( value.r ) }, ${ toFloat( value.g ) }, ${ toFloat( value.b ) } )`;
const typeLength = this.getTypeLength( type );
const componentType = this.getComponentType( type );
const generateConst = value => this.generateConst( componentType, value );
if ( typeLength === 2 ) {
return `${ this.getType( type ) }( ${ generateConst( value.x ) }, ${ generateConst( value.y ) } )`;
} else if ( typeLength === 3 ) {
return `${ this.getType( type ) }( ${ generateConst( value.x ) }, ${ generateConst( value.y ) }, ${ generateConst( value.z ) } )`;
} else if ( typeLength === 4 ) {
return `${ this.getType( type ) }( ${ generateConst( value.x ) }, ${ generateConst( value.y ) }, ${ generateConst( value.z ) }, ${ generateConst( value.w ) } )`;
} else if ( typeLength > 4 && value && ( value.isMatrix3 || value.isMatrix4 ) ) {
return `${ this.getType( type ) }( ${ value.elements.map( generateConst ).join( ', ' ) } )`;
} else if ( typeLength > 4 ) {
return `${ this.getType( type ) }()`;
}
throw new Error( `NodeBuilder: Type '${type}' not found in generate constant attempt.` );
}
getType( type ) {
if ( type === 'color' ) return 'vec3';
return type;
}
hasGeometryAttribute( name ) {
return this.geometry && this.geometry.getAttribute( name ) !== undefined;
}
getAttribute( name, type ) {
const attributes = this.attributes;
// find attribute
for ( const attribute of attributes ) {
if ( attribute.name === name ) {
return attribute;
}
}
// create a new if no exist
const attribute = new NodeAttribute( name, type );
attributes.push( attribute );
return attribute;
}
getPropertyName( node/*, shaderStage*/ ) {
return node.name;
}
isVector( type ) {
return /vec\d/.test( type );
}
isMatrix( type ) {
return /mat\d/.test( type );
}
isReference( type ) {
return type === 'void' || type === 'property' || type === 'sampler' || type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'depthTexture' || type === 'texture3D';
}
needsColorSpaceToLinear( /*texture*/ ) {
return false;
}
getComponentTypeFromTexture( texture ) {
const type = texture.type;
if ( texture.isDataTexture ) {
if ( type === IntType ) return 'int';
if ( type === UnsignedIntType ) return 'uint';
}
return 'float';
}
getElementType( type ) {
if ( type === 'mat2' ) return 'vec2';
if ( type === 'mat3' ) return 'vec3';
if ( type === 'mat4' ) return 'vec4';
return this.getComponentType( type );
}
getComponentType( type ) {
type = this.getVectorType( type );
if ( type === 'float' || type === 'bool' || type === 'int' || type === 'uint' ) return type;
const componentType = /(b|i|u|)(vec|mat)([2-4])/.exec( type );
if ( componentType === null ) return null;
if ( componentType[ 1 ] === 'b' ) return 'bool';
if ( componentType[ 1 ] === 'i' ) return 'int';
if ( componentType[ 1 ] === 'u' ) return 'uint';
return 'float';
}
getVectorType( type ) {
if ( type === 'color' ) return 'vec3';
if ( type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'texture3D' ) return 'vec4';
return type;
}
getTypeFromLength( length, componentType = 'float' ) {
if ( length === 1 ) return componentType;
const baseType = typeFromLength.get( length );
const prefix = componentType === 'float' ? '' : componentType[ 0 ];
return prefix + baseType;
}
getTypeFromArray( array ) {
return typeFromArray.get( array.constructor );
}
getTypeFromAttribute( attribute ) {
let dataAttribute = attribute;
if ( attribute.isInterleavedBufferAttribute ) dataAttribute = attribute.data;
const array = dataAttribute.array;
const itemSize = attribute.itemSize;
const normalized = attribute.normalized;
let arrayType;
if ( ! ( attribute instanceof Float16BufferAttribute ) && normalized !== true ) {
arrayType = this.getTypeFromArray( array );
}
return this.getTypeFromLength( itemSize, arrayType );
}
getTypeLength( type ) {
const vecType = this.getVectorType( type );
const vecNum = /vec([2-4])/.exec( vecType );
if ( vecNum !== null ) return Number( vecNum[ 1 ] );
if ( vecType === 'float' || vecType === 'bool' || vecType === 'int' || vecType === 'uint' ) return 1;
if ( /mat2/.test( type ) === true ) return 4;
if ( /mat3/.test( type ) === true ) return 9;
if ( /mat4/.test( type ) === true ) return 16;
return 0;
}
getVectorFromMatrix( type ) {
return type.replace( 'mat', 'vec' );
}
changeComponentType( type, newComponentType ) {
return this.getTypeFromLength( this.getTypeLength( type ), newComponentType );
}
getIntegerType( type ) {
const componentType = this.getComponentType( type );
if ( componentType === 'int' || componentType === 'uint' ) return type;
return this.changeComponentType( type, 'int' );
}
addStack() {
this.stack = stack( this.stack );
this.stacks.push( getCurrentStack() || this.stack );
setCurrentStack( this.stack );
return this.stack;
}
removeStack() {
const lastStack = this.stack;
this.stack = lastStack.parent;
setCurrentStack( this.stacks.pop() );
return lastStack;
}
getDataFromNode( node, shaderStage = this.shaderStage, cache = null ) {
cache = cache === null ? ( node.isGlobal( this ) ? this.globalCache : this.cache ) : cache;
let nodeData = cache.getData( node );
if ( nodeData === undefined ) {
nodeData = {};
cache.setData( node, nodeData );
}
if ( nodeData[ shaderStage ] === undefined ) nodeData[ shaderStage ] = {};
return nodeData[ shaderStage ];
}
getNodeProperties( node, shaderStage = 'any' ) {
const nodeData = this.getDataFromNode( node, shaderStage );
return nodeData.properties || ( nodeData.properties = { outputNode: null } );
}
getBufferAttributeFromNode( node, type ) {
const nodeData = this.getDataFromNode( node );
let bufferAttribute = nodeData.bufferAttribute;
if ( bufferAttribute === undefined ) {
const index = this.uniforms.index ++;
bufferAttribute = new NodeAttribute( 'nodeAttribute' + index, type, node );
this.bufferAttributes.push( bufferAttribute );
nodeData.bufferAttribute = bufferAttribute;
}
return bufferAttribute;
}
getStructTypeFromNode( node, shaderStage = this.shaderStage ) {
const nodeData = this.getDataFromNode( node, shaderStage );
if ( nodeData.structType === undefined ) {
const index = this.structs.index ++;
node.name = `StructType${ index }`;
this.structs[ shaderStage ].push( node );
nodeData.structType = node;
}
return node;
}
getUniformFromNode( node, type, shaderStage = this.shaderStage, name = null ) {
const nodeData = this.getDataFromNode( node, shaderStage, this.globalCache );
let nodeUniform = nodeData.uniform;
if ( nodeUniform === undefined ) {
const index = this.uniforms.index ++;
nodeUniform = new NodeUniform( name || ( 'nodeUniform' + index ), type, node );
this.uniforms[ shaderStage ].push( nodeUniform );
nodeData.uniform = nodeUniform;
}
return nodeUniform;
}
getVarFromNode( node, name = null, type = node.getNodeType( this ), shaderStage = this.shaderStage ) {
const nodeData = this.getDataFromNode( node, shaderStage );
let nodeVar = nodeData.variable;
if ( nodeVar === undefined ) {
const vars = this.vars[ shaderStage ] || ( this.vars[ shaderStage ] = [] );
if ( name === null ) name = 'nodeVar' + vars.length;
nodeVar = new NodeVar( name, type );
vars.push( nodeVar );
nodeData.variable = nodeVar;
}
return nodeVar;
}
getVaryingFromNode( node, name = null, type = node.getNodeType( this ) ) {
const nodeData = this.getDataFromNode( node, 'any' );
let nodeVarying = nodeData.varying;
if ( nodeVarying === undefined ) {
const varyings = this.varyings;
const index = varyings.length;
if ( name === null ) name = 'nodeVarying' + index;
nodeVarying = new NodeVarying( name, type );
varyings.push( nodeVarying );
nodeData.varying = nodeVarying;
}
return nodeVarying;
}
getCodeFromNode( node, type, shaderStage = this.shaderStage ) {
const nodeData = this.getDataFromNode( node );
let nodeCode = nodeData.code;
if ( nodeCode === undefined ) {
const codes = this.codes[ shaderStage ] || ( this.codes[ shaderStage ] = [] );
const index = codes.length;
nodeCode = new NodeCode( 'nodeCode' + index, type );
codes.push( nodeCode );
nodeData.code = nodeCode;
}
return nodeCode;
}
addLineFlowCode( code ) {
if ( code === '' ) return this;
code = this.tab + code;
if ( ! /;\s*$/.test( code ) ) {
code = code + ';\n';
}
this.flow.code += code;
return this;
}
addFlowCode( code ) {
this.flow.code += code;
return this;
}
addFlowTab() {
this.tab += '\t';
return this;
}
removeFlowTab() {
this.tab = this.tab.slice( 0, - 1 );
return this;
}
getFlowData( node/*, shaderStage*/ ) {
return this.flowsData.get( node );
}
flowNode( node ) {
const output = node.getNodeType( this );
const flowData = this.flowChildNode( node, output );
this.flowsData.set( node, flowData );
return flowData;
}
buildFunctionNode( shaderNode ) {
const fn = new FunctionNode();
const previous = this.currentFunctionNode;
this.currentFunctionNode = fn;
fn.code = this.buildFunctionCode( shaderNode );
this.currentFunctionNode = previous;
return fn;
}
flowShaderNode( shaderNode ) {
const layout = shaderNode.layout;
let inputs;
if ( shaderNode.isArrayInput ) {
inputs = [];
for ( const input of layout.inputs ) {
inputs.push( new ParameterNode( input.type, input.name ) );
}
} else {
inputs = {};
for ( const input of layout.inputs ) {
inputs[ input.name ] = new ParameterNode( input.type, input.name );
}
}
//
shaderNode.layout = null;
const callNode = shaderNode.call( inputs );
const flowData = this.flowStagesNode( callNode, layout.type );
shaderNode.layout = layout;
return flowData;
}
flowStagesNode( node, output = null ) {
const previousFlow = this.flow;
const previousVars = this.vars;
const previousCache = this.cache;
const previousBuildStage = this.buildStage;
const previousStack = this.stack;
const flow = {
code: ''
};
this.flow = flow;
this.vars = {};
this.cache = new NodeCache();
this.stack = stack();
for ( const buildStage of defaultBuildStages ) {
this.setBuildStage( buildStage );
flow.result = node.build( this, output );
}
flow.vars = this.getVars( this.shaderStage );
this.flow = previousFlow;
this.vars = previousVars;
this.cache = previousCache;
this.stack = previousStack;
this.setBuildStage( previousBuildStage );
return flow;
}
getFunctionOperator() {
return null;
}
flowChildNode( node, output = null ) {
const previousFlow = this.flow;
const flow = {
code: ''
};
this.flow = flow;
flow.result = node.build( this, output );
this.flow = previousFlow;
return flow;
}
flowNodeFromShaderStage( shaderStage, node, output = null, propertyName = null ) {
const previousShaderStage = this.shaderStage;
this.setShaderStage( shaderStage );
const flowData = this.flowChildNode( node, output );
if ( propertyName !== null ) {
flowData.code += `${ this.tab + propertyName } = ${ flowData.result };\n`;
}
this.flowCode[ shaderStage ] = this.flowCode[ shaderStage ] + flowData.code;
this.setShaderStage( previousShaderStage );
return flowData;
}
getAttributesArray() {
return this.attributes.concat( this.bufferAttributes );
}
getAttributes( /*shaderStage*/ ) {
console.warn( 'Abstract function.' );
}
getVaryings( /*shaderStage*/ ) {
console.warn( 'Abstract function.' );
}
getVar( type, name ) {
return `${ this.getType( type ) } ${ name }`;
}
getVars( shaderStage ) {
let snippet = '';
const vars = this.vars[ shaderStage ];
if ( vars !== undefined ) {
for ( const variable of vars ) {
snippet += `${ this.getVar( variable.type, variable.name ) }; `;
}
}
return snippet;
}
getUniforms( /*shaderStage*/ ) {
console.warn( 'Abstract function.' );
}
getCodes( shaderStage ) {
const codes = this.codes[ shaderStage ];
let code = '';
if ( codes !== undefined ) {
for ( const nodeCode of codes ) {
code += nodeCode.code + '\n';
}
}
return code;
}
getHash() {
return this.vertexShader + this.fragmentShader + this.computeShader;
}
setShaderStage( shaderStage ) {
this.shaderStage = shaderStage;
}
getShaderStage() {
return this.shaderStage;
}
setBuildStage( buildStage ) {
this.buildStage = buildStage;
}
getBuildStage() {
return this.buildStage;
}
buildCode() {
console.warn( 'Abstract function.' );
}
build() {
const { object, material } = this;
if ( material !== null ) {
NodeMaterial.fromMaterial( material ).build( this );
} else {
this.addFlow( 'compute', object );
}
// setup() -> stage 1: create possible new nodes and returns an output reference node
// analyze() -> stage 2: analyze nodes to possible optimization and validation
// generate() -> stage 3: generate shader
for ( const buildStage of defaultBuildStages ) {
this.setBuildStage( buildStage );
if ( this.context.vertex && this.context.vertex.isNode ) {
this.flowNodeFromShaderStage( 'vertex', this.context.vertex );
}
for ( const shaderStage of shaderStages ) {
this.setShaderStage( shaderStage );
const flowNodes = this.flowNodes[ shaderStage ];
for ( const node of flowNodes ) {
if ( buildStage === 'generate' ) {
this.flowNode( node );
} else {
node.build( this );
}
}
}
}
this.setBuildStage( null );
this.setShaderStage( null );
// stage 4: build code for a specific output
this.buildCode();
this.buildUpdateNodes();
return this;
}
getNodeUniform( uniformNode, type ) {
if ( type === 'float' || type === 'int' || type === 'uint' ) return new NumberNodeUniform( uniformNode );
if ( type === 'vec2' || type === 'ivec2' || type === 'uvec2' ) return new Vector2NodeUniform( uniformNode );
if ( type === 'vec3' || type === 'ivec3' || type === 'uvec3' ) return new Vector3NodeUniform( uniformNode );
if ( type === 'vec4' || type === 'ivec4' || type === 'uvec4' ) return new Vector4NodeUniform( uniformNode );
if ( type === 'color' ) return new ColorNodeUniform( uniformNode );
if ( type === 'mat3' ) return new Matrix3NodeUniform( uniformNode );
if ( type === 'mat4' ) return new Matrix4NodeUniform( uniformNode );
throw new Error( `Uniform "${type}" not declared.` );
}
createNodeMaterial( type = 'NodeMaterial' ) {
// TODO: Move Materials.js to outside of the Nodes.js in order to remove this function and improve tree-shaking support
return createNodeMaterialFromType( type );
}
format( snippet, fromType, toType ) {
fromType = this.getVectorType( fromType );
toType = this.getVectorType( toType );
if ( fromType === toType || toType === null || this.isReference( toType ) ) {
return snippet;
}
const fromTypeLength = this.getTypeLength( fromType );
const toTypeLength = this.getTypeLength( toType );
if ( fromTypeLength === 16 && toTypeLength === 9 ) {
return `${ this.getType( toType ) }(${ snippet }[0].xyz, ${ snippet }[1].xyz, ${ snippet }[2].xyz)`;
}
if ( fromTypeLength === 9 && toTypeLength === 4 ) {
return `${ this.getType( toType ) }(${ snippet }[0].xy, ${ snippet }[1].xy)`;
}
if ( fromTypeLength > 4 ) { // fromType is matrix-like
// @TODO: ignore for now
return snippet;
}
if ( toTypeLength > 4 || toTypeLength === 0 ) { // toType is matrix-like or unknown
// @TODO: ignore for now
return snippet;
}
if ( fromTypeLength === toTypeLength ) {
return `${ this.getType( toType ) }( ${ snippet } )`;
}
if ( fromTypeLength > toTypeLength ) {
return this.format( `${ snippet }.${ 'xyz'.slice( 0, toTypeLength ) }`, this.getTypeFromLength( toTypeLength, this.getComponentType( fromType ) ), toType );
}
if ( toTypeLength === 4 && fromTypeLength > 1 ) { // toType is vec4-like
return `${ this.getType( toType ) }( ${ this.format( snippet, fromType, 'vec3' ) }, 1.0 )`;
}
if ( fromTypeLength === 2 ) { // fromType is vec2-like and toType is vec3-like
return `${ this.getType( toType ) }( ${ this.format( snippet, fromType, 'vec2' ) }, 0.0 )`;
}
if ( fromTypeLength === 1 && toTypeLength > 1 && fromType !== this.getComponentType( toType ) ) { // fromType is float-like
// convert a number value to vector type, e.g:
// vec3( 1u ) -> vec3( float( 1u ) )
snippet = `${ this.getType( this.getComponentType( toType ) ) }( ${ snippet } )`;
}
return `${ this.getType( toType ) }( ${ snippet } )`; // fromType is float-like
}
getSignature() {
return `// Three.js r${ REVISION } - Node System\n`;
}
}
class NodeFrame {
constructor() {
this.time = 0;
this.deltaTime = 0;
this.frameId = 0;
this.renderId = 0;
this.startTime = null;
this.updateMap = new WeakMap();
this.updateBeforeMap = new WeakMap();
this.updateAfterMap = new WeakMap();
this.renderer = null;
this.material = null;
this.camera = null;
this.object = null;
this.scene = null;
}
_getMaps( referenceMap, nodeRef ) {
let maps = referenceMap.get( nodeRef );
if ( maps === undefined ) {
maps = {
renderMap: new WeakMap(),
frameMap: new WeakMap()
};
referenceMap.set( nodeRef, maps );
}
return maps;
}
updateBeforeNode( node ) {
const updateType = node.getUpdateBeforeType();
const reference = node.updateReference( this );
if ( updateType === NodeUpdateType.FRAME ) {
const { frameMap } = this._getMaps( this.updateBeforeMap, reference );
if ( frameMap.get( reference ) !== this.frameId ) {
if ( node.updateBefore( this ) !== false ) {
frameMap.set( reference, this.frameId );
}
}
} else if ( updateType === NodeUpdateType.RENDER ) {
const { renderMap } = this._getMaps( this.updateBeforeMap, reference );
if ( renderMap.get( reference ) !== this.renderId ) {
if ( node.updateBefore( this ) !== false ) {
renderMap.set( reference, this.renderId );
}
}
} else if ( updateType === NodeUpdateType.OBJECT ) {
node.updateBefore( this );
}
}
updateAfterNode( node ) {
const updateType = node.getUpdateAfterType();
const reference = node.updateReference( this );
if ( updateType === NodeUpdateType.FRAME ) {
const { frameMap } = this._getMaps( this.updateAfterMap, reference );
if ( frameMap.get( reference ) !== this.frameId ) {
if ( node.updateAfter( this ) !== false ) {
frameMap.set( reference, this.frameId );
}
}
} else if ( updateType === NodeUpdateType.RENDER ) {
const { renderMap } = this._getMaps( this.updateAfterMap, reference );
if ( renderMap.get( reference ) !== this.renderId ) {
if ( node.updateAfter( this ) !== false ) {
renderMap.set( reference, this.renderId );
}
}
} else if ( updateType === NodeUpdateType.OBJECT ) {
node.updateAfter( this );
}
}
updateNode( node ) {
const updateType = node.getUpdateType();
const reference = node.updateReference( this );
if ( updateType === NodeUpdateType.FRAME ) {
const { frameMap } = this._getMaps( this.updateMap, reference );
if ( frameMap.get( reference ) !== this.frameId ) {
if ( node.update( this ) !== false ) {
frameMap.set( reference, this.frameId );
}
}
} else if ( updateType === NodeUpdateType.RENDER ) {
const { renderMap } = this._getMaps( this.updateMap, reference );
if ( renderMap.get( reference ) !== this.renderId ) {
if ( node.update( this ) !== false ) {
renderMap.set( reference, this.renderId );
}
}
} else if ( updateType === NodeUpdateType.OBJECT ) {
node.update( this );
}
}
update() {
this.frameId ++;
if ( this.lastTime === undefined ) this.lastTime = performance.now();
this.deltaTime = ( performance.now() - this.lastTime ) / 1000;
this.lastTime = performance.now();
this.time += this.deltaTime;
}
}
class NodeFunctionInput {
constructor( type, name, count = null, qualifier = '', isConst = false ) {
this.type = type;
this.name = name;
this.count = count;
this.qualifier = qualifier;
this.isConst = isConst;
}
}
NodeFunctionInput.isNodeFunctionInput = true;
class StructTypeNode extends Node {
constructor( types ) {
super();
this.types = types;
this.isStructTypeNode = true;
}
getMemberTypes() {
return this.types;
}
}
addNodeClass( 'StructTypeNode', StructTypeNode );
class OutputStructNode extends Node {
constructor( ...members ) {
super();
this.members = members;
this.isOutputStructNode = true;
}
setup( builder ) {
super.setup( builder );
const members = this.members;
const types = [];
for ( let i = 0; i < members.length; i ++ ) {
types.push( members[ i ].getNodeType( builder ) );
}
this.nodeType = builder.getStructTypeFromNode( new StructTypeNode( types ) ).name;
}
generate( builder, output ) {
const propertyName = builder.getOutputStructName();
const members = this.members;
const structPrefix = propertyName !== '' ? propertyName + '.' : '';
for ( let i = 0; i < members.length; i ++ ) {
const snippet = members[ i ].build( builder, output );
builder.addLineFlowCode( `${ structPrefix }m${ i } = ${ snippet }` );
}
return propertyName;
}
}
const outputStruct = nodeProxy( OutputStructNode );
addNodeClass( 'OutputStructNode', OutputStructNode );
function getTextureIndex( textures, name ) {
for ( let i = 0; i < textures.length; i ++ ) {
if ( textures[ i ].name === name ) {
return i;
}
}
return - 1;
}
class MRTNode extends OutputStructNode {
constructor( outputNodes ) {
super();
this.outputNodes = outputNodes;
this.isMRTNode = true;
}
getNode( name ) {
return this.outputNodes[ name ];
}
merge( mrtNode ) {
const outputs = { ...this.outputNodes, ...mrtNode.outputNodes };
return mrt( outputs );
}
setup( builder ) {
const outputNodes = this.outputNodes;
const mrt = builder.renderer.getRenderTarget();
const members = [];
const textures = mrt.textures;
for ( const name in outputNodes ) {
const index = getTextureIndex( textures, name );
members[ index ] = vec4( outputNodes[ name ] );
}
this.members = members;
return super.setup( builder );
}
}
const mrt = nodeProxy( MRTNode );
addNodeClass( 'MRTNode', MRTNode );
class HashNode extends Node {
constructor( seedNode ) {
super();
this.seedNode = seedNode;
}
setup( /*builder*/ ) {
// Taken from https://www.shadertoy.com/view/XlGcRh, originally from pcg-random.org
const state = this.seedNode.toUint().mul( 747796405 ).add( 2891336453 );
const word = state.shiftRight( state.shiftRight( 28 ).add( 4 ) ).bitXor( state ).mul( 277803737 );
const result = word.shiftRight( 22 ).bitXor( word );
return result.toFloat().mul( 1 / 2 ** 32 ); // Convert to range [0, 1)
}
}
const hash = nodeProxy( HashNode );
addNodeElement( 'hash', hash );
addNodeClass( 'HashNode', HashNode );
// remapping functions https://iquilezles.org/articles/functions/
const parabola = ( x, k ) => pow( mul( 4.0, x.mul( sub( 1.0, x ) ) ), k );
const gain = ( x, k ) => x.lessThan( 0.5 ) ? parabola( x.mul( 2.0 ), k ).div( 2.0 ) : sub( 1.0, parabola( mul( sub( 1.0, x ), 2.0 ), k ).div( 2.0 ) );
const pcurve = ( x, a, b ) => pow( div( pow( x, a ), add( pow( x, a ), pow( sub( 1.0, x ), b ) ) ), 1.0 / a );
const sinc = ( x, k ) => sin( PI.mul( k.mul( x ).sub( 1.0 ) ) ).div( PI.mul( k.mul( x ).sub( 1.0 ) ) );
addNodeElement( 'parabola', parabola );
addNodeElement( 'gain', gain );
addNodeElement( 'pcurve', pcurve );
addNodeElement( 'sinc', sinc );
// https://github.com/cabbibo/glsl-tri-noise-3d
const tri = tslFn( ( [ x ] ) => {
return x.fract().sub( .5 ).abs();
} );
const tri3 = tslFn( ( [ p ] ) => {
return vec3( tri( p.z.add( tri( p.y.mul( 1. ) ) ) ), tri( p.z.add( tri( p.x.mul( 1. ) ) ) ), tri( p.y.add( tri( p.x.mul( 1. ) ) ) ) );
} );
const triNoise3D = tslFn( ( [ p_immutable, spd, time ] ) => {
const p = vec3( p_immutable ).toVar();
const z = float( 1.4 ).toVar();
const rz = float( 0.0 ).toVar();
const bp = vec3( p ).toVar();
loop( { start: float( 0.0 ), end: float( 3.0 ), type: 'float', condition: '<=' }, () => {
const dg = vec3( tri3( bp.mul( 2.0 ) ) ).toVar();
p.addAssign( dg.add( time.mul( float( 0.1 ).mul( spd ) ) ) );
bp.mulAssign( 1.8 );
z.mulAssign( 1.5 );
p.mulAssign( 1.2 );
const t = float( tri( p.z.add( tri( p.x.add( tri( p.y ) ) ) ) ) ).toVar();
rz.addAssign( t.div( z ) );
bp.addAssign( 0.14 );
} );
return rz;
} );
// layouts
tri.setLayout( {
name: 'tri',
type: 'float',
inputs: [
{ name: 'x', type: 'float' }
]
} );
tri3.setLayout( {
name: 'tri3',
type: 'vec3',
inputs: [
{ name: 'p', type: 'vec3' }
]
} );
triNoise3D.setLayout( {
name: 'triNoise3D',
type: 'float',
inputs: [
{ name: 'p', type: 'vec3' },
{ name: 'spd', type: 'float' },
{ name: 'time', type: 'float' }
]
} );
let discardExpression;
class DiscardNode extends CondNode {
constructor( condNode ) {
discardExpression = discardExpression || expression( 'discard' );
super( condNode, discardExpression );
}
}
const inlineDiscard = nodeProxy( DiscardNode );
const discard = ( condNode ) => inlineDiscard( condNode ).append();
const Return = () => expression( 'return' ).append();
addNodeElement( 'discard', discard ); // @TODO: Check... this cause a little confusing using in chaining
addNodeClass( 'DiscardNode', DiscardNode );
class FunctionOverloadingNode extends Node {
constructor( functionNodes = [], ...parametersNodes ) {
super();
this.functionNodes = functionNodes;
this.parametersNodes = parametersNodes;
this._candidateFnCall = null;
this.global = true;
}
getNodeType() {
return this.functionNodes[ 0 ].shaderNode.layout.type;
}
setup( builder ) {
const params = this.parametersNodes;
let candidateFnCall = this._candidateFnCall;
if ( candidateFnCall === null ) {
let candidateFn = null;
let candidateScore = - 1;
for ( const functionNode of this.functionNodes ) {
const shaderNode = functionNode.shaderNode;
const layout = shaderNode.layout;
if ( layout === null ) {
throw new Error( 'FunctionOverloadingNode: FunctionNode must be a layout.' );
}
const inputs = layout.inputs;
if ( params.length === inputs.length ) {
let score = 0;
for ( let i = 0; i < params.length; i ++ ) {
const param = params[ i ];
const input = inputs[ i ];
if ( param.getNodeType( builder ) === input.type ) {
score ++;
} else {
score = 0;
}
}
if ( score > candidateScore ) {
candidateFn = functionNode;
candidateScore = score;
}
}
}
this._candidateFnCall = candidateFnCall = candidateFn( ...params );
}
return candidateFnCall;
}
}
const overloadingBaseFn = nodeProxy( FunctionOverloadingNode );
const overloadingFn = ( functionNodes ) => ( ...params ) => overloadingBaseFn( functionNodes, ...params );
addNodeClass( 'FunctionOverloadingNode', FunctionOverloadingNode );
class MatcapUVNode extends TempNode {
constructor() {
super( 'vec2' );
}
setup() {
const x = vec3( positionViewDirection.z, 0, positionViewDirection.x.negate() ).normalize();
const y = positionViewDirection.cross( x );
return vec2( x.dot( transformedNormalView ), y.dot( transformedNormalView ) ).mul( 0.495 ).add( 0.5 ); // 0.495 to remove artifacts caused by undersized matcap disks
}
}
const matcapUV = nodeImmutable( MatcapUVNode );
addNodeClass( 'MatcapUVNode', MatcapUVNode );
class TimerNode extends UniformNode {
constructor( scope = TimerNode.LOCAL, scale = 1, value = 0 ) {
super( value );
this.scope = scope;
this.scale = scale;
this.updateType = NodeUpdateType.FRAME;
}
/*
@TODO:
getNodeType( builder ) {
const scope = this.scope;
if ( scope === TimerNode.FRAME ) {
return 'uint';
}
return 'float';
}
*/
update( frame ) {
const scope = this.scope;
const scale = this.scale;
if ( scope === TimerNode.LOCAL ) {
this.value += frame.deltaTime * scale;
} else if ( scope === TimerNode.DELTA ) {
this.value = frame.deltaTime * scale;
} else if ( scope === TimerNode.FRAME ) {
this.value = frame.frameId;
} else {
// global
this.value = frame.time * scale;
}
}
serialize( data ) {
super.serialize( data );
data.scope = this.scope;
data.scale = this.scale;
}
deserialize( data ) {
super.deserialize( data );
this.scope = data.scope;
this.scale = data.scale;
}
}
TimerNode.LOCAL = 'local';
TimerNode.GLOBAL = 'global';
TimerNode.DELTA = 'delta';
TimerNode.FRAME = 'frame';
// @TODO: add support to use node in timeScale
const timerLocal = ( timeScale, value = 0 ) => nodeObject( new TimerNode( TimerNode.LOCAL, timeScale, value ) );
const timerGlobal = ( timeScale, value = 0 ) => nodeObject( new TimerNode( TimerNode.GLOBAL, timeScale, value ) );
const timerDelta = ( timeScale, value = 0 ) => nodeObject( new TimerNode( TimerNode.DELTA, timeScale, value ) );
const frameId = nodeImmutable( TimerNode, TimerNode.FRAME ).toUint();
addNodeClass( 'TimerNode', TimerNode );
class OscNode extends Node {
constructor( method = OscNode.SINE, timeNode = timerLocal() ) {
super();
this.method = method;
this.timeNode = timeNode;
}
getNodeType( builder ) {
return this.timeNode.getNodeType( builder );
}
setup() {
const method = this.method;
const timeNode = nodeObject( this.timeNode );
let outputNode = null;
if ( method === OscNode.SINE ) {
outputNode = timeNode.add( 0.75 ).mul( Math.PI * 2 ).sin().mul( 0.5 ).add( 0.5 );
} else if ( method === OscNode.SQUARE ) {
outputNode = timeNode.fract().round();
} else if ( method === OscNode.TRIANGLE ) {
outputNode = timeNode.add( 0.5 ).fract().mul( 2 ).sub( 1 ).abs();
} else if ( method === OscNode.SAWTOOTH ) {
outputNode = timeNode.fract();
}
return outputNode;
}
serialize( data ) {
super.serialize( data );
data.method = this.method;
}
deserialize( data ) {
super.deserialize( data );
this.method = data.method;
}
}
OscNode.SINE = 'sine';
OscNode.SQUARE = 'square';
OscNode.TRIANGLE = 'triangle';
OscNode.SAWTOOTH = 'sawtooth';
const oscSine = nodeProxy( OscNode, OscNode.SINE );
const oscSquare = nodeProxy( OscNode, OscNode.SQUARE );
const oscTriangle = nodeProxy( OscNode, OscNode.TRIANGLE );
const oscSawtooth = nodeProxy( OscNode, OscNode.SAWTOOTH );
addNodeClass( 'OscNode', OscNode );
class PackingNode extends TempNode {
constructor( scope, node ) {
super();
this.scope = scope;
this.node = node;
}
getNodeType( builder ) {
return this.node.getNodeType( builder );
}
setup() {
const { scope, node } = this;
let result = null;
if ( scope === PackingNode.DIRECTION_TO_COLOR ) {
result = node.mul( 0.5 ).add( 0.5 );
} else if ( scope === PackingNode.COLOR_TO_DIRECTION ) {
result = node.mul( 2.0 ).sub( 1 );
}
return result;
}
}
PackingNode.DIRECTION_TO_COLOR = 'directionToColor';
PackingNode.COLOR_TO_DIRECTION = 'colorToDirection';
const directionToColor = nodeProxy( PackingNode, PackingNode.DIRECTION_TO_COLOR );
const colorToDirection = nodeProxy( PackingNode, PackingNode.COLOR_TO_DIRECTION );
addNodeElement( 'directionToColor', directionToColor );
addNodeElement( 'colorToDirection', colorToDirection );
addNodeClass( 'PackingNode', PackingNode );
class RemapNode extends Node {
constructor( node, inLowNode, inHighNode, outLowNode = float( 0 ), outHighNode = float( 1 ) ) {
super();
this.node = node;
this.inLowNode = inLowNode;
this.inHighNode = inHighNode;
this.outLowNode = outLowNode;
this.outHighNode = outHighNode;
this.doClamp = true;
}
setup() {
const { node, inLowNode, inHighNode, outLowNode, outHighNode, doClamp } = this;
let t = node.sub( inLowNode ).div( inHighNode.sub( inLowNode ) );
if ( doClamp === true ) t = t.clamp();
return t.mul( outHighNode.sub( outLowNode ) ).add( outLowNode );
}
}
const remap = nodeProxy( RemapNode, null, null, { doClamp: false } );
const remapClamp = nodeProxy( RemapNode );
addNodeElement( 'remap', remap );
addNodeElement( 'remapClamp', remapClamp );
addNodeClass( 'RemapNode', RemapNode );
class RotateUVNode extends TempNode {
constructor( uvNode, rotationNode, centerNode = vec2( 0.5 ) ) {
super( 'vec2' );
this.uvNode = uvNode;
this.rotationNode = rotationNode;
this.centerNode = centerNode;
}
setup() {
const { uvNode, rotationNode, centerNode } = this;
const vector = uvNode.sub( centerNode );
return vector.rotate( rotationNode ).add( centerNode );
}
}
const rotateUV = nodeProxy( RotateUVNode );
addNodeElement( 'rotateUV', rotateUV );
addNodeClass( 'RotateUVNode', RotateUVNode );
class RotateNode extends TempNode {
constructor( positionNode, rotationNode ) {
super();
this.positionNode = positionNode;
this.rotationNode = rotationNode;
}
getNodeType( builder ) {
return this.positionNode.getNodeType( builder );
}
setup( builder ) {
const { rotationNode, positionNode } = this;
const nodeType = this.getNodeType( builder );
if ( nodeType === 'vec2' ) {
const cosAngle = rotationNode.cos();
const sinAngle = rotationNode.sin();
const rotationMatrix = mat2(
cosAngle, sinAngle,
sinAngle.negate(), cosAngle
);
return rotationMatrix.mul( positionNode );
} else {
const rotation = rotationNode;
const rotationXMatrix = mat4( vec4( 1.0, 0.0, 0.0, 0.0 ), vec4( 0.0, cos( rotation.x ), sin( rotation.x ).negate(), 0.0 ), vec4( 0.0, sin( rotation.x ), cos( rotation.x ), 0.0 ), vec4( 0.0, 0.0, 0.0, 1.0 ) );
const rotationYMatrix = mat4( vec4( cos( rotation.y ), 0.0, sin( rotation.y ), 0.0 ), vec4( 0.0, 1.0, 0.0, 0.0 ), vec4( sin( rotation.y ).negate(), 0.0, cos( rotation.y ), 0.0 ), vec4( 0.0, 0.0, 0.0, 1.0 ) );
const rotationZMatrix = mat4( vec4( cos( rotation.z ), sin( rotation.z ).negate(), 0.0, 0.0 ), vec4( sin( rotation.z ), cos( rotation.z ), 0.0, 0.0 ), vec4( 0.0, 0.0, 1.0, 0.0 ), vec4( 0.0, 0.0, 0.0, 1.0 ) );
return rotationXMatrix.mul( rotationYMatrix ).mul( rotationZMatrix ).mul( vec4( positionNode, 1.0 ) ).xyz;
}
}
}
const rotate = nodeProxy( RotateNode );
addNodeElement( 'rotate', rotate );
addNodeClass( 'RotateNode', RotateNode );
class SpriteSheetUVNode extends Node {
constructor( countNode, uvNode = uv(), frameNode = float( 0 ) ) {
super( 'vec2' );
this.countNode = countNode;
this.uvNode = uvNode;
this.frameNode = frameNode;
}
setup() {
const { frameNode, uvNode, countNode } = this;
const { width, height } = countNode;
const frameNum = frameNode.mod( width.mul( height ) ).floor();
const column = frameNum.mod( width );
const row = height.sub( frameNum.add( 1 ).div( width ).ceil() );
const scale = countNode.reciprocal();
const uvFrameOffset = vec2( column, row );
return uvNode.add( uvFrameOffset ).mul( scale );
}
}
const spritesheetUV = nodeProxy( SpriteSheetUVNode );
addNodeClass( 'SpriteSheetUVNode', SpriteSheetUVNode );
class StorageArrayElementNode extends ArrayElementNode {
constructor( storageBufferNode, indexNode ) {
super( storageBufferNode, indexNode );
this.isStorageArrayElementNode = true;
}
set storageBufferNode( value ) {
this.node = value;
}
get storageBufferNode() {
return this.node;
}
setup( builder ) {
if ( builder.isAvailable( 'storageBuffer' ) === false ) {
if ( ! this.node.instanceIndex && this.node.bufferObject === true ) {
builder.setupPBO( this.node );
}
}
return super.setup( builder );
}
generate( builder, output ) {
let snippet;
const isAssignContext = builder.context.assign;
//
if ( builder.isAvailable( 'storageBuffer' ) === false ) {
const { node } = this;
if ( ! node.instanceIndex && this.node.bufferObject === true && isAssignContext !== true ) {
snippet = builder.generatePBO( this );
} else {
snippet = node.build( builder );
}
} else {
snippet = super.generate( builder );
}
if ( isAssignContext !== true ) {
const type = this.getNodeType( builder );
snippet = builder.format( snippet, type, output );
}
return snippet;
}
}
const storageElement = nodeProxy( StorageArrayElementNode );
addNodeElement( 'storageElement', storageElement );
addNodeClass( 'StorageArrayElementNode', StorageArrayElementNode );
class TriplanarTexturesNode extends Node {
constructor( textureXNode, textureYNode = null, textureZNode = null, scaleNode = float( 1 ), positionNode = positionLocal, normalNode = normalLocal ) {
super( 'vec4' );
this.textureXNode = textureXNode;
this.textureYNode = textureYNode;
this.textureZNode = textureZNode;
this.scaleNode = scaleNode;
this.positionNode = positionNode;
this.normalNode = normalNode;
}
setup() {
const { textureXNode, textureYNode, textureZNode, scaleNode, positionNode, normalNode } = this;
// Ref: https://github.com/keijiro/StandardTriplanar
// Blending factor of triplanar mapping
let bf = normalNode.abs().normalize();
bf = bf.div( bf.dot( vec3( 1.0 ) ) );
// Triplanar mapping
const tx = positionNode.yz.mul( scaleNode );
const ty = positionNode.zx.mul( scaleNode );
const tz = positionNode.xy.mul( scaleNode );
// Base color
const textureX = textureXNode.value;
const textureY = textureYNode !== null ? textureYNode.value : textureX;
const textureZ = textureZNode !== null ? textureZNode.value : textureX;
const cx = texture( textureX, tx ).mul( bf.x );
const cy = texture( textureY, ty ).mul( bf.y );
const cz = texture( textureZ, tz ).mul( bf.z );
return add( cx, cy, cz );
}
}
const triplanarTextures = nodeProxy( TriplanarTexturesNode );
const triplanarTexture = ( ...params ) => triplanarTextures( ...params );
addNodeElement( 'triplanarTexture', triplanarTexture );
addNodeClass( 'TriplanarTexturesNode', TriplanarTexturesNode );
const _reflectorPlane = new Plane();
const _normal = new Vector3();
const _reflectorWorldPosition = new Vector3();
const _cameraWorldPosition = new Vector3();
const _rotationMatrix = new Matrix4();
const _lookAtPosition = new Vector3( 0, 0, - 1 );
const clipPlane = new Vector4();
const _view = new Vector3();
const _target = new Vector3();
const _q = new Vector4();
const _size$6 = new Vector2();
const _defaultRT = new RenderTarget();
const _defaultUV = vec2( viewportTopLeft.x.oneMinus(), viewportTopLeft.y );
let _inReflector = false;
class ReflectorNode extends TextureNode {
constructor( parameters = {} ) {
super( _defaultRT.texture, _defaultUV );
const {
target = new Object3D(),
resolution = 1,
generateMipmaps = false,
bounces = true
} = parameters;
//
this.target = target;
this.resolution = resolution;
this.generateMipmaps = generateMipmaps;
this.bounces = bounces;
this.updateBeforeType = bounces ? NodeUpdateType.RENDER : NodeUpdateType.FRAME;
this.virtualCameras = new WeakMap();
this.renderTargets = new WeakMap();
}
_updateResolution( renderTarget, renderer ) {
const resolution = this.resolution;
renderer.getDrawingBufferSize( _size$6 );
renderTarget.setSize( Math.round( _size$6.width * resolution ), Math.round( _size$6.height * resolution ) );
}
setup( builder ) {
this._updateResolution( _defaultRT, builder.renderer );
return super.setup( builder );
}
getTextureNode() {
return this.textureNode;
}
getVirtualCamera( camera ) {
let virtualCamera = this.virtualCameras.get( camera );
if ( virtualCamera === undefined ) {
virtualCamera = camera.clone();
this.virtualCameras.set( camera, virtualCamera );
}
return virtualCamera;
}
getRenderTarget( camera ) {
let renderTarget = this.renderTargets.get( camera );
if ( renderTarget === undefined ) {
renderTarget = new RenderTarget( 0, 0, { type: HalfFloatType } );
if ( this.generateMipmaps === true ) {
renderTarget.texture.minFilter = LinearMipMapLinearFilter;
renderTarget.texture.generateMipmaps = true;
}
this.renderTargets.set( camera, renderTarget );
}
return renderTarget;
}
updateBefore( frame ) {
if ( this.bounces === false && _inReflector ) return false;
_inReflector = true;
const { scene, camera, renderer, material } = frame;
const { target } = this;
const virtualCamera = this.getVirtualCamera( camera );
const renderTarget = this.getRenderTarget( virtualCamera );
renderer.getDrawingBufferSize( _size$6 );
this._updateResolution( renderTarget, renderer );
//
_reflectorWorldPosition.setFromMatrixPosition( target.matrixWorld );
_cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );
_rotationMatrix.extractRotation( target.matrixWorld );
_normal.set( 0, 0, 1 );
_normal.applyMatrix4( _rotationMatrix );
_view.subVectors( _reflectorWorldPosition, _cameraWorldPosition );
// Avoid rendering when reflector is facing away
if ( _view.dot( _normal ) > 0 ) return;
_view.reflect( _normal ).negate();
_view.add( _reflectorWorldPosition );
_rotationMatrix.extractRotation( camera.matrixWorld );
_lookAtPosition.set( 0, 0, - 1 );
_lookAtPosition.applyMatrix4( _rotationMatrix );
_lookAtPosition.add( _cameraWorldPosition );
_target.subVectors( _reflectorWorldPosition, _lookAtPosition );
_target.reflect( _normal ).negate();
_target.add( _reflectorWorldPosition );
//
virtualCamera.coordinateSystem = camera.coordinateSystem;
virtualCamera.position.copy( _view );
virtualCamera.up.set( 0, 1, 0 );
virtualCamera.up.applyMatrix4( _rotationMatrix );
virtualCamera.up.reflect( _normal );
virtualCamera.lookAt( _target );
virtualCamera.near = camera.near;
virtualCamera.far = camera.far;
virtualCamera.updateMatrixWorld();
virtualCamera.projectionMatrix.copy( camera.projectionMatrix );
// Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html
// Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf
_reflectorPlane.setFromNormalAndCoplanarPoint( _normal, _reflectorWorldPosition );
_reflectorPlane.applyMatrix4( virtualCamera.matrixWorldInverse );
clipPlane.set( _reflectorPlane.normal.x, _reflectorPlane.normal.y, _reflectorPlane.normal.z, _reflectorPlane.constant );
const projectionMatrix = virtualCamera.projectionMatrix;
_q.x = ( Math.sign( clipPlane.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];
_q.y = ( Math.sign( clipPlane.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];
_q.z = - 1.0;
_q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ];
// Calculate the scaled plane vector
clipPlane.multiplyScalar( 1.0 / clipPlane.dot( _q ) );
const clipBias = 0;
// Replacing the third row of the projection matrix
projectionMatrix.elements[ 2 ] = clipPlane.x;
projectionMatrix.elements[ 6 ] = clipPlane.y;
projectionMatrix.elements[ 10 ] = clipPlane.z - clipBias;
projectionMatrix.elements[ 14 ] = clipPlane.w;
//
this.value = renderTarget.texture;
material.visible = false;
const currentRenderTarget = renderer.getRenderTarget();
renderer.setRenderTarget( renderTarget );
renderer.render( scene, virtualCamera );
renderer.setRenderTarget( currentRenderTarget );
material.visible = true;
_inReflector = false;
}
}
const reflector = ( parameters ) => nodeObject( new ReflectorNode( parameters ) );
// Helper for passes that need to fill the viewport with a single quad.
const _camera = /*@__PURE__*/ new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );
// https://github.com/mrdoob/three.js/pull/21358
class QuadGeometry extends BufferGeometry {
constructor( flipY = false ) {
super();
const uv = flipY === false ? [ 0, - 1, 0, 1, 2, 1 ] : [ 0, 2, 0, 0, 2, 0 ];
this.setAttribute( 'position', new Float32BufferAttribute( [ - 1, 3, 0, - 1, - 1, 0, 3, - 1, 0 ], 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uv, 2 ) );
}
}
const _geometry = /*@__PURE__*/ new QuadGeometry();
class QuadMesh extends Mesh {
constructor( material = null ) {
super( _geometry, material );
this.camera = _camera;
}
renderAsync( renderer ) {
return renderer.renderAsync( this, _camera );
}
render( renderer ) {
renderer.render( this, _camera );
}
}
const _size$5 = /*@__PURE__*/ new Vector2();
class RTTNode extends TextureNode {
constructor( node, width = null, height = null, options = { type: HalfFloatType } ) {
const renderTarget = new RenderTarget( width, height, options );
super( renderTarget.texture, uv() );
this.node = node;
this.width = width;
this.height = height;
this.renderTarget = renderTarget;
this.textureNeedsUpdate = true;
this.autoUpdate = true;
this.updateMap = new WeakMap();
this._rttNode = null;
this._quadMesh = new QuadMesh( new NodeMaterial() );
this.updateBeforeType = NodeUpdateType.RENDER;
}
get autoSize() {
return this.width === null;
}
setup( builder ) {
this._rttNode = this.node.context( builder.getSharedContext() );
this._quadMesh.material.needsUpdate = true;
return super.setup( builder );
}
setSize( width, height ) {
this.width = width;
this.height = height;
const effectiveWidth = width * this.pixelRatio;
const effectiveHeight = height * this.pixelRatio;
this.renderTarget.setSize( effectiveWidth, effectiveHeight );
this.textureNeedsUpdate = true;
}
setPixelRatio( pixelRatio ) {
this.pixelRatio = pixelRatio;
this.setSize( this.width, this.height );
}
updateBefore( { renderer } ) {
if ( this.textureNeedsUpdate === false && this.autoUpdate === false ) return;
this.textureNeedsUpdate = false;
//
if ( this.autoSize === true ) {
this.pixelRatio = renderer.getPixelRatio();
const size = renderer.getSize( _size$5 );
this.setSize( size.width, size.height );
}
//
this._quadMesh.material.fragmentNode = this._rttNode;
//
const currentRenderTarget = renderer.getRenderTarget();
renderer.setRenderTarget( this.renderTarget );
this._quadMesh.render( renderer );
renderer.setRenderTarget( currentRenderTarget );
}
clone() {
const newNode = new TextureNode( this.value, this.uvNode, this.levelNode );
newNode.sampler = this.sampler;
newNode.referenceNode = this;
return newNode;
}
}
const rtt = ( node, ...params ) => nodeObject( new RTTNode( nodeObject( node ), ...params ) );
addNodeElement( 'toTexture', ( node, ...params ) => node.isTextureNode ? node : rtt( node, ...params ) );
addNodeClass( 'RTTNode', RTTNode );
const getBitangent = ( crossNormalTangent ) => crossNormalTangent.mul( tangentGeometry.w ).xyz;
const bitangentGeometry = /*#__PURE__*/ varying( getBitangent( normalGeometry.cross( tangentGeometry ) ), 'v_bitangentGeometry' ).normalize().toVar( 'bitangentGeometry' );
const bitangentLocal = /*#__PURE__*/ varying( getBitangent( normalLocal.cross( tangentLocal ) ), 'v_bitangentLocal' ).normalize().toVar( 'bitangentLocal' );
const bitangentView = /*#__PURE__*/ varying( getBitangent( normalView.cross( tangentView ) ), 'v_bitangentView' ).normalize().toVar( 'bitangentView' );
const bitangentWorld = /*#__PURE__*/ varying( getBitangent( normalWorld.cross( tangentWorld ) ), 'v_bitangentWorld' ).normalize().toVar( 'bitangentWorld' );
const transformedBitangentView = /*#__PURE__*/ getBitangent( transformedNormalView.cross( transformedTangentView ) ).normalize().toVar( 'transformedBitangentView' );
const transformedBitangentWorld = /*#__PURE__*/ transformedBitangentView.transformDirection( cameraViewMatrix ).normalize().toVar( 'transformedBitangentWorld' );
const TBNViewMatrix = mat3( tangentView, bitangentView, normalView );
const parallaxDirection = positionViewDirection.mul( TBNViewMatrix )/*.normalize()*/;
const parallaxUV = ( uv, scale ) => uv.sub( parallaxDirection.mul( scale ) );
const transformedBentNormalView = ( () => {
// https://google.github.io/filament/Filament.md.html#lighting/imagebasedlights/anisotropy
let bentNormal = anisotropyB.cross( positionViewDirection );
bentNormal = bentNormal.cross( anisotropyB ).normalize();
bentNormal = mix( bentNormal, transformedNormalView, anisotropy.mul( roughness.oneMinus() ).oneMinus().pow2().pow2() ).normalize();
return bentNormal;
} )();
class VertexColorNode extends AttributeNode {
constructor( index = 0 ) {
super( null, 'vec4' );
this.isVertexColorNode = true;
this.index = index;
}
getAttributeName( /*builder*/ ) {
const index = this.index;
return 'color' + ( index > 0 ? index : '' );
}
generate( builder ) {
const attributeName = this.getAttributeName( builder );
const geometryAttribute = builder.hasGeometryAttribute( attributeName );
let result;
if ( geometryAttribute === true ) {
result = super.generate( builder );
} else {
// Vertex color fallback should be white
result = builder.generateConst( this.nodeType, new Vector4( 1, 1, 1, 1 ) );
}
return result;
}
serialize( data ) {
super.serialize( data );
data.index = this.index;
}
deserialize( data ) {
super.deserialize( data );
this.index = data.index;
}
}
const vertexColor = ( ...params ) => nodeObject( new VertexColorNode( ...params ) );
addNodeClass( 'VertexColorNode', VertexColorNode );
class RendererReferenceNode extends ReferenceNode {
constructor( property, inputType, renderer = null ) {
super( property, inputType, renderer );
this.renderer = renderer;
}
updateReference( state ) {
this.reference = this.renderer !== null ? this.renderer : state.renderer;
return this.reference;
}
}
const rendererReference = ( name, type, renderer ) => nodeObject( new RendererReferenceNode( name, type, renderer ) );
addNodeClass( 'RendererReferenceNode', RendererReferenceNode );
// Mipped Bicubic Texture Filtering by N8
// https://www.shadertoy.com/view/Dl2SDW
const bC = 1.0 / 6.0;
const w0 = ( a ) => mul( bC, mul( a, mul( a, a.negate().add( 3.0 ) ).sub( 3.0 ) ).add( 1.0 ) );
const w1 = ( a ) => mul( bC, mul( a, mul( a, mul( 3.0, a ).sub( 6.0 ) ) ).add( 4.0 ) );
const w2 = ( a ) => mul( bC, mul( a, mul( a, mul( - 3.0, a ).add( 3.0 ) ).add( 3.0 ) ).add( 1.0 ) );
const w3 = ( a ) => mul( bC, pow( a, 3 ) );
const g0 = ( a ) => w0( a ).add( w1( a ) );
const g1 = ( a ) => w2( a ).add( w3( a ) );
// h0 and h1 are the two offset functions
const h0 = ( a ) => add( - 1.0, w1( a ).div( w0( a ).add( w1( a ) ) ) );
const h1 = ( a ) => add( 1.0, w3( a ).div( w2( a ).add( w3( a ) ) ) );
const bicubic = ( textureNode, texelSize, lod ) => {
const uv = textureNode.uvNode;
const uvScaled = mul( uv, texelSize.zw ).add( 0.5 );
const iuv = floor( uvScaled );
const fuv = fract( uvScaled );
const g0x = g0( fuv.x );
const g1x = g1( fuv.x );
const h0x = h0( fuv.x );
const h1x = h1( fuv.x );
const h0y = h0( fuv.y );
const h1y = h1( fuv.y );
const p0 = vec2( iuv.x.add( h0x ), iuv.y.add( h0y ) ).sub( 0.5 ).mul( texelSize.xy );
const p1 = vec2( iuv.x.add( h1x ), iuv.y.add( h0y ) ).sub( 0.5 ).mul( texelSize.xy );
const p2 = vec2( iuv.x.add( h0x ), iuv.y.add( h1y ) ).sub( 0.5 ).mul( texelSize.xy );
const p3 = vec2( iuv.x.add( h1x ), iuv.y.add( h1y ) ).sub( 0.5 ).mul( texelSize.xy );
const a = g0( fuv.y ).mul( add( g0x.mul( textureNode.uv( p0 ).level( lod ) ), g1x.mul( textureNode.uv( p1 ).level( lod ) ) ) );
const b = g1( fuv.y ).mul( add( g0x.mul( textureNode.uv( p2 ).level( lod ) ), g1x.mul( textureNode.uv( p3 ).level( lod ) ) ) );
return a.add( b );
};
const textureBicubicMethod = ( textureNode, lodNode ) => {
const fLodSize = vec2( textureNode.size( int( lodNode ) ) );
const cLodSize = vec2( textureNode.size( int( lodNode.add( 1.0 ) ) ) );
const fLodSizeInv = div( 1.0, fLodSize );
const cLodSizeInv = div( 1.0, cLodSize );
const fSample = bicubic( textureNode, vec4( fLodSizeInv, fLodSize ), floor( lodNode ) );
const cSample = bicubic( textureNode, vec4( cLodSizeInv, cLodSize ), ceil( lodNode ) );
return fract( lodNode ).mix( fSample, cSample );
};
class TextureBicubicNode extends TempNode {
constructor( textureNode, blurNode = float( 3 ) ) {
super( 'vec4' );
this.textureNode = textureNode;
this.blurNode = blurNode;
}
setup() {
return textureBicubicMethod( this.textureNode, this.blurNode );
}
}
const textureBicubic = nodeProxy( TextureBicubicNode );
addNodeElement( 'bicubic', textureBicubic );
addNodeClass( 'TextureBicubicNode', TextureBicubicNode );
class PointUVNode extends Node {
constructor() {
super( 'vec2' );
this.isPointUVNode = true;
}
generate( /*builder*/ ) {
return 'vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y )';
}
}
const pointUV = nodeImmutable( PointUVNode );
addNodeClass( 'PointUVNode', PointUVNode );
class SceneNode extends Node {
constructor( scope = SceneNode.BACKGROUND_BLURRINESS, scene = null ) {
super();
this.scope = scope;
this.scene = scene;
}
setup( builder ) {
const scope = this.scope;
const scene = this.scene !== null ? this.scene : builder.scene;
let output;
if ( scope === SceneNode.BACKGROUND_BLURRINESS ) {
output = reference( 'backgroundBlurriness', 'float', scene );
} else if ( scope === SceneNode.BACKGROUND_INTENSITY ) {
output = reference( 'backgroundIntensity', 'float', scene );
} else {
console.error( 'THREE.SceneNode: Unknown scope:', scope );
}
return output;
}
}
SceneNode.BACKGROUND_BLURRINESS = 'backgroundBlurriness';
SceneNode.BACKGROUND_INTENSITY = 'backgroundIntensity';
const backgroundBlurriness = nodeImmutable( SceneNode, SceneNode.BACKGROUND_BLURRINESS );
const backgroundIntensity = nodeImmutable( SceneNode, SceneNode.BACKGROUND_INTENSITY );
addNodeClass( 'SceneNode', SceneNode );
const GPUPrimitiveTopology = {
PointList: 'point-list',
LineList: 'line-list',
LineStrip: 'line-strip',
TriangleList: 'triangle-list',
TriangleStrip: 'triangle-strip',
};
const GPUCompareFunction = {
Never: 'never',
Less: 'less',
Equal: 'equal',
LessEqual: 'less-equal',
Greater: 'greater',
NotEqual: 'not-equal',
GreaterEqual: 'greater-equal',
Always: 'always'
};
const GPUStoreOp = {
Store: 'store',
Discard: 'discard'
};
const GPULoadOp = {
Load: 'load',
Clear: 'clear'
};
const GPUFrontFace = {
CCW: 'ccw',
CW: 'cw'
};
const GPUCullMode = {
None: 'none',
Front: 'front',
Back: 'back'
};
const GPUIndexFormat = {
Uint16: 'uint16',
Uint32: 'uint32'
};
const GPUTextureFormat = {
// 8-bit formats
R8Unorm: 'r8unorm',
R8Snorm: 'r8snorm',
R8Uint: 'r8uint',
R8Sint: 'r8sint',
// 16-bit formats
R16Uint: 'r16uint',
R16Sint: 'r16sint',
R16Float: 'r16float',
RG8Unorm: 'rg8unorm',
RG8Snorm: 'rg8snorm',
RG8Uint: 'rg8uint',
RG8Sint: 'rg8sint',
// 32-bit formats
R32Uint: 'r32uint',
R32Sint: 'r32sint',
R32Float: 'r32float',
RG16Uint: 'rg16uint',
RG16Sint: 'rg16sint',
RG16Float: 'rg16float',
RGBA8Unorm: 'rgba8unorm',
RGBA8UnormSRGB: 'rgba8unorm-srgb',
RGBA8Snorm: 'rgba8snorm',
RGBA8Uint: 'rgba8uint',
RGBA8Sint: 'rgba8sint',
BGRA8Unorm: 'bgra8unorm',
BGRA8UnormSRGB: 'bgra8unorm-srgb',
// Packed 32-bit formats
RGB9E5UFloat: 'rgb9e5ufloat',
RGB10A2Unorm: 'rgb10a2unorm',
RG11B10uFloat: 'rgb10a2unorm',
// 64-bit formats
RG32Uint: 'rg32uint',
RG32Sint: 'rg32sint',
RG32Float: 'rg32float',
RGBA16Uint: 'rgba16uint',
RGBA16Sint: 'rgba16sint',
RGBA16Float: 'rgba16float',
// 128-bit formats
RGBA32Uint: 'rgba32uint',
RGBA32Sint: 'rgba32sint',
RGBA32Float: 'rgba32float',
// Depth and stencil formats
Stencil8: 'stencil8',
Depth16Unorm: 'depth16unorm',
Depth24Plus: 'depth24plus',
Depth24PlusStencil8: 'depth24plus-stencil8',
Depth32Float: 'depth32float',
// 'depth32float-stencil8' extension
Depth32FloatStencil8: 'depth32float-stencil8',
// BC compressed formats usable if 'texture-compression-bc' is both
// supported by the device/user agent and enabled in requestDevice.
BC1RGBAUnorm: 'bc1-rgba-unorm',
BC1RGBAUnormSRGB: 'bc1-rgba-unorm-srgb',
BC2RGBAUnorm: 'bc2-rgba-unorm',
BC2RGBAUnormSRGB: 'bc2-rgba-unorm-srgb',
BC3RGBAUnorm: 'bc3-rgba-unorm',
BC3RGBAUnormSRGB: 'bc3-rgba-unorm-srgb',
BC4RUnorm: 'bc4-r-unorm',
BC4RSnorm: 'bc4-r-snorm',
BC5RGUnorm: 'bc5-rg-unorm',
BC5RGSnorm: 'bc5-rg-snorm',
BC6HRGBUFloat: 'bc6h-rgb-ufloat',
BC6HRGBFloat: 'bc6h-rgb-float',
BC7RGBAUnorm: 'bc7-rgba-unorm',
BC7RGBAUnormSRGB: 'bc7-rgba-srgb',
// ETC2 compressed formats usable if 'texture-compression-etc2' is both
// supported by the device/user agent and enabled in requestDevice.
ETC2RGB8Unorm: 'etc2-rgb8unorm',
ETC2RGB8UnormSRGB: 'etc2-rgb8unorm-srgb',
ETC2RGB8A1Unorm: 'etc2-rgb8a1unorm',
ETC2RGB8A1UnormSRGB: 'etc2-rgb8a1unorm-srgb',
ETC2RGBA8Unorm: 'etc2-rgba8unorm',
ETC2RGBA8UnormSRGB: 'etc2-rgba8unorm-srgb',
EACR11Unorm: 'eac-r11unorm',
EACR11Snorm: 'eac-r11snorm',
EACRG11Unorm: 'eac-rg11unorm',
EACRG11Snorm: 'eac-rg11snorm',
// ASTC compressed formats usable if 'texture-compression-astc' is both
// supported by the device/user agent and enabled in requestDevice.
ASTC4x4Unorm: 'astc-4x4-unorm',
ASTC4x4UnormSRGB: 'astc-4x4-unorm-srgb',
ASTC5x4Unorm: 'astc-5x4-unorm',
ASTC5x4UnormSRGB: 'astc-5x4-unorm-srgb',
ASTC5x5Unorm: 'astc-5x5-unorm',
ASTC5x5UnormSRGB: 'astc-5x5-unorm-srgb',
ASTC6x5Unorm: 'astc-6x5-unorm',
ASTC6x5UnormSRGB: 'astc-6x5-unorm-srgb',
ASTC6x6Unorm: 'astc-6x6-unorm',
ASTC6x6UnormSRGB: 'astc-6x6-unorm-srgb',
ASTC8x5Unorm: 'astc-8x5-unorm',
ASTC8x5UnormSRGB: 'astc-8x5-unorm-srgb',
ASTC8x6Unorm: 'astc-8x6-unorm',
ASTC8x6UnormSRGB: 'astc-8x6-unorm-srgb',
ASTC8x8Unorm: 'astc-8x8-unorm',
ASTC8x8UnormSRGB: 'astc-8x8-unorm-srgb',
ASTC10x5Unorm: 'astc-10x5-unorm',
ASTC10x5UnormSRGB: 'astc-10x5-unorm-srgb',
ASTC10x6Unorm: 'astc-10x6-unorm',
ASTC10x6UnormSRGB: 'astc-10x6-unorm-srgb',
ASTC10x8Unorm: 'astc-10x8-unorm',
ASTC10x8UnormSRGB: 'astc-10x8-unorm-srgb',
ASTC10x10Unorm: 'astc-10x10-unorm',
ASTC10x10UnormSRGB: 'astc-10x10-unorm-srgb',
ASTC12x10Unorm: 'astc-12x10-unorm',
ASTC12x10UnormSRGB: 'astc-12x10-unorm-srgb',
ASTC12x12Unorm: 'astc-12x12-unorm',
ASTC12x12UnormSRGB: 'astc-12x12-unorm-srgb',
};
const GPUAddressMode = {
ClampToEdge: 'clamp-to-edge',
Repeat: 'repeat',
MirrorRepeat: 'mirror-repeat'
};
const GPUFilterMode = {
Linear: 'linear',
Nearest: 'nearest'
};
const GPUBlendFactor = {
Zero: 'zero',
One: 'one',
Src: 'src',
OneMinusSrc: 'one-minus-src',
SrcAlpha: 'src-alpha',
OneMinusSrcAlpha: 'one-minus-src-alpha',
Dst: 'dst',
OneMinusDstColor: 'one-minus-dst',
DstAlpha: 'dst-alpha',
OneMinusDstAlpha: 'one-minus-dst-alpha',
SrcAlphaSaturated: 'src-alpha-saturated',
Constant: 'constant',
OneMinusConstant: 'one-minus-constant'
};
const GPUBlendOperation = {
Add: 'add',
Subtract: 'subtract',
ReverseSubtract: 'reverse-subtract',
Min: 'min',
Max: 'max'
};
const GPUColorWriteFlags = {
None: 0,
Red: 0x1,
Green: 0x2,
Blue: 0x4,
Alpha: 0x8,
All: 0xF
};
const GPUStencilOperation = {
Keep: 'keep',
Zero: 'zero',
Replace: 'replace',
Invert: 'invert',
IncrementClamp: 'increment-clamp',
DecrementClamp: 'decrement-clamp',
IncrementWrap: 'increment-wrap',
DecrementWrap: 'decrement-wrap'
};
const GPUBufferBindingType = {
Uniform: 'uniform',
Storage: 'storage',
ReadOnlyStorage: 'read-only-storage'
};
const GPUStorageTextureAccess = {
WriteOnly: 'write-only',
ReadOnly: 'read-only',
ReadWrite: 'read-write',
};
const GPUTextureSampleType = {
Float: 'float',
UnfilterableFloat: 'unfilterable-float',
Depth: 'depth',
SInt: 'sint',
UInt: 'uint'
};
const GPUTextureDimension = {
OneD: '1d',
TwoD: '2d',
ThreeD: '3d'
};
const GPUTextureViewDimension = {
OneD: '1d',
TwoD: '2d',
TwoDArray: '2d-array',
Cube: 'cube',
CubeArray: 'cube-array',
ThreeD: '3d'
};
const GPUTextureAspect = {
All: 'all',
StencilOnly: 'stencil-only',
DepthOnly: 'depth-only'
};
const GPUInputStepMode = {
Vertex: 'vertex',
Instance: 'instance'
};
const GPUFeatureName = {
DepthClipControl: 'depth-clip-control',
Depth32FloatStencil8: 'depth32float-stencil8',
TextureCompressionBC: 'texture-compression-bc',
TextureCompressionETC2: 'texture-compression-etc2',
TextureCompressionASTC: 'texture-compression-astc',
TimestampQuery: 'timestamp-query',
IndirectFirstInstance: 'indirect-first-instance',
ShaderF16: 'shader-f16',
RG11B10UFloat: 'rg11b10ufloat-renderable',
BGRA8UNormStorage: 'bgra8unorm-storage',
Float32Filterable: 'float32-filterable',
ClipDistances: 'clip-distances',
DualSourceBlending: 'dual-source-blending'
};
class StorageBufferNode extends BufferNode {
constructor( value, bufferType, bufferCount = 0 ) {
super( value, bufferType, bufferCount );
this.isStorageBufferNode = true;
this.access = GPUBufferBindingType.Storage;
this.bufferObject = false;
this.bufferCount = bufferCount;
this._attribute = null;
this._varying = null;
this.global = true;
if ( value.isStorageBufferAttribute !== true && value.isStorageInstancedBufferAttribute !== true ) {
// TOOD: Improve it, possibly adding a new property to the BufferAttribute to identify it as a storage buffer read-only attribute in Renderer
if ( value.isInstancedBufferAttribute ) value.isStorageInstancedBufferAttribute = true;
else value.isStorageBufferAttribute = true;
}
}
getHash( builder ) {
if ( this.bufferCount === 0 ) {
let bufferData = builder.globalCache.getData( this.value );
if ( bufferData === undefined ) {
bufferData = {
node: this
};
builder.globalCache.setData( this.value, bufferData );
}
return bufferData.node.uuid;
}
return this.uuid;
}
getInputType( /*builder*/ ) {
return 'storageBuffer';
}
element( indexNode ) {
return storageElement( this, indexNode );
}
setBufferObject( value ) {
this.bufferObject = value;
return this;
}
setAccess( value ) {
this.access = value;
return this;
}
toReadOnly() {
return this.setAccess( GPUBufferBindingType.ReadOnlyStorage );
}
generate( builder ) {
if ( builder.isAvailable( 'storageBuffer' ) ) {
return super.generate( builder );
}
const nodeType = this.getNodeType( builder );
if ( this._attribute === null ) {
this._attribute = bufferAttribute( this.value );
this._varying = varying( this._attribute );
}
const output = this._varying.build( builder, nodeType );
builder.registerTransform( output, this._attribute );
return output;
}
}
// Read-Write Storage
const storage = ( value, type, count ) => nodeObject( new StorageBufferNode( value, type, count ) );
const storageObject = ( value, type, count ) => nodeObject( new StorageBufferNode( value, type, count ).setBufferObject( true ) );
addNodeClass( 'StorageBufferNode', StorageBufferNode );
class StorageTextureNode extends TextureNode {
constructor( value, uvNode, storeNode = null ) {
super( value, uvNode );
this.storeNode = storeNode;
this.isStorageTextureNode = true;
this.access = GPUStorageTextureAccess.WriteOnly;
}
getInputType( /*builder*/ ) {
return 'storageTexture';
}
setup( builder ) {
super.setup( builder );
const properties = builder.getNodeProperties( this );
properties.storeNode = this.storeNode;
}
setAccess( value ) {
this.access = value;
return this;
}
generate( builder, output ) {
let snippet;
if ( this.storeNode !== null ) {
snippet = this.generateStore( builder );
} else {
snippet = super.generate( builder, output );
}
return snippet;
}
toReadOnly() {
return this.setAccess( GPUStorageTextureAccess.ReadOnly );
}
toWriteOnly() {
return this.setAccess( GPUStorageTextureAccess.WriteOnly );
}
generateStore( builder ) {
const properties = builder.getNodeProperties( this );
const { uvNode, storeNode } = properties;
const textureProperty = super.generate( builder, 'property' );
const uvSnippet = uvNode.build( builder, 'uvec2' );
const storeSnippet = storeNode.build( builder, 'vec4' );
const snippet = builder.generateTextureStore( builder, textureProperty, uvSnippet, storeSnippet );
builder.addLineFlowCode( snippet );
}
}
const storageTexture = nodeProxy( StorageTextureNode );
const textureStore = ( value, uvNode, storeNode ) => {
const node = storageTexture( value, uvNode, storeNode );
if ( storeNode !== null ) node.append();
return node;
};
addNodeClass( 'StorageTextureNode', StorageTextureNode );
const normal = tslFn( ( { texture, uv } ) => {
const epsilon = 0.0001;
const ret = vec3().temp();
If( uv.x.lessThan( epsilon ), () => {
ret.assign( vec3( 1, 0, 0 ) );
} ).elseif( uv.y.lessThan( epsilon ), () => {
ret.assign( vec3( 0, 1, 0 ) );
} ).elseif( uv.z.lessThan( epsilon ), () => {
ret.assign( vec3( 0, 0, 1 ) );
} ).elseif( uv.x.greaterThan( 1 - epsilon ), () => {
ret.assign( vec3( - 1, 0, 0 ) );
} ).elseif( uv.y.greaterThan( 1 - epsilon ), () => {
ret.assign( vec3( 0, - 1, 0 ) );
} ).elseif( uv.z.greaterThan( 1 - epsilon ), () => {
ret.assign( vec3( 0, 0, - 1 ) );
} ).else( () => {
const step = 0.01;
const x = texture.uv( uv.add( vec3( - step, 0.0, 0.0 ) ) ).r.sub( texture.uv( uv.add( vec3( step, 0.0, 0.0 ) ) ).r );
const y = texture.uv( uv.add( vec3( 0.0, - step, 0.0 ) ) ).r.sub( texture.uv( uv.add( vec3( 0.0, step, 0.0 ) ) ).r );
const z = texture.uv( uv.add( vec3( 0.0, 0.0, - step ) ) ).r.sub( texture.uv( uv.add( vec3( 0.0, 0.0, step ) ) ).r );
ret.assign( vec3( x, y, z ) );
} );
return ret.normalize();
} );
class Texture3DNode extends TextureNode {
constructor( value, uvNode = null, levelNode = null ) {
super( value, uvNode, levelNode );
this.isTexture3DNode = true;
}
getInputType( /*builder*/ ) {
return 'texture3D';
}
getDefaultUV() {
return vec3( 0.5, 0.5, 0.5 );
}
setUpdateMatrix( /*updateMatrix*/ ) { } // Ignore .updateMatrix for 3d TextureNode
setupUV( builder, uvNode ) {
return uvNode;
}
generateUV( builder, uvNode ) {
return uvNode.build( builder, 'vec3' );
}
normal( uvNode ) {
return normal( { texture: this, uv: uvNode } );
}
}
const texture3D = nodeProxy( Texture3DNode );
addNodeClass( 'Texture3DNode', Texture3DNode );
class UserDataNode extends ReferenceNode {
constructor( property, inputType, userData = null ) {
super( property, inputType, userData );
this.userData = userData;
}
update( frame ) {
this.reference = this.userData !== null ? this.userData : frame.object.userData;
super.update( frame );
}
}
const userData = ( name, inputType, userData ) => nodeObject( new UserDataNode( name, inputType, userData ) );
addNodeClass( 'UserDataNode', UserDataNode );
const BurnNode = tslFn( ( { base, blend } ) => {
const fn = ( c ) => blend[ c ].lessThan( EPSILON ).cond( blend[ c ], base[ c ].oneMinus().div( blend[ c ] ).oneMinus().max( 0 ) );
return vec3( fn( 'x' ), fn( 'y' ), fn( 'z' ) );
} ).setLayout( {
name: 'burnColor',
type: 'vec3',
inputs: [
{ name: 'base', type: 'vec3' },
{ name: 'blend', type: 'vec3' }
]
} );
const DodgeNode = tslFn( ( { base, blend } ) => {
const fn = ( c ) => blend[ c ].equal( 1.0 ).cond( blend[ c ], base[ c ].div( blend[ c ].oneMinus() ).max( 0 ) );
return vec3( fn( 'x' ), fn( 'y' ), fn( 'z' ) );
} ).setLayout( {
name: 'dodgeColor',
type: 'vec3',
inputs: [
{ name: 'base', type: 'vec3' },
{ name: 'blend', type: 'vec3' }
]
} );
const ScreenNode = tslFn( ( { base, blend } ) => {
const fn = ( c ) => base[ c ].oneMinus().mul( blend[ c ].oneMinus() ).oneMinus();
return vec3( fn( 'x' ), fn( 'y' ), fn( 'z' ) );
} ).setLayout( {
name: 'screenColor',
type: 'vec3',
inputs: [
{ name: 'base', type: 'vec3' },
{ name: 'blend', type: 'vec3' }
]
} );
const OverlayNode = tslFn( ( { base, blend } ) => {
const fn = ( c ) => base[ c ].lessThan( 0.5 ).cond( base[ c ].mul( blend[ c ], 2.0 ), base[ c ].oneMinus().mul( blend[ c ].oneMinus() ).oneMinus() );
//const fn = ( c ) => mix( base[ c ].oneMinus().mul( blend[ c ].oneMinus() ).oneMinus(), base[ c ].mul( blend[ c ], 2.0 ), step( base[ c ], 0.5 ) );
return vec3( fn( 'x' ), fn( 'y' ), fn( 'z' ) );
} ).setLayout( {
name: 'overlayColor',
type: 'vec3',
inputs: [
{ name: 'base', type: 'vec3' },
{ name: 'blend', type: 'vec3' }
]
} );
class BlendModeNode extends TempNode {
constructor( blendMode, baseNode, blendNode ) {
super();
this.blendMode = blendMode;
this.baseNode = baseNode;
this.blendNode = blendNode;
}
setup() {
const { blendMode, baseNode, blendNode } = this;
const params = { base: baseNode, blend: blendNode };
let outputNode = null;
if ( blendMode === BlendModeNode.BURN ) {
outputNode = BurnNode( params );
} else if ( blendMode === BlendModeNode.DODGE ) {
outputNode = DodgeNode( params );
} else if ( blendMode === BlendModeNode.SCREEN ) {
outputNode = ScreenNode( params );
} else if ( blendMode === BlendModeNode.OVERLAY ) {
outputNode = OverlayNode( params );
}
return outputNode;
}
}
BlendModeNode.BURN = 'burn';
BlendModeNode.DODGE = 'dodge';
BlendModeNode.SCREEN = 'screen';
BlendModeNode.OVERLAY = 'overlay';
const burn = nodeProxy( BlendModeNode, BlendModeNode.BURN );
const dodge = nodeProxy( BlendModeNode, BlendModeNode.DODGE );
const overlay = nodeProxy( BlendModeNode, BlendModeNode.OVERLAY );
const screen = nodeProxy( BlendModeNode, BlendModeNode.SCREEN );
addNodeElement( 'burn', burn );
addNodeElement( 'dodge', dodge );
addNodeElement( 'overlay', overlay );
addNodeElement( 'screen', screen );
addNodeClass( 'BlendModeNode', BlendModeNode );
// Bump Mapping Unparametrized Surfaces on the GPU by Morten S. Mikkelsen
// https://mmikk.github.io/papers3d/mm_sfgrad_bump.pdf
const dHdxy_fwd = tslFn( ( { textureNode, bumpScale } ) => {
// It's used to preserve the same TextureNode instance
const sampleTexture = ( callback ) => textureNode.cache().context( { getUV: ( texNode ) => callback( texNode.uvNode || uv() ), forceUVContext: true } );
const Hll = float( sampleTexture( ( uvNode ) => uvNode ) );
return vec2(
float( sampleTexture( ( uvNode ) => uvNode.add( uvNode.dFdx() ) ) ).sub( Hll ),
float( sampleTexture( ( uvNode ) => uvNode.add( uvNode.dFdy() ) ) ).sub( Hll )
).mul( bumpScale );
} );
// Evaluate the derivative of the height w.r.t. screen-space using forward differencing (listing 2)
const perturbNormalArb = tslFn( ( inputs ) => {
const { surf_pos, surf_norm, dHdxy } = inputs;
// normalize is done to ensure that the bump map looks the same regardless of the texture's scale
const vSigmaX = surf_pos.dFdx().normalize();
const vSigmaY = surf_pos.dFdy().normalize();
const vN = surf_norm; // normalized
const R1 = vSigmaY.cross( vN );
const R2 = vN.cross( vSigmaX );
const fDet = vSigmaX.dot( R1 ).mul( faceDirection );
const vGrad = fDet.sign().mul( dHdxy.x.mul( R1 ).add( dHdxy.y.mul( R2 ) ) );
return fDet.abs().mul( surf_norm ).sub( vGrad ).normalize();
} );
class BumpMapNode extends TempNode {
constructor( textureNode, scaleNode = null ) {
super( 'vec3' );
this.textureNode = textureNode;
this.scaleNode = scaleNode;
}
setup() {
const bumpScale = this.scaleNode !== null ? this.scaleNode : 1;
const dHdxy = dHdxy_fwd( { textureNode: this.textureNode, bumpScale } );
return perturbNormalArb( {
surf_pos: positionView,
surf_norm: normalView,
dHdxy
} );
}
}
const bumpMap = nodeProxy( BumpMapNode );
addNodeElement( 'bumpMap', bumpMap );
addNodeClass( 'BumpMapNode', BumpMapNode );
const saturationNode = tslFn( ( { color, adjustment } ) => {
return adjustment.mix( luminance( color.rgb ), color.rgb );
} );
const vibranceNode = tslFn( ( { color, adjustment } ) => {
const average = add( color.r, color.g, color.b ).div( 3.0 );
const mx = color.r.max( color.g.max( color.b ) );
const amt = mx.sub( average ).mul( adjustment ).mul( - 3.0 );
return mix( color.rgb, mx, amt );
} );
const hueNode = tslFn( ( { color, adjustment } ) => {
const k = vec3( 0.57735, 0.57735, 0.57735 );
const cosAngle = adjustment.cos();
return vec3( color.rgb.mul( cosAngle ).add( k.cross( color.rgb ).mul( adjustment.sin() ).add( k.mul( dot( k, color.rgb ).mul( cosAngle.oneMinus() ) ) ) ) );
} );
class ColorAdjustmentNode extends TempNode {
constructor( method, colorNode, adjustmentNode = float( 1 ) ) {
super( 'vec3' );
this.method = method;
this.colorNode = colorNode;
this.adjustmentNode = adjustmentNode;
}
setup() {
const { method, colorNode, adjustmentNode } = this;
const callParams = { color: colorNode, adjustment: adjustmentNode };
let outputNode = null;
if ( method === ColorAdjustmentNode.SATURATION ) {
outputNode = saturationNode( callParams );
} else if ( method === ColorAdjustmentNode.VIBRANCE ) {
outputNode = vibranceNode( callParams );
} else if ( method === ColorAdjustmentNode.HUE ) {
outputNode = hueNode( callParams );
} else {
console.error( `${ this.type }: Method "${ this.method }" not supported!` );
}
return outputNode;
}
}
ColorAdjustmentNode.SATURATION = 'saturation';
ColorAdjustmentNode.VIBRANCE = 'vibrance';
ColorAdjustmentNode.HUE = 'hue';
const saturation = nodeProxy( ColorAdjustmentNode, ColorAdjustmentNode.SATURATION );
const vibrance = nodeProxy( ColorAdjustmentNode, ColorAdjustmentNode.VIBRANCE );
const hue = nodeProxy( ColorAdjustmentNode, ColorAdjustmentNode.HUE );
const _luminanceCoefficients = /*#__PURE__*/ new Vector3();
const luminance = (
color,
luminanceCoefficients = vec3( ... ColorManagement.getLuminanceCoefficients( _luminanceCoefficients ) )
) => dot( color, luminanceCoefficients );
const threshold = ( color, threshold ) => mix( vec3( 0.0 ), color, luminance( color ).sub( threshold ).max( 0 ) );
addNodeElement( 'saturation', saturation );
addNodeElement( 'vibrance', vibrance );
addNodeElement( 'hue', hue );
addNodeElement( 'threshold', threshold );
addNodeClass( 'ColorAdjustmentNode', ColorAdjustmentNode );
// Normal Mapping Without Precomputed Tangents
// http://www.thetenthplanet.de/archives/1180
const perturbNormal2Arb = tslFn( ( inputs ) => {
const { eye_pos, surf_norm, mapN, uv } = inputs;
const q0 = eye_pos.dFdx();
const q1 = eye_pos.dFdy();
const st0 = uv.dFdx();
const st1 = uv.dFdy();
const N = surf_norm; // normalized
const q1perp = q1.cross( N );
const q0perp = N.cross( q0 );
const T = q1perp.mul( st0.x ).add( q0perp.mul( st1.x ) );
const B = q1perp.mul( st0.y ).add( q0perp.mul( st1.y ) );
const det = T.dot( T ).max( B.dot( B ) );
const scale = faceDirection.mul( det.inverseSqrt() );
return add( T.mul( mapN.x, scale ), B.mul( mapN.y, scale ), N.mul( mapN.z ) ).normalize();
} );
class NormalMapNode extends TempNode {
constructor( node, scaleNode = null ) {
super( 'vec3' );
this.node = node;
this.scaleNode = scaleNode;
this.normalMapType = TangentSpaceNormalMap;
}
setup( builder ) {
const { normalMapType, scaleNode } = this;
let normalMap = this.node.mul( 2.0 ).sub( 1.0 );
if ( scaleNode !== null ) {
normalMap = vec3( normalMap.xy.mul( scaleNode ), normalMap.z );
}
let outputNode = null;
if ( normalMapType === ObjectSpaceNormalMap ) {
outputNode = modelNormalMatrix.mul( normalMap ).normalize();
} else if ( normalMapType === TangentSpaceNormalMap ) {
const tangent = builder.hasGeometryAttribute( 'tangent' );
if ( tangent === true ) {
outputNode = TBNViewMatrix.mul( normalMap ).normalize();
} else {
outputNode = perturbNormal2Arb( {
eye_pos: positionView,
surf_norm: normalView,
mapN: normalMap,
uv: uv()
} );
}
}
return outputNode;
}
}
const normalMap = nodeProxy( NormalMapNode );
addNodeElement( 'normalMap', normalMap );
addNodeClass( 'NormalMapNode', NormalMapNode );
class PosterizeNode extends TempNode {
constructor( sourceNode, stepsNode ) {
super();
this.sourceNode = sourceNode;
this.stepsNode = stepsNode;
}
setup() {
const { sourceNode, stepsNode } = this;
return sourceNode.mul( stepsNode ).floor().div( stepsNode );
}
}
const posterize = nodeProxy( PosterizeNode );
addNodeElement( 'posterize', posterize );
addNodeClass( 'PosterizeNode', PosterizeNode );
// exposure only
const LinearToneMappingNode = tslFn( ( { color, exposure } ) => {
return color.mul( exposure ).clamp();
} );
// source: https://www.cs.utah.edu/docs/techreports/2002/pdf/UUCS-02-001.pdf
const ReinhardToneMappingNode = tslFn( ( { color, exposure } ) => {
color = color.mul( exposure );
return color.div( color.add( 1.0 ) ).clamp();
} );
// source: http://filmicworlds.com/blog/filmic-tonemapping-operators/
const OptimizedCineonToneMappingNode = tslFn( ( { color, exposure } ) => {
// optimized filmic operator by Jim Hejl and Richard Burgess-Dawson
color = color.mul( exposure );
color = color.sub( 0.004 ).max( 0.0 );
const a = color.mul( color.mul( 6.2 ).add( 0.5 ) );
const b = color.mul( color.mul( 6.2 ).add( 1.7 ) ).add( 0.06 );
return a.div( b ).pow( 2.2 );
} );
// source: https://github.com/selfshadow/ltc_code/blob/master/webgl/shaders/ltc/ltc_blit.fs
const RRTAndODTFit = tslFn( ( { color } ) => {
const a = color.mul( color.add( 0.0245786 ) ).sub( 0.000090537 );
const b = color.mul( color.add( 0.4329510 ).mul( 0.983729 ) ).add( 0.238081 );
return a.div( b );
} );
// source: https://github.com/selfshadow/ltc_code/blob/master/webgl/shaders/ltc/ltc_blit.fs
const ACESFilmicToneMappingNode = tslFn( ( { color, exposure } ) => {
// sRGB => XYZ => D65_2_D60 => AP1 => RRT_SAT
const ACESInputMat = mat3(
0.59719, 0.35458, 0.04823,
0.07600, 0.90834, 0.01566,
0.02840, 0.13383, 0.83777
);
// ODT_SAT => XYZ => D60_2_D65 => sRGB
const ACESOutputMat = mat3(
1.60475, - 0.53108, - 0.07367,
- 0.10208, 1.10813, - 0.00605,
- 0.00327, - 0.07276, 1.07602
);
color = color.mul( exposure ).div( 0.6 );
color = ACESInputMat.mul( color );
// Apply RRT and ODT
color = RRTAndODTFit( { color } );
color = ACESOutputMat.mul( color );
// Clamp to [0, 1]
return color.clamp();
} );
const LINEAR_REC2020_TO_LINEAR_SRGB = mat3( vec3( 1.6605, - 0.1246, - 0.0182 ), vec3( - 0.5876, 1.1329, - 0.1006 ), vec3( - 0.0728, - 0.0083, 1.1187 ) );
const LINEAR_SRGB_TO_LINEAR_REC2020 = mat3( vec3( 0.6274, 0.0691, 0.0164 ), vec3( 0.3293, 0.9195, 0.0880 ), vec3( 0.0433, 0.0113, 0.8956 ) );
const agxDefaultContrastApprox = tslFn( ( [ x_immutable ] ) => {
const x = vec3( x_immutable ).toVar();
const x2 = vec3( x.mul( x ) ).toVar();
const x4 = vec3( x2.mul( x2 ) ).toVar();
return float( 15.5 ).mul( x4.mul( x2 ) ).sub( mul( 40.14, x4.mul( x ) ) ).add( mul( 31.96, x4 ).sub( mul( 6.868, x2.mul( x ) ) ).add( mul( 0.4298, x2 ).add( mul( 0.1191, x ).sub( 0.00232 ) ) ) );
} );
const AGXToneMappingNode = tslFn( ( { color, exposure } ) => {
const colortone = vec3( color ).toVar();
const AgXInsetMatrix = mat3( vec3( 0.856627153315983, 0.137318972929847, 0.11189821299995 ), vec3( 0.0951212405381588, 0.761241990602591, 0.0767994186031903 ), vec3( 0.0482516061458583, 0.101439036467562, 0.811302368396859 ) );
const AgXOutsetMatrix = mat3( vec3( 1.1271005818144368, - 0.1413297634984383, - 0.14132976349843826 ), vec3( - 0.11060664309660323, 1.157823702216272, - 0.11060664309660294 ), vec3( - 0.016493938717834573, - 0.016493938717834257, 1.2519364065950405 ) );
const AgxMinEv = float( - 12.47393 );
const AgxMaxEv = float( 4.026069 );
colortone.mulAssign( exposure );
colortone.assign( LINEAR_SRGB_TO_LINEAR_REC2020.mul( colortone ) );
colortone.assign( AgXInsetMatrix.mul( colortone ) );
colortone.assign( max$1( colortone, 1e-10 ) );
colortone.assign( log2( colortone ) );
colortone.assign( colortone.sub( AgxMinEv ).div( AgxMaxEv.sub( AgxMinEv ) ) );
colortone.assign( clamp( colortone, 0.0, 1.0 ) );
colortone.assign( agxDefaultContrastApprox( colortone ) );
colortone.assign( AgXOutsetMatrix.mul( colortone ) );
colortone.assign( pow( max$1( vec3( 0.0 ), colortone ), vec3( 2.2 ) ) );
colortone.assign( LINEAR_REC2020_TO_LINEAR_SRGB.mul( colortone ) );
colortone.assign( clamp( colortone, 0.0, 1.0 ) );
return colortone;
} );
// https://modelviewer.dev/examples/tone-mapping
const NeutralToneMappingNode = tslFn( ( { color, exposure } ) => {
const StartCompression = float( 0.8 - 0.04 );
const Desaturation = float( 0.15 );
color = color.mul( exposure );
const x = min$1( color.r, min$1( color.g, color.b ) );
const offset = cond( x.lessThan( 0.08 ), x.sub( mul( 6.25, x.mul( x ) ) ), 0.04 );
color.subAssign( offset );
const peak = max$1( color.r, max$1( color.g, color.b ) );
If( peak.lessThan( StartCompression ), () => {
return color;
} );
const d = sub( 1, StartCompression );
const newPeak = sub( 1, d.mul( d ).div( peak.add( d.sub( StartCompression ) ) ) );
color.mulAssign( newPeak.div( peak ) );
const g = sub( 1, div( 1, Desaturation.mul( peak.sub( newPeak ) ).add( 1 ) ) );
return mix( color, vec3( newPeak ), g );
} ).setLayout( {
name: 'NeutralToneMapping',
type: 'vec3',
inputs: [
{ name: 'color', type: 'vec3' },
{ name: 'exposure', type: 'float' }
]
} );
const toneMappingLib = {
[ LinearToneMapping ]: LinearToneMappingNode,
[ ReinhardToneMapping ]: ReinhardToneMappingNode,
[ CineonToneMapping ]: OptimizedCineonToneMappingNode,
[ ACESFilmicToneMapping ]: ACESFilmicToneMappingNode,
[ AgXToneMapping ]: AGXToneMappingNode,
[ NeutralToneMapping ]: NeutralToneMappingNode
};
class ToneMappingNode extends TempNode {
constructor( toneMapping = NoToneMapping, exposureNode = toneMappingExposure, colorNode = null ) {
super( 'vec3' );
this.toneMapping = toneMapping;
this.exposureNode = exposureNode;
this.colorNode = colorNode;
}
getCacheKey() {
let cacheKey = super.getCacheKey();
cacheKey = '{toneMapping:' + this.toneMapping + ',nodes:' + cacheKey + '}';
return cacheKey;
}
setup( builder ) {
const colorNode = this.colorNode || builder.context.color;
const toneMapping = this.toneMapping;
if ( toneMapping === NoToneMapping ) return colorNode;
const toneMappingParams = { exposure: this.exposureNode, color: colorNode };
const toneMappingNode = toneMappingLib[ toneMapping ];
let outputNode = null;
if ( toneMappingNode ) {
outputNode = toneMappingNode( toneMappingParams );
} else {
console.error( 'ToneMappingNode: Unsupported Tone Mapping configuration.', toneMapping );
outputNode = colorNode;
}
return outputNode;
}
}
const toneMapping = ( mapping, exposure, color ) => nodeObject( new ToneMappingNode( mapping, nodeObject( exposure ), nodeObject( color ) ) );
const toneMappingExposure = rendererReference( 'toneMappingExposure', 'float' );
addNodeElement( 'toneMapping', ( color, mapping, exposure ) => toneMapping( mapping, exposure, color ) );
addNodeClass( 'ToneMappingNode', ToneMappingNode );
let _sharedFramebuffer = null;
class ViewportSharedTextureNode extends ViewportTextureNode {
constructor( uvNode = viewportTopLeft, levelNode = null ) {
if ( _sharedFramebuffer === null ) {
_sharedFramebuffer = new FramebufferTexture();
}
super( uvNode, levelNode, _sharedFramebuffer );
}
updateReference() {
return this;
}
}
const viewportSharedTexture = nodeProxy( ViewportSharedTextureNode );
addNodeElement( 'viewportSharedTexture', viewportSharedTexture );
addNodeClass( 'ViewportSharedTextureNode', ViewportSharedTextureNode );
const _size$4 = /*@__PURE__*/ new Vector2();
class PassTextureNode extends TextureNode {
constructor( passNode, texture ) {
super( texture );
this.passNode = passNode;
this.setUpdateMatrix( false );
}
setup( builder ) {
this.passNode.build( builder );
return super.setup( builder );
}
clone() {
return new this.constructor( this.passNode, this.value );
}
}
class PassMultipleTextureNode extends PassTextureNode {
constructor( passNode, textureName ) {
super( passNode, null );
this.textureName = textureName;
}
setup( builder ) {
this.value = this.passNode.getTexture( this.textureName );
return super.setup( builder );
}
clone() {
return new this.constructor( this.passNode, this.textureName );
}
}
class PassNode extends TempNode {
constructor( scope, scene, camera, options = {} ) {
super( 'vec4' );
this.scope = scope;
this.scene = scene;
this.camera = camera;
this.options = options;
this._pixelRatio = 1;
this._width = 1;
this._height = 1;
const depthTexture = new DepthTexture();
depthTexture.isRenderTargetTexture = true;
//depthTexture.type = FloatType;
depthTexture.name = 'depth';
const renderTarget = new RenderTarget( this._width * this._pixelRatio, this._height * this._pixelRatio, { type: HalfFloatType, ...options, } );
renderTarget.texture.name = 'output';
renderTarget.depthTexture = depthTexture;
this.renderTarget = renderTarget;
this.updateBeforeType = NodeUpdateType.FRAME;
this._textures = {
output: renderTarget.texture,
depth: depthTexture
};
this._textureNodes = {};
this._linearDepthNodes = {};
this._viewZNodes = {};
this._cameraNear = uniform( 0 );
this._cameraFar = uniform( 0 );
this._mrt = null;
this.isPassNode = true;
}
setMRT( mrt ) {
this._mrt = mrt;
return this;
}
getMRT() {
return this._mrt;
}
isGlobal() {
return true;
}
getTexture( name ) {
let texture = this._textures[ name ];
if ( texture === undefined ) {
const refTexture = this.renderTarget.texture;
texture = refTexture.clone();
texture.isRenderTargetTexture = true;
texture.name = name;
this._textures[ name ] = texture;
this.renderTarget.textures.push( texture );
}
return texture;
}
getTextureNode( name = 'output' ) {
let textureNode = this._textureNodes[ name ];
if ( textureNode === undefined ) {
this._textureNodes[ name ] = textureNode = nodeObject( new PassMultipleTextureNode( this, name ) );
}
return textureNode;
}
getViewZNode( name = 'depth' ) {
let viewZNode = this._viewZNodes[ name ];
if ( viewZNode === undefined ) {
const cameraNear = this._cameraNear;
const cameraFar = this._cameraFar;
this._viewZNodes[ name ] = viewZNode = perspectiveDepthToViewZ( this.getTextureNode( name ), cameraNear, cameraFar );
}
return viewZNode;
}
getLinearDepthNode( name = 'depth' ) {
let linearDepthNode = this._linearDepthNodes[ name ];
if ( linearDepthNode === undefined ) {
const cameraNear = this._cameraNear;
const cameraFar = this._cameraFar;
const viewZNode = this.getViewZNode( name );
// TODO: just if ( builder.camera.isPerspectiveCamera )
this._linearDepthNodes[ name ] = linearDepthNode = viewZToOrthographicDepth( viewZNode, cameraNear, cameraFar );
}
return linearDepthNode;
}
setup( { renderer } ) {
this.renderTarget.samples = this.options.samples === undefined ? renderer.samples : this.options.samples;
// Disable MSAA for WebGL backend for now
if ( renderer.backend.isWebGLBackend === true ) {
this.renderTarget.samples = 0;
}
this.renderTarget.depthTexture.isMultisampleRenderTargetTexture = this.renderTarget.samples > 1;
return this.scope === PassNode.COLOR ? this.getTextureNode() : this.getLinearDepthNode();
}
updateBefore( frame ) {
const { renderer } = frame;
const { scene, camera } = this;
this._pixelRatio = renderer.getPixelRatio();
const size = renderer.getSize( _size$4 );
this.setSize( size.width, size.height );
const currentRenderTarget = renderer.getRenderTarget();
const currentMRT = renderer.getMRT();
this._cameraNear.value = camera.near;
this._cameraFar.value = camera.far;
renderer.setRenderTarget( this.renderTarget );
renderer.setMRT( this._mrt );
renderer.render( scene, camera );
renderer.setRenderTarget( currentRenderTarget );
renderer.setMRT( currentMRT );
}
setSize( width, height ) {
this._width = width;
this._height = height;
const effectiveWidth = this._width * this._pixelRatio;
const effectiveHeight = this._height * this._pixelRatio;
this.renderTarget.setSize( effectiveWidth, effectiveHeight );
}
setPixelRatio( pixelRatio ) {
this._pixelRatio = pixelRatio;
this.setSize( this._width, this._height );
}
dispose() {
this.renderTarget.dispose();
}
}
PassNode.COLOR = 'color';
PassNode.DEPTH = 'depth';
const pass = ( scene, camera, options ) => nodeObject( new PassNode( PassNode.COLOR, scene, camera, options ) );
const passTexture = ( pass, texture ) => nodeObject( new PassTextureNode( pass, texture ) );
const depthPass = ( scene, camera ) => nodeObject( new PassNode( PassNode.DEPTH, scene, camera ) );
addNodeClass( 'PassNode', PassNode );
// WebGPU: The use of a single QuadMesh for both gaussian blur passes results in a single RenderObject with a SampledTexture binding that
// alternates between source textures and triggers creation of new BindGroups and BindGroupLayouts every frame.
const _quadMesh1 = /*@__PURE__*/ new QuadMesh();
const _quadMesh2 = /*@__PURE__*/ new QuadMesh();
class GaussianBlurNode extends TempNode {
constructor( textureNode, directionNode = null, sigma = 2 ) {
super( 'vec4' );
this.textureNode = textureNode;
this.directionNode = directionNode;
this.sigma = sigma;
this._invSize = uniform( new Vector2() );
this._passDirection = uniform( new Vector2() );
this._horizontalRT = new RenderTarget();
this._horizontalRT.texture.name = 'GaussianBlurNode.horizontal';
this._verticalRT = new RenderTarget();
this._verticalRT.texture.name = 'GaussianBlurNode.vertical';
this._textureNode = passTexture( this, this._verticalRT.texture );
this.updateBeforeType = NodeUpdateType.RENDER;
this.resolution = new Vector2( 1, 1 );
}
setSize( width, height ) {
width = Math.max( Math.round( width * this.resolution.x ), 1 );
height = Math.max( Math.round( height * this.resolution.y ), 1 );
this._invSize.value.set( 1 / width, 1 / height );
this._horizontalRT.setSize( width, height );
this._verticalRT.setSize( width, height );
}
updateBefore( frame ) {
const { renderer } = frame;
const textureNode = this.textureNode;
const map = textureNode.value;
const currentRenderTarget = renderer.getRenderTarget();
const currentMRT = renderer.getMRT();
const currentTexture = textureNode.value;
_quadMesh1.material = this._material;
_quadMesh2.material = this._material;
this.setSize( map.image.width, map.image.height );
const textureType = map.type;
this._horizontalRT.texture.type = textureType;
this._verticalRT.texture.type = textureType;
// clear
renderer.setMRT( null );
// horizontal
renderer.setRenderTarget( this._horizontalRT );
this._passDirection.value.set( 1, 0 );
_quadMesh1.render( renderer );
// vertical
textureNode.value = this._horizontalRT.texture;
renderer.setRenderTarget( this._verticalRT );
this._passDirection.value.set( 0, 1 );
_quadMesh2.render( renderer );
// restore
renderer.setRenderTarget( currentRenderTarget );
renderer.setMRT( currentMRT );
textureNode.value = currentTexture;
}
getTextureNode() {
return this._textureNode;
}
setup( builder ) {
const textureNode = this.textureNode;
if ( textureNode.isTextureNode !== true ) {
console.error( 'GaussianBlurNode requires a TextureNode.' );
return vec4();
}
//
const uvNode = textureNode.uvNode || uv();
const directionNode = vec2( this.directionNode || 1 );
const sampleTexture = ( uv ) => textureNode.uv( uv );
const blur = tslFn( () => {
const kernelSize = 3 + ( 2 * this.sigma );
const gaussianCoefficients = this._getCoefficients( kernelSize );
const invSize = this._invSize;
const direction = directionNode.mul( this._passDirection );
const weightSum = float( gaussianCoefficients[ 0 ] ).toVar();
const diffuseSum = vec4( sampleTexture( uvNode ).mul( weightSum ) ).toVar();
for ( let i = 1; i < kernelSize; i ++ ) {
const x = float( i );
const w = float( gaussianCoefficients[ i ] );
const uvOffset = vec2( direction.mul( invSize.mul( x ) ) ).toVar();
const sample1 = vec4( sampleTexture( uvNode.add( uvOffset ) ) );
const sample2 = vec4( sampleTexture( uvNode.sub( uvOffset ) ) );
diffuseSum.addAssign( sample1.add( sample2 ).mul( w ) );
weightSum.addAssign( mul( 2.0, w ) );
}
return diffuseSum.div( weightSum );
} );
//
const material = this._material || ( this._material = builder.createNodeMaterial() );
material.fragmentNode = blur().context( builder.getSharedContext() );
material.needsUpdate = true;
//
const properties = builder.getNodeProperties( this );
properties.textureNode = textureNode;
//
return this._textureNode;
}
dispose() {
this._horizontalRT.dispose();
this._verticalRT.dispose();
}
_getCoefficients( kernelRadius ) {
const coefficients = [];
for ( let i = 0; i < kernelRadius; i ++ ) {
coefficients.push( 0.39894 * Math.exp( - 0.5 * i * i / ( kernelRadius * kernelRadius ) ) / kernelRadius );
}
return coefficients;
}
}
const gaussianBlur = ( node, directionNode, sigma ) => nodeObject( new GaussianBlurNode( nodeObject( node ).toTexture(), directionNode, sigma ) );
addNodeElement( 'gaussianBlur', gaussianBlur );
const _size$3 = /*@__PURE__*/ new Vector2();
const _quadMeshComp = /*@__PURE__*/ new QuadMesh();
class AfterImageNode extends TempNode {
constructor( textureNode, damp = 0.96 ) {
super( textureNode );
this.textureNode = textureNode;
this.textureNodeOld = texture();
this.damp = uniform( damp );
this._compRT = new RenderTarget();
this._compRT.texture.name = 'AfterImageNode.comp';
this._oldRT = new RenderTarget();
this._oldRT.texture.name = 'AfterImageNode.old';
this._textureNode = passTexture( this, this._compRT.texture );
this.updateBeforeType = NodeUpdateType.RENDER;
}
getTextureNode() {
return this._textureNode;
}
setSize( width, height ) {
this._compRT.setSize( width, height );
this._oldRT.setSize( width, height );
}
updateBefore( frame ) {
const { renderer } = frame;
const textureNode = this.textureNode;
const map = textureNode.value;
const textureType = map.type;
this._compRT.texture.type = textureType;
this._oldRT.texture.type = textureType;
renderer.getDrawingBufferSize( _size$3 );
this.setSize( _size$3.x, _size$3.y );
const currentRenderTarget = renderer.getRenderTarget();
const currentTexture = textureNode.value;
this.textureNodeOld.value = this._oldRT.texture;
// comp
renderer.setRenderTarget( this._compRT );
_quadMeshComp.render( renderer );
// Swap the textures
const temp = this._oldRT;
this._oldRT = this._compRT;
this._compRT = temp;
renderer.setRenderTarget( currentRenderTarget );
textureNode.value = currentTexture;
}
setup( builder ) {
const textureNode = this.textureNode;
const textureNodeOld = this.textureNodeOld;
//
const uvNode = textureNode.uvNode || uv();
textureNodeOld.uvNode = uvNode;
const sampleTexture = ( uv ) => textureNode.uv( uv );
const when_gt = tslFn( ( [ x_immutable, y_immutable ] ) => {
const y = float( y_immutable ).toVar();
const x = vec4( x_immutable ).toVar();
return max$1( sign( x.sub( y ) ), 0.0 );
} );
const afterImg = tslFn( () => {
const texelOld = vec4( textureNodeOld );
const texelNew = vec4( sampleTexture( uvNode ) );
texelOld.mulAssign( this.damp.mul( when_gt( texelOld, 0.1 ) ) );
return max$1( texelNew, texelOld );
} );
//
const materialComposed = this._materialComposed || ( this._materialComposed = builder.createNodeMaterial() );
materialComposed.fragmentNode = afterImg();
_quadMeshComp.material = materialComposed;
//
const properties = builder.getNodeProperties( this );
properties.textureNode = textureNode;
//
return this._textureNode;
}
dispose() {
this._compRT.dispose();
this._oldRT.dispose();
}
}
const afterImage = ( node, damp ) => nodeObject( new AfterImageNode( nodeObject( node ).toTexture(), damp ) );
addNodeElement( 'afterImage', afterImage );
const _quadMesh$3 = /*@__PURE__*/ new QuadMesh();
class AnamorphicNode extends TempNode {
constructor( textureNode, tresholdNode, scaleNode, samples ) {
super( 'vec4' );
this.textureNode = textureNode;
this.tresholdNode = tresholdNode;
this.scaleNode = scaleNode;
this.colorNode = vec3( 0.1, 0.0, 1.0 );
this.samples = samples;
this.resolution = new Vector2( 1, 1 );
this._renderTarget = new RenderTarget();
this._renderTarget.texture.name = 'anamorphic';
this._invSize = uniform( new Vector2() );
this._textureNode = passTexture( this, this._renderTarget.texture );
this.updateBeforeType = NodeUpdateType.RENDER;
}
getTextureNode() {
return this._textureNode;
}
setSize( width, height ) {
this._invSize.value.set( 1 / width, 1 / height );
width = Math.max( Math.round( width * this.resolution.x ), 1 );
height = Math.max( Math.round( height * this.resolution.y ), 1 );
this._renderTarget.setSize( width, height );
}
updateBefore( frame ) {
const { renderer } = frame;
const textureNode = this.textureNode;
const map = textureNode.value;
this._renderTarget.texture.type = map.type;
const currentRenderTarget = renderer.getRenderTarget();
const currentTexture = textureNode.value;
_quadMesh$3.material = this._material;
this.setSize( map.image.width, map.image.height );
// render
renderer.setRenderTarget( this._renderTarget );
_quadMesh$3.render( renderer );
// restore
renderer.setRenderTarget( currentRenderTarget );
textureNode.value = currentTexture;
}
setup( builder ) {
const textureNode = this.textureNode;
const uvNode = textureNode.uvNode || uv();
const sampleTexture = ( uv ) => textureNode.uv( uv );
const anamorph = tslFn( () => {
const samples = this.samples;
const halfSamples = Math.floor( samples / 2 );
const total = vec3( 0 ).toVar();
loop( { start: - halfSamples, end: halfSamples }, ( { i } ) => {
const softness = float( i ).abs().div( halfSamples ).oneMinus();
const uv = vec2( uvNode.x.add( this._invSize.x.mul( i ).mul( this.scaleNode ) ), uvNode.y );
const color = sampleTexture( uv );
const pass = threshold( color, this.tresholdNode ).mul( softness );
total.addAssign( pass );
} );
return total.mul( this.colorNode );
} );
//
const material = this._material || ( this._material = builder.createNodeMaterial() );
material.fragmentNode = anamorph();
//
const properties = builder.getNodeProperties( this );
properties.textureNode = textureNode;
//
return this._textureNode;
}
dispose() {
this._renderTarget.dispose();
}
}
const anamorphic = ( node, threshold = .9, scale = 3, samples = 32 ) => nodeObject( new AnamorphicNode( nodeObject( node ).toTexture(), nodeObject( threshold ), nodeObject( scale ), samples ) );
addNodeElement( 'anamorphic', anamorphic );
class SobelOperatorNode extends TempNode {
constructor( textureNode ) {
super();
this.textureNode = textureNode;
this.updateBeforeType = NodeUpdateType.RENDER;
this._invSize = uniform( new Vector2() );
}
updateBefore() {
const map = this.textureNode.value;
this._invSize.value.set( 1 / map.image.width, 1 / map.image.height );
}
setup() {
const { textureNode } = this;
const uvNode = textureNode.uvNode || uv();
const sampleTexture = ( uv ) => textureNode.uv( uv );
const sobel = tslFn( () => {
// Sobel Edge Detection (see https://youtu.be/uihBwtPIBxM)
const texel = this._invSize;
// kernel definition (in glsl matrices are filled in column-major order)
const Gx = mat3( - 1, - 2, - 1, 0, 0, 0, 1, 2, 1 ); // x direction kernel
const Gy = mat3( - 1, 0, 1, - 2, 0, 2, - 1, 0, 1 ); // y direction kernel
// fetch the 3x3 neighbourhood of a fragment
// first column
const tx0y0 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( - 1, - 1 ) ) ) ).xyz );
const tx0y1 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( - 1, 0 ) ) ) ).xyz );
const tx0y2 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( - 1, 1 ) ) ) ).xyz );
// second column
const tx1y0 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( 0, - 1 ) ) ) ).xyz );
const tx1y1 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( 0, 0 ) ) ) ).xyz );
const tx1y2 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( 0, 1 ) ) ) ).xyz );
// third column
const tx2y0 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( 1, - 1 ) ) ) ).xyz );
const tx2y1 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( 1, 0 ) ) ) ).xyz );
const tx2y2 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( 1, 1 ) ) ) ).xyz );
// gradient value in x direction
const valueGx = add(
Gx[ 0 ][ 0 ].mul( tx0y0 ),
Gx[ 1 ][ 0 ].mul( tx1y0 ),
Gx[ 2 ][ 0 ].mul( tx2y0 ),
Gx[ 0 ][ 1 ].mul( tx0y1 ),
Gx[ 1 ][ 1 ].mul( tx1y1 ),
Gx[ 2 ][ 1 ].mul( tx2y1 ),
Gx[ 0 ][ 2 ].mul( tx0y2 ),
Gx[ 1 ][ 2 ].mul( tx1y2 ),
Gx[ 2 ][ 2 ].mul( tx2y2 )
);
// gradient value in y direction
const valueGy = add(
Gy[ 0 ][ 0 ].mul( tx0y0 ),
Gy[ 1 ][ 0 ].mul( tx1y0 ),
Gy[ 2 ][ 0 ].mul( tx2y0 ),
Gy[ 0 ][ 1 ].mul( tx0y1 ),
Gy[ 1 ][ 1 ].mul( tx1y1 ),
Gy[ 2 ][ 1 ].mul( tx2y1 ),
Gy[ 0 ][ 2 ].mul( tx0y2 ),
Gy[ 1 ][ 2 ].mul( tx1y2 ),
Gy[ 2 ][ 2 ].mul( tx2y2 )
);
// magnitute of the total gradient
const G = valueGx.mul( valueGx ).add( valueGy.mul( valueGy ) ).sqrt();
return vec4( vec3( G ), 1 );
} );
const outputNode = sobel();
return outputNode;
}
}
const sobel = ( node ) => nodeObject( new SobelOperatorNode( nodeObject( node ).toTexture() ) );
addNodeElement( 'sobel', sobel );
class DepthOfFieldNode extends TempNode {
constructor( textureNode, viewZNode, focusNode, apertureNode, maxblurNode ) {
super();
this.textureNode = textureNode;
this.viewZNode = viewZNode;
this.focusNode = focusNode;
this.apertureNode = apertureNode;
this.maxblurNode = maxblurNode;
this._aspect = uniform( 0 );
this.updateBeforeType = NodeUpdateType.RENDER;
}
updateBefore() {
const map = this.textureNode.value;
this._aspect.value = map.image.width / map.image.height;
}
setup() {
const textureNode = this.textureNode;
const uvNode = textureNode.uvNode || uv();
const sampleTexture = ( uv ) => textureNode.uv( uv );
const dof = tslFn( () => {
const aspectcorrect = vec2( 1.0, this._aspect );
const factor = this.focusNode.add( this.viewZNode );
const dofblur = vec2( clamp( factor.mul( this.apertureNode ), this.maxblurNode.negate(), this.maxblurNode ) );
const dofblur9 = dofblur.mul( 0.9 );
const dofblur7 = dofblur.mul( 0.7 );
const dofblur4 = dofblur.mul( 0.4 );
let col = vec4( 0.0 );
col = col.add( sampleTexture( uvNode ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.0, 0.4 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.15, 0.37 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.29, 0.29 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.37, 0.15 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.40, 0.0 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.37, - 0.15 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.29, - 0.29 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.15, - 0.37 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.0, - 0.4 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.15, 0.37 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.29, 0.29 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.37, 0.15 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.4, 0.0 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.37, - 0.15 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.29, - 0.29 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.15, - 0.37 ).mul( aspectcorrect ).mul( dofblur ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.15, 0.37 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.37, 0.15 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.37, - 0.15 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.15, - 0.37 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.15, 0.37 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.37, 0.15 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.37, - 0.15 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.15, - 0.37 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.29, 0.29 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.40, 0.0 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.29, - 0.29 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.0, - 0.4 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.29, 0.29 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.4, 0.0 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.29, - 0.29 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.0, 0.4 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.29, 0.29 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.4, 0.0 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.29, - 0.29 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.0, - 0.4 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.29, 0.29 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.4, 0.0 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( - 0.29, - 0.29 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) );
col = col.add( sampleTexture( uvNode.add( vec2( 0.0, 0.4 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) );
col = col.div( 41 );
col.a = 1;
return vec4( col );
} );
const outputNode = dof();
return outputNode;
}
}
const dof = ( node, viewZNode, focus = 1, aperture = 0.025, maxblur = 1 ) => nodeObject( new DepthOfFieldNode( nodeObject( node ).toTexture(), nodeObject( viewZNode ), nodeObject( focus ), nodeObject( aperture ), nodeObject( maxblur ) ) );
addNodeElement( 'dof', dof );
class DotScreenNode extends TempNode {
constructor( inputNode, center = new Vector2( 0.5, 0.5 ), angle = 1.57, scale = 1 ) {
super( 'vec4' );
this.inputNode = inputNode;
this.center = uniform( center );
this.angle = uniform( angle );
this.scale = uniform( scale );
this._size = uniform( new Vector2() );
this.updateBeforeType = NodeUpdateType.RENDER;
}
updateBefore( frame ) {
const { renderer } = frame;
renderer.getDrawingBufferSize( this._size.value );
}
setup() {
const inputNode = this.inputNode;
const pattern = tslFn( () => {
const s = sin( this.angle );
const c = cos( this.angle );
const tex = uv().mul( this._size ).sub( this.center );
const point = vec2( c.mul( tex.x ).sub( s.mul( tex.y ) ), s.mul( tex.x ).add( c.mul( tex.y ) ) ).mul( this.scale );
return sin( point.x ).mul( sin( point.y ) ).mul( 4 );
} );
const dotScreen = tslFn( () => {
const color = inputNode;
const average = add( color.r, color.g, color.b ).div( 3 );
return vec4( vec3( average.mul( 10 ).sub( 5 ).add( pattern() ) ), color.a );
} );
const outputNode = dotScreen();
return outputNode;
}
}
const dotScreen = ( node, center, angle, scale ) => nodeObject( new DotScreenNode( nodeObject( node ), center, angle, scale ) );
addNodeElement( 'dotScreen', dotScreen );
class RGBShiftNode extends TempNode {
constructor( textureNode, amount = 0.005, angle = 0 ) {
super( 'vec4' );
this.textureNode = textureNode;
this.amount = uniform( amount );
this.angle = uniform( angle );
}
setup() {
const { textureNode } = this;
const uvNode = textureNode.uvNode || uv();
const sampleTexture = ( uv ) => textureNode.uv( uv );
const rgbShift = tslFn( () => {
const offset = vec2( cos( this.angle ), sin( this.angle ) ).mul( this.amount );
const cr = sampleTexture( uvNode.add( offset ) );
const cga = sampleTexture( uvNode );
const cb = sampleTexture( uvNode.sub( offset ) );
return vec4( cr.r, cga.g, cb.b, cga.a );
} );
return rgbShift();
}
}
const rgbShift = ( node, amount, angle ) => nodeObject( new RGBShiftNode( nodeObject( node ).toTexture(), amount, angle ) );
addNodeElement( 'rgbShift', rgbShift );
class FilmNode extends TempNode {
constructor( inputNode, intensityNode = null, uvNode = null ) {
super();
this.inputNode = inputNode;
this.intensityNode = intensityNode;
this.uvNode = uvNode;
}
setup() {
const uvNode = this.uvNode || uv();
const film = tslFn( () => {
const base = this.inputNode.rgb;
const noise = rand( fract( uvNode.add( timerLocal() ) ) );
let color = base.add( base.mul( clamp( noise.add( 0.1 ), 0, 1 ) ) );
if ( this.intensityNode !== null ) {
color = mix( base, color, this.intensityNode );
}
return vec4( color, this.inputNode.a );
} );
const outputNode = film();
return outputNode;
}
}
const film = nodeProxy( FilmNode );
addNodeElement( 'film', film );
class Lut3DNode extends TempNode {
constructor( inputNode, lutNode, size, intensityNode ) {
super();
this.inputNode = inputNode;
this.lutNode = lutNode;
this.size = uniform( size );
this.intensityNode = intensityNode;
}
setup() {
const { inputNode, lutNode } = this;
const sampleLut = ( uv ) => lutNode.uv( uv );
const lut3D = tslFn( () => {
const base = inputNode;
// pull the sample in by half a pixel so the sample begins at the center of the edge pixels.
const pixelWidth = float( 1.0 ).div( this.size );
const halfPixelWidth = float( 0.5 ).div( this.size );
const uvw = vec3( halfPixelWidth ).add( base.rgb.mul( float( 1.0 ).sub( pixelWidth ) ) );
const lutValue = vec4( sampleLut( uvw ).rgb, base.a );
return vec4( mix( base, lutValue, this.intensityNode ) );
} );
const outputNode = lut3D();
return outputNode;
}
}
const lut3D = ( node, lut, size, intensity ) => nodeObject( new Lut3DNode( nodeObject( node ), nodeObject( lut ), size, nodeObject( intensity ) ) );
addNodeElement( 'lut3D', lut3D );
const _quadMesh$2 = /*@__PURE__*/ new QuadMesh();
const _currentClearColor$1 = /*@__PURE__*/ new Color();
const _size$2 = /*@__PURE__*/ new Vector2();
class GTAONode extends TempNode {
constructor( depthNode, normalNode, camera ) {
super();
this.depthNode = depthNode;
this.normalNode = normalNode;
this.radius = uniform( 0.25 );
this.resolution = uniform( new Vector2() );
this.thickness = uniform( 1 );
this.distanceExponent = uniform( 1 );
this.distanceFallOff = uniform( 1 );
this.scale = uniform( 1 );
this.noiseNode = texture( generateMagicSquareNoise() );
this.cameraProjectionMatrix = uniform( camera.projectionMatrix );
this.cameraProjectionMatrixInverse = uniform( camera.projectionMatrixInverse );
this.SAMPLES = uniform( 16 );
this._aoRenderTarget = new RenderTarget();
this._aoRenderTarget.texture.name = 'GTAONode.AO';
this._material = null;
this._textureNode = passTexture( this, this._aoRenderTarget.texture );
this.updateBeforeType = NodeUpdateType.FRAME;
}
getTextureNode() {
return this._textureNode;
}
setSize( width, height ) {
this.resolution.value.set( width, height );
this._aoRenderTarget.setSize( width, height );
}
updateBefore( frame ) {
const { renderer } = frame;
const size = renderer.getDrawingBufferSize( _size$2 );
const currentRenderTarget = renderer.getRenderTarget();
const currentMRT = renderer.getMRT();
renderer.getClearColor( _currentClearColor$1 );
const currentClearAlpha = renderer.getClearAlpha();
_quadMesh$2.material = this._material;
this.setSize( size.width, size.height );
// clear
renderer.setMRT( null );
renderer.setClearColor( 0xffffff, 1 );
// ao
renderer.setRenderTarget( this._aoRenderTarget );
_quadMesh$2.render( renderer );
// restore
renderer.setRenderTarget( currentRenderTarget );
renderer.setMRT( currentMRT );
renderer.setClearColor( _currentClearColor$1, currentClearAlpha );
}
setup( builder ) {
const uvNode = uv();
const sampleDepth = ( uv ) => this.depthNode.uv( uv ).x;
const sampleNoise = ( uv ) => this.noiseNode.uv( uv );
const getSceneUvAndDepth = tslFn( ( [ sampleViewPos ] )=> {
const sampleClipPos = this.cameraProjectionMatrix.mul( vec4( sampleViewPos, 1.0 ) );
let sampleUv = sampleClipPos.xy.div( sampleClipPos.w ).mul( 0.5 ).add( 0.5 ).toVar();
sampleUv = vec2( sampleUv.x, sampleUv.y.oneMinus() );
const sampleSceneDepth = sampleDepth( sampleUv );
return vec3( sampleUv, sampleSceneDepth );
} );
const getViewPosition = tslFn( ( [ screenPosition, depth ] ) => {
screenPosition = vec2( screenPosition.x, screenPosition.y.oneMinus() ).mul( 2.0 ).sub( 1.0 );
const clipSpacePosition = vec4( vec3( screenPosition, depth ), 1.0 );
const viewSpacePosition = vec4( this.cameraProjectionMatrixInverse.mul( clipSpacePosition ) );
return viewSpacePosition.xyz.div( viewSpacePosition.w );
} );
const ao = tslFn( () => {
const depth = sampleDepth( uvNode );
depth.greaterThanEqual( 1.0 ).discard();
const viewPosition = getViewPosition( uvNode, depth );
const viewNormal = this.normalNode.rgb.normalize();
const radiusToUse = this.radius;
const noiseResolution = textureSize( this.noiseNode, 0 );
let noiseUv = vec2( uvNode.x, uvNode.y.oneMinus() );
noiseUv = noiseUv.mul( this.resolution.div( noiseResolution ) );
const noiseTexel = sampleNoise( noiseUv );
const randomVec = noiseTexel.xyz.mul( 2.0 ).sub( 1.0 );
const tangent = vec3( randomVec.xy, 0.0 ).normalize();
const bitangent = vec3( tangent.y.mul( - 1.0 ), tangent.x, 0.0 );
const kernelMatrix = mat3( tangent, bitangent, vec3( 0.0, 0.0, 1.0 ) );
const DIRECTIONS = this.SAMPLES.lessThan( 30 ).cond( 3, 5 );
const STEPS = add( this.SAMPLES, DIRECTIONS.sub( 1 ) ).div( DIRECTIONS );
const ao = float( 0 ).toVar();
loop( { start: int( 0 ), end: DIRECTIONS, type: 'int', condition: '<' }, ( { i } ) => {
const angle = float( i ).div( float( DIRECTIONS ) ).mul( PI );
const sampleDir = vec4( cos( angle ), sin( angle ), 0., add( 0.5, mul( 0.5, noiseTexel.w ) ) );
sampleDir.xyz = normalize( kernelMatrix.mul( sampleDir.xyz ) );
const viewDir = normalize( viewPosition.xyz.negate() );
const sliceBitangent = normalize( cross( sampleDir.xyz, viewDir ) );
const sliceTangent = cross( sliceBitangent, viewDir );
const normalInSlice = normalize( viewNormal.sub( sliceBitangent.mul( dot( viewNormal, sliceBitangent ) ) ) );
const tangentToNormalInSlice = cross( normalInSlice, sliceBitangent );
const cosHorizons = vec2( dot( viewDir, tangentToNormalInSlice ), dot( viewDir, tangentToNormalInSlice.negate() ) ).toVar();
loop( { end: STEPS, type: 'int', name: 'j', condition: '<' }, ( { j } ) => {
const sampleViewOffset = sampleDir.xyz.mul( radiusToUse ).mul( sampleDir.w ).mul( pow( div( float( j ).add( 1.0 ), float( STEPS ) ), this.distanceExponent ) );
// x
const sampleSceneUvDepthX = getSceneUvAndDepth( viewPosition.add( sampleViewOffset ) );
const sampleSceneViewPositionX = getViewPosition( sampleSceneUvDepthX.xy, sampleSceneUvDepthX.z );
const viewDeltaX = sampleSceneViewPositionX.sub( viewPosition );
If( abs( viewDeltaX.z ).lessThan( this.thickness ), () => {
const sampleCosHorizon = dot( viewDir, normalize( viewDeltaX ) );
cosHorizons.x.addAssign( max$1( 0, mul( sampleCosHorizon.sub( cosHorizons.x ), mix( 1.0, float( 2.0 ).div( float( j ).add( 2 ) ), this.distanceFallOff ) ) ) );
} );
// y
const sampleSceneUvDepthY = getSceneUvAndDepth( viewPosition.sub( sampleViewOffset ) );
const sampleSceneViewPositionY = getViewPosition( sampleSceneUvDepthY.xy, sampleSceneUvDepthY.z );
const viewDeltaY = sampleSceneViewPositionY.sub( viewPosition );
If( abs( viewDeltaY.z ).lessThan( this.thickness ), () => {
const sampleCosHorizon = dot( viewDir, normalize( viewDeltaY ) );
cosHorizons.y.addAssign( max$1( 0, mul( sampleCosHorizon.sub( cosHorizons.y ), mix( 1.0, float( 2.0 ).div( float( j ).add( 2 ) ), this.distanceFallOff ) ) ) );
} );
} );
const sinHorizons = sqrt( sub( 1.0, cosHorizons.mul( cosHorizons ) ) );
const nx = dot( normalInSlice, sliceTangent );
const ny = dot( normalInSlice, viewDir );
const nxb = mul( 0.5, acos( cosHorizons.y ).sub( acos( cosHorizons.x ) ).add( sinHorizons.x.mul( cosHorizons.x ).sub( sinHorizons.y.mul( cosHorizons.y ) ) ) );
const nyb = mul( 0.5, sub( 2.0, cosHorizons.x.mul( cosHorizons.x ) ).sub( cosHorizons.y.mul( cosHorizons.y ) ) );
const occlusion = nx.mul( nxb ).add( ny.mul( nyb ) );
ao.addAssign( occlusion );
} );
ao.assign( clamp( ao.div( DIRECTIONS ), 0, 1 ) );
ao.assign( pow( ao, this.scale ) );
return vec4( vec3( ao ), 1.0 );
} );
const material = this._material || ( this._material = builder.createNodeMaterial() );
material.fragmentNode = ao().context( builder.getSharedContext() );
material.needsUpdate = true;
//
return this._textureNode;
}
dispose() {
this._aoRenderTarget.dispose();
}
}
function generateMagicSquareNoise( size = 5 ) {
const noiseSize = Math.floor( size ) % 2 === 0 ? Math.floor( size ) + 1 : Math.floor( size );
const magicSquare = generateMagicSquare( noiseSize );
const noiseSquareSize = magicSquare.length;
const data = new Uint8Array( noiseSquareSize * 4 );
for ( let inx = 0; inx < noiseSquareSize; ++ inx ) {
const iAng = magicSquare[ inx ];
const angle = ( 2 * Math.PI * iAng ) / noiseSquareSize;
const randomVec = new Vector3(
Math.cos( angle ),
Math.sin( angle ),
0
).normalize();
data[ inx * 4 ] = ( randomVec.x * 0.5 + 0.5 ) * 255;
data[ inx * 4 + 1 ] = ( randomVec.y * 0.5 + 0.5 ) * 255;
data[ inx * 4 + 2 ] = 127;
data[ inx * 4 + 3 ] = 255;
}
const noiseTexture = new DataTexture( data, noiseSize, noiseSize );
noiseTexture.wrapS = RepeatWrapping;
noiseTexture.wrapT = RepeatWrapping;
noiseTexture.needsUpdate = true;
return noiseTexture;
}
function generateMagicSquare( size ) {
const noiseSize = Math.floor( size ) % 2 === 0 ? Math.floor( size ) + 1 : Math.floor( size );
const noiseSquareSize = noiseSize * noiseSize;
const magicSquare = Array( noiseSquareSize ).fill( 0 );
let i = Math.floor( noiseSize / 2 );
let j = noiseSize - 1;
for ( let num = 1; num <= noiseSquareSize; ) {
if ( i === - 1 && j === noiseSize ) {
j = noiseSize - 2;
i = 0;
} else {
if ( j === noiseSize ) {
j = 0;
}
if ( i < 0 ) {
i = noiseSize - 1;
}
}
if ( magicSquare[ i * noiseSize + j ] !== 0 ) {
j -= 2;
i ++;
continue;
} else {
magicSquare[ i * noiseSize + j ] = num ++;
}
j ++;
i --;
}
return magicSquare;
}
const ao = ( depthNode, normalNode, camera ) => nodeObject( new GTAONode( nodeObject( depthNode ), nodeObject( normalNode ), camera ) );
addNodeElement( 'ao', ao );
class DenoiseNode extends TempNode {
constructor( textureNode, depthNode, normalNode, noiseNode, camera ) {
super();
this.textureNode = textureNode;
this.depthNode = depthNode;
this.normalNode = normalNode;
this.noiseNode = noiseNode;
this.cameraProjectionMatrixInverse = uniform( camera.projectionMatrixInverse );
this.lumaPhi = uniform( 5 );
this.depthPhi = uniform( 5 );
this.normalPhi = uniform( 5 );
this.radius = uniform( 5 );
this.index = uniform( 0 );
this._resolution = uniform( new Vector2() );
this._sampleVectors = uniforms( generatePdSamplePointInitializer( 16, 2, 1 ) );
this.updateBeforeType = NodeUpdateType.RENDER;
}
updateBefore() {
const map = this.textureNode.value;
this._resolution.value.set( map.image.width, map.image.height );
}
setup() {
const uvNode = uv();
const sampleTexture = ( uv ) => this.textureNode.uv( uv );
const sampleDepth = ( uv ) => this.depthNode.uv( uv ).x;
const sampleNormal = ( uv ) => this.normalNode.uv( uv );
const sampleNoise = ( uv ) => this.noiseNode.uv( uv );
const getViewPosition = tslFn( ( [ screenPosition, depth ] ) => {
screenPosition = vec2( screenPosition.x, screenPosition.y.oneMinus() ).mul( 2.0 ).sub( 1.0 );
const clipSpacePosition = vec4( vec3( screenPosition, depth ), 1.0 );
const viewSpacePosition = vec4( this.cameraProjectionMatrixInverse.mul( clipSpacePosition ) );
return viewSpacePosition.xyz.div( viewSpacePosition.w );
} );
const denoiseSample = tslFn( ( [ center, viewNormal, viewPosition, sampleUv ] ) => {
const texel = sampleTexture( sampleUv );
const depth = sampleDepth( sampleUv );
const normal = sampleNormal( sampleUv ).rgb.normalize();
const neighborColor = texel.rgb;
const viewPos = getViewPosition( sampleUv, depth );
const normalDiff = dot( viewNormal, normal ).toVar();
const normalSimilarity = pow( max$1( normalDiff, 0 ), this.normalPhi ).toVar();
const lumaDiff = abs( luminance( neighborColor ).sub( luminance( center ) ) ).toVar();
const lumaSimilarity = max$1( float( 1.0 ).sub( lumaDiff.div( this.lumaPhi ) ), 0 ).toVar();
const depthDiff = abs( dot( viewPosition.sub( viewPos ), viewNormal ) ).toVar();
const depthSimilarity = max$1( float( 1.0 ).sub( depthDiff.div( this.depthPhi ) ), 0 );
const w = lumaSimilarity.mul( depthSimilarity ).mul( normalSimilarity );
return vec4( neighborColor.mul( w ), w );
} );
const denoise = tslFn( ( [ uvNode ] ) => {
const depth = sampleDepth( uvNode );
const viewNormal = sampleNormal( uvNode ).rgb.normalize();
const texel = sampleTexture( uvNode );
If( depth.greaterThanEqual( 1.0 ).or( dot( viewNormal, viewNormal ).equal( 0.0 ) ), () => {
return texel;
} );
const center = vec3( texel.rgb );
const viewPosition = getViewPosition( uvNode, depth );
const noiseResolution = textureSize( this.noiseNode, 0 );
let noiseUv = vec2( uvNode.x, uvNode.y.oneMinus() );
noiseUv = noiseUv.mul( this._resolution.div( noiseResolution ) );
const noiseTexel = sampleNoise( noiseUv );
const x = sin( noiseTexel.element( this.index.mod( 4 ).mul( 2 ).mul( PI ) ) );
const y = cos( noiseTexel.element( this.index.mod( 4 ).mul( 2 ).mul( PI ) ) );
const noiseVec = vec2( x, y );
const rotationMatrix = mat2( noiseVec.x, noiseVec.y.negate(), noiseVec.x, noiseVec.y );
const totalWeight = float( 1.0 ).toVar();
const denoised = vec3( texel.rgb ).toVar();
loop( { start: int( 0 ), end: int( 16 ), type: 'int', condition: '<' }, ( { i } ) => {
const sampleDir = this._sampleVectors.element( i ).toVar();
const offset = rotationMatrix.mul( sampleDir.xy.mul( float( 1.0 ).add( sampleDir.z.mul( this.radius.sub( 1 ) ) ) ) ).div( this._resolution ).toVar();
const sampleUv = uvNode.add( offset ).toVar();
const result = denoiseSample( center, viewNormal, viewPosition, sampleUv );
denoised.addAssign( result.xyz );
totalWeight.addAssign( result.w );
} );
If( totalWeight.greaterThan( float( 0 ) ), () => {
denoised.divAssign( totalWeight );
} );
return vec4( denoised, texel.a );
} ).setLayout( {
name: 'denoise',
type: 'vec4',
inputs: [
{ name: 'uv', type: 'vec2' }
]
} );
const output = tslFn( () => {
return denoise( uvNode );
} );
const outputNode = output();
return outputNode;
}
}
function generatePdSamplePointInitializer( samples, rings, radiusExponent ) {
const poissonDisk = generateDenoiseSamples( samples, rings, radiusExponent );
const array = [];
for ( let i = 0; i < samples; i ++ ) {
const sample = poissonDisk[ i ];
array.push( sample );
}
return array;
}
function generateDenoiseSamples( numSamples, numRings, radiusExponent ) {
const samples = [];
for ( let i = 0; i < numSamples; i ++ ) {
const angle = 2 * Math.PI * numRings * i / numSamples;
const radius = Math.pow( i / ( numSamples - 1 ), radiusExponent );
samples.push( new Vector3( Math.cos( angle ), Math.sin( angle ), radius ) );
}
return samples;
}
const denoise = ( node, depthNode, normalNode, noiseNode, camera ) => nodeObject( new DenoiseNode( nodeObject( node ).toTexture(), nodeObject( depthNode ), nodeObject( normalNode ), nodeObject( noiseNode ), camera ) );
addNodeElement( 'denoise', denoise );
class FXAANode extends TempNode {
constructor( textureNode ) {
super();
this.textureNode = textureNode;
this.updateBeforeType = NodeUpdateType.RENDER;
this._invSize = uniform( new Vector2() );
}
updateBefore() {
const map = this.textureNode.value;
this._invSize.value.set( 1 / map.image.width, 1 / map.image.height );
}
setup() {
const textureNode = this.textureNode.bias( - 100 );
const uvNode = textureNode.uvNode || uv();
// FXAA 3.11 implementation by NVIDIA, ported to WebGL by Agost Biro (biro@archilogic.com)
//----------------------------------------------------------------------------------
// File: es3-kepler\FXAA\assets\shaders/FXAA_DefaultES.frag
// SDK Version: v3.00
// Email: gameworks@nvidia.com
// Site: http://developer.nvidia.com/
//
// Copyright (c) 2014-2015, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//----------------------------------------------------------------------------------
const FxaaTexTop = ( p ) => textureNode.uv( p );
const FxaaTexOff = ( p, o, r ) => textureNode.uv( p.add( o.mul( r ) ) );
const NUM_SAMPLES = int( 5 );
const contrast = tslFn( ( [ a_immutable, b_immutable ] ) => {
// assumes colors have premultipliedAlpha, so that the calculated color contrast is scaled by alpha
const b = vec4( b_immutable ).toVar();
const a = vec4( a_immutable ).toVar();
const diff = vec4( abs( a.sub( b ) ) ).toVar();
return max$1( max$1( max$1( diff.r, diff.g ), diff.b ), diff.a );
} );
// FXAA3 QUALITY - PC
const FxaaPixelShader = tslFn( ( [ uv, fxaaQualityRcpFrame, fxaaQualityEdgeThreshold, fxaaQualityinvEdgeThreshold ] ) => {
const rgbaM = FxaaTexTop( uv ).toVar();
const rgbaS = FxaaTexOff( uv, vec2( 0.0, - 1.0 ), fxaaQualityRcpFrame.xy ).toVar();
const rgbaE = FxaaTexOff( uv, vec2( 1.0, 0.0 ), fxaaQualityRcpFrame.xy ).toVar();
const rgbaN = FxaaTexOff( uv, vec2( 0.0, 1.0 ), fxaaQualityRcpFrame.xy ).toVar();
const rgbaW = FxaaTexOff( uv, vec2( - 1.0, 0.0 ), fxaaQualityRcpFrame.xy ).toVar();
// . S .
// W M E
// . N .
const contrastN = contrast( rgbaM, rgbaN ).toVar();
const contrastS = contrast( rgbaM, rgbaS ).toVar();
const contrastE = contrast( rgbaM, rgbaE ).toVar();
const contrastW = contrast( rgbaM, rgbaW ).toVar();
const maxValue = max$1( contrastN, max$1( contrastS, max$1( contrastE, contrastW ) ) ).toVar();
// . 0 .
// 0 0 0
// . 0 .
If( maxValue.lessThan( fxaaQualityEdgeThreshold ), () => {
return rgbaM; // assuming define FXAA_DISCARD is always 0
} );
//
const relativeVContrast = sub( contrastN.add( contrastS ), ( contrastE.add( contrastW ) ) ).toVar();
relativeVContrast.mulAssign( fxaaQualityinvEdgeThreshold );
// 45 deg edge detection and corners of objects, aka V/H contrast is too similar
If( abs( relativeVContrast ).lessThan( 0.3 ), () => {
// locate the edge
const x = contrastE.greaterThan( contrastW ).cond( 1, - 1 ).toVar();
const y = contrastS.greaterThan( contrastN ).cond( 1, - 1 ).toVar();
const dirToEdge = vec2( x, y ).toVar();
// . 2 . . 1 .
// 1 0 2 ~= 0 0 1
// . 1 . . 0 .
// tap 2 pixels and see which ones are "outside" the edge, to
// determine if the edge is vertical or horizontal
const rgbaAlongH = FxaaTexOff( uv, vec2( dirToEdge.x, dirToEdge.y ), fxaaQualityRcpFrame.xy );
const matchAlongH = contrast( rgbaM, rgbaAlongH ).toVar();
// . 1 .
// 0 0 1
// . 0 H
const rgbaAlongV = FxaaTexOff( uv, vec2( dirToEdge.x.negate(), dirToEdge.y.negate() ), fxaaQualityRcpFrame.xy );
const matchAlongV = contrast( rgbaM, rgbaAlongV ).toVar();
// V 1 .
// 0 0 1
// . 0 .
relativeVContrast.assign( matchAlongV.sub( matchAlongH ) );
relativeVContrast.mulAssign( fxaaQualityinvEdgeThreshold );
If( abs( relativeVContrast ).lessThan( 0.3 ), () => { // 45 deg edge
// 1 1 .
// 0 0 1
// . 0 1
// do a simple blur
const sum = rgbaN.add( rgbaS ).add( rgbaE ).add( rgbaW );
return mix( rgbaM, sum.mul( 0.25 ), 0.4 );
} );
} );
const offNP = vec2().toVar();
If( relativeVContrast.lessThanEqual( 0 ), () => {
rgbaN.assign( rgbaW );
rgbaS.assign( rgbaE );
// . 0 . 1
// 1 0 1 -> 0
// . 0 . 1
offNP.x.assign( 0 );
offNP.y.assign( fxaaQualityRcpFrame.y );
} ).else( () => {
offNP.x.assign( fxaaQualityRcpFrame.x );
offNP.y.assign( 0 );
} );
const mn = contrast( rgbaM, rgbaN ).toVar();
const ms = contrast( rgbaM, rgbaS ).toVar();
If( mn.lessThanEqual( ms ), () => {
rgbaN.assign( rgbaS );
} );
const doneN = int( 0 ).toVar();
const doneP = int( 0 ).toVar();
const nDist = float( 0 ).toVar();
const pDist = float( 0 ).toVar();
const posN = vec2( uv ).toVar();
const posP = vec2( uv ).toVar();
const iterationsUsedN = int( 0 ).toVar();
const iterationsUsedP = int( 0 ).toVar();
loop( NUM_SAMPLES, ( { i } ) => {
const increment = i.add( 1 ).toVar();
If( doneN.equal( 0 ), () => {
nDist.addAssign( increment );
posN.assign( uv.add( offNP.mul( nDist ) ) );
const rgbaEndN = FxaaTexTop( posN.xy );
const nm = contrast( rgbaEndN, rgbaM ).toVar();
const nn = contrast( rgbaEndN, rgbaN ).toVar();
If( nm.greaterThan( nn ), () => {
doneN.assign( 1 );
} );
iterationsUsedN.assign( i );
} );
If( doneP.equal( 0 ), () => {
pDist.addAssign( increment );
posP.assign( uv.sub( offNP.mul( pDist ) ) );
const rgbaEndP = FxaaTexTop( posP.xy );
const pm = contrast( rgbaEndP, rgbaM ).toVar();
const pn = contrast( rgbaEndP, rgbaN ).toVar();
If( pm.greaterThan( pn ), () => {
doneP.assign( 1 );
} );
iterationsUsedP.assign( i );
} );
If( doneN.equal( 1 ).or( doneP.equal( 1 ) ), () => {
Break();
} );
} );
If( doneN.equal( 0 ).and( doneP.equal( 0 ) ), () => {
return rgbaM; // failed to find end of edge
} );
const distN = float( 1 ).toVar();
const distP = float( 1 ).toVar();
If( doneN.equal( 1 ), () => {
distN.assign( float( iterationsUsedN ).div( float( NUM_SAMPLES.sub( 1 ) ) ) );
} );
If( doneP.equal( 1 ), () => {
distP.assign( float( iterationsUsedP ).div( float( NUM_SAMPLES.sub( 1 ) ) ) );
} );
const dist = min$1( distN, distP );
// hacky way of reduces blurriness of mostly diagonal edges
// but reduces AA quality
dist.assign( pow( dist, 0.5 ) );
dist.assign( float( 1 ).sub( dist ) );
return mix( rgbaM, rgbaN, dist.mul( 0.5 ) );
} ).setLayout( {
name: 'FxaaPixelShader',
type: 'vec4',
inputs: [
{ name: 'uv', type: 'vec2' },
{ name: 'fxaaQualityRcpFrame', type: 'vec2' },
{ name: 'fxaaQualityEdgeThreshold', type: 'float' },
{ name: 'fxaaQualityinvEdgeThreshold', type: 'float' },
]
} );
const fxaa = tslFn( () => {
const edgeDetectionQuality = float( 0.2 );
const invEdgeDetectionQuality = float( 1 ).div( edgeDetectionQuality );
return FxaaPixelShader( uvNode, this._invSize, edgeDetectionQuality, invEdgeDetectionQuality );
} );
const outputNode = fxaa();
return outputNode;
}
}
const fxaa = ( node ) => nodeObject( new FXAANode( nodeObject( node ).toTexture() ) );
addNodeElement( 'fxaa', fxaa );
const _quadMesh$1 = /*@__PURE__*/ new QuadMesh();
const _clearColor$1 = /*@__PURE__*/ new Color( 0, 0, 0 );
const _currentClearColor = /*@__PURE__*/ new Color();
const _size$1 = /*@__PURE__*/ new Vector2();
const _BlurDirectionX = /*@__PURE__*/ new Vector2( 1.0, 0.0 );
const _BlurDirectionY = /*@__PURE__*/ new Vector2( 0.0, 1.0 );
class BloomNode extends TempNode {
constructor( inputNode, strength = 1, radius = 0, threshold = 0 ) {
super();
this.inputNode = inputNode;
this.strength = uniform( strength );
this.radius = uniform( radius );
this.threshold = uniform( threshold );
this.smoothWidth = uniform( 0.01 );
//
this._renderTargetsHorizontal = [];
this._renderTargetsVertical = [];
this._nMips = 5;
// render targets
this._renderTargetBright = new RenderTarget( 1, 1, { type: HalfFloatType } );
this._renderTargetBright.texture.name = 'UnrealBloomPass.bright';
this._renderTargetBright.texture.generateMipmaps = false;
for ( let i = 0; i < this._nMips; i ++ ) {
const renderTargetHorizontal = new RenderTarget( 1, 1, { type: HalfFloatType } );
renderTargetHorizontal.texture.name = 'UnrealBloomPass.h' + i;
renderTargetHorizontal.texture.generateMipmaps = false;
this._renderTargetsHorizontal.push( renderTargetHorizontal );
const renderTargetVertical = new RenderTarget( 1, 1, { type: HalfFloatType } );
renderTargetVertical.texture.name = 'UnrealBloomPass.v' + i;
renderTargetVertical.texture.generateMipmaps = false;
this._renderTargetsVertical.push( renderTargetVertical );
}
// materials
this._compositeMaterial = null;
this._highPassFilterMaterial = null;
this._separableBlurMaterials = [];
// pass and texture nodes
this._textureNodeBright = texture( this._renderTargetBright.texture );
this._textureNodeBlur0 = texture( this._renderTargetsVertical[ 0 ].texture );
this._textureNodeBlur1 = texture( this._renderTargetsVertical[ 1 ].texture );
this._textureNodeBlur2 = texture( this._renderTargetsVertical[ 2 ].texture );
this._textureNodeBlur3 = texture( this._renderTargetsVertical[ 3 ].texture );
this._textureNodeBlur4 = texture( this._renderTargetsVertical[ 4 ].texture );
this._textureOutput = passTexture( this, this._renderTargetsHorizontal[ 0 ].texture );
this.updateBeforeType = NodeUpdateType.FRAME;
}
getTextureNode() {
return this._textureOutput;
}
setSize( width, height ) {
let resx = Math.round( width / 2 );
let resy = Math.round( height / 2 );
this._renderTargetBright.setSize( resx, resy );
for ( let i = 0; i < this._nMips; i ++ ) {
this._renderTargetsHorizontal[ i ].setSize( resx, resy );
this._renderTargetsVertical[ i ].setSize( resx, resy );
this._separableBlurMaterials[ i ].invSize.value.set( 1 / resx, 1 / resy );
resx = Math.round( resx / 2 );
resy = Math.round( resy / 2 );
}
}
updateBefore( frame ) {
const { renderer } = frame;
const size = renderer.getDrawingBufferSize( _size$1 );
this.setSize( size.width, size.height );
const currentRenderTarget = renderer.getRenderTarget();
const currentMRT = renderer.getMRT();
renderer.getClearColor( _currentClearColor );
const currentClearAlpha = renderer.getClearAlpha();
this.setSize( size.width, size.height );
renderer.setMRT( null );
renderer.setClearColor( _clearColor$1, 0 );
// 1. Extract Bright Areas
renderer.setRenderTarget( this._renderTargetBright );
_quadMesh$1.material = this._highPassFilterMaterial;
_quadMesh$1.render( renderer );
// 2. Blur All the mips progressively
let inputRenderTarget = this._renderTargetBright;
for ( let i = 0; i < this._nMips; i ++ ) {
_quadMesh$1.material = this._separableBlurMaterials[ i ];
this._separableBlurMaterials[ i ].colorTexture.value = inputRenderTarget.texture;
this._separableBlurMaterials[ i ].direction.value = _BlurDirectionX;
renderer.setRenderTarget( this._renderTargetsHorizontal[ i ] );
renderer.clear();
_quadMesh$1.render( renderer );
this._separableBlurMaterials[ i ].colorTexture.value = this._renderTargetsHorizontal[ i ].texture;
this._separableBlurMaterials[ i ].direction.value = _BlurDirectionY;
renderer.setRenderTarget( this._renderTargetsVertical[ i ] );
renderer.clear();
_quadMesh$1.render( renderer );
inputRenderTarget = this._renderTargetsVertical[ i ];
}
// 3. Composite All the mips
renderer.setRenderTarget( this._renderTargetsHorizontal[ 0 ] );
renderer.clear();
_quadMesh$1.material = this._compositeMaterial;
_quadMesh$1.render( renderer );
// restore
renderer.setRenderTarget( currentRenderTarget );
renderer.setMRT( currentMRT );
renderer.setClearColor( _currentClearColor, currentClearAlpha );
}
setup( builder ) {
// luminosity high pass material
const luminosityHighPass = tslFn( () => {
const texel = this.inputNode;
const v = luminance( texel.rgb );
const alpha = smoothstep( this.threshold, this.threshold.add( this.smoothWidth ), v );
return mix( vec4( 0 ), texel, alpha );
} );
this._highPassFilterMaterial = this._highPassFilterMaterial || builder.createNodeMaterial();
this._highPassFilterMaterial.fragmentNode = luminosityHighPass().context( builder.getSharedContext() );
this._highPassFilterMaterial.needsUpdate = true;
// gaussian blur materials
const kernelSizeArray = [ 3, 5, 7, 9, 11 ];
for ( let i = 0; i < this._nMips; i ++ ) {
this._separableBlurMaterials.push( this._getSeperableBlurMaterial( builder, kernelSizeArray[ i ] ) );
}
// composite material
const bloomFactors = uniforms( [ 1.0, 0.8, 0.6, 0.4, 0.2 ] );
const bloomTintColors = uniforms( [ new Vector3( 1, 1, 1 ), new Vector3( 1, 1, 1 ), new Vector3( 1, 1, 1 ), new Vector3( 1, 1, 1 ), new Vector3( 1, 1, 1 ) ] );
const lerpBloomFactor = tslFn( ( [ factor, radius ] ) => {
const mirrorFactor = float( 1.2 ).sub( factor );
return mix( factor, mirrorFactor, radius );
} ).setLayout( {
name: 'lerpBloomFactor',
type: 'float',
inputs: [
{ name: 'factor', type: 'float' },
{ name: 'radius', type: 'float' },
]
} );
const compositePass = tslFn( () => {
const color0 = lerpBloomFactor( bloomFactors.element( 0 ), this.radius ).mul( vec4( bloomTintColors.element( 0 ), 1.0 ) ).mul( this._textureNodeBlur0 );
const color1 = lerpBloomFactor( bloomFactors.element( 1 ), this.radius ).mul( vec4( bloomTintColors.element( 1 ), 1.0 ) ).mul( this._textureNodeBlur1 );
const color2 = lerpBloomFactor( bloomFactors.element( 2 ), this.radius ).mul( vec4( bloomTintColors.element( 2 ), 1.0 ) ).mul( this._textureNodeBlur2 );
const color3 = lerpBloomFactor( bloomFactors.element( 3 ), this.radius ).mul( vec4( bloomTintColors.element( 3 ), 1.0 ) ).mul( this._textureNodeBlur3 );
const color4 = lerpBloomFactor( bloomFactors.element( 4 ), this.radius ).mul( vec4( bloomTintColors.element( 4 ), 1.0 ) ).mul( this._textureNodeBlur4 );
const sum = color0.add( color1 ).add( color2 ).add( color3 ).add( color4 );
return sum.mul( this.strength );
} );
this._compositeMaterial = this._compositeMaterial || builder.createNodeMaterial();
this._compositeMaterial.fragmentNode = compositePass().context( builder.getSharedContext() );
this._compositeMaterial.needsUpdate = true;
//
return this._textureOutput;
}
dispose() {
for ( let i = 0; i < this._renderTargetsHorizontal.length; i ++ ) {
this._renderTargetsHorizontal[ i ].dispose();
}
for ( let i = 0; i < this._renderTargetsVertical.length; i ++ ) {
this._renderTargetsVertical[ i ].dispose();
}
this._renderTargetBright.dispose();
}
_getSeperableBlurMaterial( builder, kernelRadius ) {
const coefficients = [];
for ( let i = 0; i < kernelRadius; i ++ ) {
coefficients.push( 0.39894 * Math.exp( - 0.5 * i * i / ( kernelRadius * kernelRadius ) ) / kernelRadius );
}
//
const colorTexture = texture();
const gaussianCoefficients = uniforms( coefficients );
const invSize = uniform( new Vector2() );
const direction = uniform( new Vector2( 0.5, 0.5 ) );
const uvNode = uv();
const sampleTexel = ( uv ) => colorTexture.uv( uv );
const seperableBlurPass = tslFn( () => {
const weightSum = gaussianCoefficients.element( 0 ).toVar();
const diffuseSum = sampleTexel( uvNode ).rgb.mul( weightSum ).toVar();
loop( { start: int( 1 ), end: int( kernelRadius ), type: 'int', condition: '<' }, ( { i } ) => {
const x = float( i );
const w = gaussianCoefficients.element( i );
const uvOffset = direction.mul( invSize ).mul( x );
const sample1 = sampleTexel( uvNode.add( uvOffset ) ).rgb;
const sample2 = sampleTexel( uvNode.sub( uvOffset ) ).rgb;
diffuseSum.addAssign( add( sample1, sample2 ).mul( w ) );
weightSum.addAssign( float( 2.0 ).mul( w ) );
} );
return vec4( diffuseSum.div( weightSum ), 1.0 );
} );
const seperableBlurMaterial = builder.createNodeMaterial();
seperableBlurMaterial.fragmentNode = seperableBlurPass().context( builder.getSharedContext() );
seperableBlurMaterial.needsUpdate = true;
// uniforms
seperableBlurMaterial.colorTexture = colorTexture;
seperableBlurMaterial.direction = direction;
seperableBlurMaterial.invSize = invSize;
return seperableBlurMaterial;
}
}
const bloom = ( node, strength, radius, threshold ) => nodeObject( new BloomNode( nodeObject( node ), strength, radius, threshold ) );
addNodeElement( 'bloom', bloom );
class TransitionNode extends TempNode {
constructor( textureNodeA, textureNodeB, mixTextureNode, mixRatioNode, thresholdNode, useTextureNode ) {
super();
// Input textures
this.textureNodeA = textureNodeA;
this.textureNodeB = textureNodeB;
this.mixTextureNode = mixTextureNode;
// Uniforms
this.mixRatioNode = mixRatioNode;
this.thresholdNode = thresholdNode;
this.useTextureNode = useTextureNode;
}
setup() {
const { textureNodeA, textureNodeB, mixTextureNode, mixRatioNode, thresholdNode, useTextureNode } = this;
const sampleTexture = ( textureNode ) => {
const uvNodeTexture = textureNode.uvNode || uv();
return textureNode.uv( uvNodeTexture );
};
const transition = tslFn( () => {
const texelOne = sampleTexture( textureNodeA );
const texelTwo = sampleTexture( textureNodeB );
const color = vec4().toVar();
If( useTextureNode.equal( int( 1 ) ), () => {
const transitionTexel = sampleTexture( mixTextureNode );
const r = mixRatioNode.mul( thresholdNode.mul( 2.0 ).add( 1.0 ) ).sub( thresholdNode );
const mixf = clamp( sub( transitionTexel.r, r ).mul( float( 1.0 ).div( thresholdNode ) ), 0.0, 1.0 );
color.assign( mix( texelOne, texelTwo, mixf ) );
} ).else( () => {
color.assign( mix( texelTwo, texelOne, mixRatioNode ) );
} );
return color;
} );
const outputNode = transition();
return outputNode;
}
}
const transition = ( nodeA, nodeB, mixTexture, mixRatio = 0.0, threshold = 0.1, useTexture = 0 ) => nodeObject( new TransitionNode( nodeObject( nodeA ).toTexture(), nodeObject( nodeB ).toTexture(), nodeObject( mixTexture ).toTexture(), nodeObject( mixRatio ), nodeObject( threshold ), nodeObject( useTexture ) ) );
addNodeElement( 'transition', transition );
class RenderOutputNode extends TempNode {
constructor( colorNode, toneMapping, outputColorSpace ) {
super( 'vec4' );
this.colorNode = colorNode;
this.toneMapping = toneMapping;
this.outputColorSpace = outputColorSpace;
this.isRenderOutput = true;
}
setup( { context } ) {
let outputNode = this.colorNode || context.color;
// tone mapping
const toneMapping = this.toneMapping !== null ? this.toneMapping : context.toneMapping;
const outputColorSpace = this.outputColorSpace !== null ? this.outputColorSpace : context.outputColorSpace;
if ( toneMapping !== NoToneMapping ) {
outputNode = outputNode.toneMapping( toneMapping );
}
// output color space
if ( outputColorSpace === SRGBColorSpace ) {
outputNode = outputNode.linearToColorSpace( outputColorSpace );
}
return outputNode;
}
}
const renderOutput = ( color, toneMapping = null, outputColorSpace = null ) => nodeObject( new RenderOutputNode( nodeObject( color ), toneMapping, outputColorSpace ) );
addNodeElement( 'renderOutput', renderOutput );
addNodeClass( 'RenderOutputNode', RenderOutputNode );
class PixelationNode extends TempNode {
constructor( textureNode, depthNode, normalNode, pixelSize, normalEdgeStrength, depthEdgeStrength ) {
super();
// Input textures
this.textureNode = textureNode;
this.depthNode = depthNode;
this.normalNode = normalNode;
// Input uniforms
this.pixelSize = pixelSize;
this.normalEdgeStrength = normalEdgeStrength;
this.depthEdgeStrength = depthEdgeStrength;
// Private uniforms
this._resolution = uniform( new Vector4() );
this.updateBeforeType = NodeUpdateType.RENDER;
}
updateBefore() {
const map = this.textureNode.value;
const width = map.image.width;
const height = map.image.height;
this._resolution.value.set( width, height, 1 / width, 1 / height );
}
setup() {
const { textureNode, depthNode, normalNode } = this;
const uvNodeTexture = textureNode.uvNode || uv();
const uvNodeDepth = depthNode.uvNode || uv();
const uvNodeNormal = normalNode.uvNode || uv();
const sampleTexture = () => textureNode.uv( uvNodeTexture );
const sampleDepth = ( x, y ) => depthNode.uv( uvNodeDepth.add( vec2( x, y ).mul( this._resolution.zw ) ) ).r;
const sampleNormal = ( x, y ) => normalNode.uv( uvNodeNormal.add( vec2( x, y ).mul( this._resolution.zw ) ) ).rgb.normalize();
const depthEdgeIndicator = ( depth ) => {
const diff = property( 'float', 'diff' );
diff.addAssign( clamp( sampleDepth( 1, 0 ).sub( depth ) ) );
diff.addAssign( clamp( sampleDepth( - 1, 0 ).sub( depth ) ) );
diff.addAssign( clamp( sampleDepth( 0, 1 ).sub( depth ) ) );
diff.addAssign( clamp( sampleDepth( 0, - 1 ).sub( depth ) ) );
return floor( smoothstep( 0.01, 0.02, diff ).mul( 2 ) ).div( 2 );
};
const neighborNormalEdgeIndicator = ( x, y, depth, normal ) => {
const depthDiff = sampleDepth( x, y ).sub( depth );
const neighborNormal = sampleNormal( x, y );
// Edge pixels should yield to faces who's normals are closer to the bias normal.
const normalEdgeBias = vec3( 1, 1, 1 ); // This should probably be a parameter.
const normalDiff = dot( normal.sub( neighborNormal ), normalEdgeBias );
const normalIndicator = clamp( smoothstep( - 0.01, 0.01, normalDiff ), 0.0, 1.0 );
// Only the shallower pixel should detect the normal edge.
const depthIndicator = clamp( sign( depthDiff.mul( .25 ).add( .0025 ) ), 0.0, 1.0 );
return float( 1.0 ).sub( dot( normal, neighborNormal ) ).mul( depthIndicator ).mul( normalIndicator );
};
const normalEdgeIndicator = ( depth, normal ) => {
const indicator = property( 'float', 'indicator' );
indicator.addAssign( neighborNormalEdgeIndicator( 0, - 1, depth, normal ) );
indicator.addAssign( neighborNormalEdgeIndicator( 0, 1, depth, normal ) );
indicator.addAssign( neighborNormalEdgeIndicator( - 1, 0, depth, normal ) );
indicator.addAssign( neighborNormalEdgeIndicator( 1, 0, depth, normal ) );
return step( 0.1, indicator );
};
const pixelation = tslFn( () => {
const texel = sampleTexture();
const depth = property( 'float', 'depth' );
const normal = property( 'vec3', 'normal' );
If( this.depthEdgeStrength.greaterThan( 0.0 ).or( this.normalEdgeStrength.greaterThan( 0.0 ) ), () => {
depth.assign( sampleDepth( 0, 0 ) );
normal.assign( sampleNormal( 0, 0 ) );
} );
const dei = property( 'float', 'dei' );
If( this.depthEdgeStrength.greaterThan( 0.0 ), () => {
dei.assign( depthEdgeIndicator( depth ) );
} );
const nei = property( 'float', 'nei' );
If( this.normalEdgeStrength.greaterThan( 0.0 ), () => {
nei.assign( normalEdgeIndicator( depth, normal ) );
} );
const strength = dei.greaterThan( 0 ).cond( float( 1.0 ).sub( dei.mul( this.depthEdgeStrength ) ), nei.mul( this.normalEdgeStrength ).add( 1 ) );
return texel.mul( strength );
} );
const outputNode = pixelation();
return outputNode;
}
}
const pixelation = ( node, depthNode, normalNode, pixelSize = 6, normalEdgeStrength = 0.3, depthEdgeStrength = 0.4 ) => nodeObject( new PixelationNode( nodeObject( node ).toTexture(), nodeObject( depthNode ).toTexture(), nodeObject( normalNode ).toTexture(), nodeObject( pixelSize ), nodeObject( normalEdgeStrength ), nodeObject( depthEdgeStrength ) ) );
addNodeElement( 'pixelation', pixelation );
class PixelationPassNode extends PassNode {
constructor( scene, camera, pixelSize = 6, normalEdgeStrength = 0.3, depthEdgeStrength = 0.4 ) {
super( 'color', scene, camera, { minFilter: NearestFilter, magFilter: NearestFilter } );
this.pixelSize = pixelSize;
this.normalEdgeStrength = normalEdgeStrength;
this.depthEdgeStrength = depthEdgeStrength;
this.isPixelationPassNode = true;
this._mrt = mrt( {
output: output,
normal: normalView
} );
}
setSize( width, height ) {
const pixelSize = this.pixelSize.value ? this.pixelSize.value : this.pixelSize;
const adjustedWidth = Math.floor( width / pixelSize );
const adjustedHeight = Math.floor( height / pixelSize );
super.setSize( adjustedWidth, adjustedHeight );
}
setup() {
const color = super.getTextureNode( 'output' );
const depth = super.getTextureNode( 'depth' );
const normal = super.getTextureNode( 'normal' );
return pixelation( color, depth, normal, this.pixelSize, this.normalEdgeStrength, this.depthEdgeStrength );
}
}
const pixelationPass = ( scene, camera, pixelSize, normalEdgeStrength, depthEdgeStrength ) => nodeObject( new PixelationPassNode( scene, camera, pixelSize, normalEdgeStrength, depthEdgeStrength ) );
class FunctionCallNode extends TempNode {
constructor( functionNode = null, parameters = {} ) {
super();
this.functionNode = functionNode;
this.parameters = parameters;
}
setParameters( parameters ) {
this.parameters = parameters;
return this;
}
getParameters() {
return this.parameters;
}
getNodeType( builder ) {
return this.functionNode.getNodeType( builder );
}
generate( builder ) {
const params = [];
const functionNode = this.functionNode;
const inputs = functionNode.getInputs( builder );
const parameters = this.parameters;
if ( Array.isArray( parameters ) ) {
for ( let i = 0; i < parameters.length; i ++ ) {
const inputNode = inputs[ i ];
const node = parameters[ i ];
params.push( node.build( builder, inputNode.type ) );
}
} else {
for ( const inputNode of inputs ) {
const node = parameters[ inputNode.name ];
if ( node !== undefined ) {
params.push( node.build( builder, inputNode.type ) );
} else {
throw new Error( `FunctionCallNode: Input '${inputNode.name}' not found in FunctionNode.` );
}
}
}
const functionName = functionNode.build( builder, 'property' );
return `${functionName}( ${params.join( ', ' )} )`;
}
}
const call = ( func, ...params ) => {
params = params.length > 1 || ( params[ 0 ] && params[ 0 ].isNode === true ) ? nodeArray( params ) : nodeObjects( params[ 0 ] );
return nodeObject( new FunctionCallNode( nodeObject( func ), params ) );
};
addNodeElement( 'call', call );
addNodeClass( 'FunctionCallNode', FunctionCallNode );
class ScriptableValueNode extends Node {
constructor( value = null ) {
super();
this._value = value;
this._cache = null;
this.inputType = null;
this.outpuType = null;
this.events = new EventDispatcher();
this.isScriptableValueNode = true;
}
get isScriptableOutputNode() {
return this.outputType !== null;
}
set value( val ) {
if ( this._value === val ) return;
if ( this._cache && this.inputType === 'URL' && this.value.value instanceof ArrayBuffer ) {
URL.revokeObjectURL( this._cache );
this._cache = null;
}
this._value = val;
this.events.dispatchEvent( { type: 'change' } );
this.refresh();
}
get value() {
return this._value;
}
refresh() {
this.events.dispatchEvent( { type: 'refresh' } );
}
getValue() {
const value = this.value;
if ( value && this._cache === null && this.inputType === 'URL' && value.value instanceof ArrayBuffer ) {
this._cache = URL.createObjectURL( new Blob( [ value.value ] ) );
} else if ( value && value.value !== null && value.value !== undefined && (
( ( this.inputType === 'URL' || this.inputType === 'String' ) && typeof value.value === 'string' ) ||
( this.inputType === 'Number' && typeof value.value === 'number' ) ||
( this.inputType === 'Vector2' && value.value.isVector2 ) ||
( this.inputType === 'Vector3' && value.value.isVector3 ) ||
( this.inputType === 'Vector4' && value.value.isVector4 ) ||
( this.inputType === 'Color' && value.value.isColor ) ||
( this.inputType === 'Matrix3' && value.value.isMatrix3 ) ||
( this.inputType === 'Matrix4' && value.value.isMatrix4 )
) ) {
return value.value;
}
return this._cache || value;
}
getNodeType( builder ) {
return this.value && this.value.isNode ? this.value.getNodeType( builder ) : 'float';
}
setup() {
return this.value && this.value.isNode ? this.value : float();
}
serialize( data ) {
super.serialize( data );
if ( this.value !== null ) {
if ( this.inputType === 'ArrayBuffer' ) {
data.value = arrayBufferToBase64( this.value );
} else {
data.value = this.value ? this.value.toJSON( data.meta ).uuid : null;
}
} else {
data.value = null;
}
data.inputType = this.inputType;
data.outputType = this.outputType;
}
deserialize( data ) {
super.deserialize( data );
let value = null;
if ( data.value !== null ) {
if ( data.inputType === 'ArrayBuffer' ) {
value = base64ToArrayBuffer( data.value );
} else if ( data.inputType === 'Texture' ) {
value = data.meta.textures[ data.value ];
} else {
value = data.meta.nodes[ data.value ] || null;
}
}
this.value = value;
this.inputType = data.inputType;
this.outputType = data.outputType;
}
}
const scriptableValue = nodeProxy( ScriptableValueNode );
addNodeElement( 'scriptableValue', scriptableValue );
addNodeClass( 'ScriptableValueNode', ScriptableValueNode );
class Resources extends Map {
get( key, callback = null, ...params ) {
if ( this.has( key ) ) return super.get( key );
if ( callback !== null ) {
const value = callback( ...params );
this.set( key, value );
return value;
}
}
}
class Parameters {
constructor( scriptableNode ) {
this.scriptableNode = scriptableNode;
}
get parameters() {
return this.scriptableNode.parameters;
}
get layout() {
return this.scriptableNode.getLayout();
}
getInputLayout( id ) {
return this.scriptableNode.getInputLayout( id );
}
get( name ) {
const param = this.parameters[ name ];
const value = param ? param.getValue() : null;
return value;
}
}
const global = new Resources();
class ScriptableNode extends Node {
constructor( codeNode = null, parameters = {} ) {
super();
this.codeNode = codeNode;
this.parameters = parameters;
this._local = new Resources();
this._output = scriptableValue();
this._outputs = {};
this._source = this.source;
this._method = null;
this._object = null;
this._value = null;
this._needsOutputUpdate = true;
this.onRefresh = this.onRefresh.bind( this );
this.isScriptableNode = true;
}
get source() {
return this.codeNode ? this.codeNode.code : '';
}
setLocal( name, value ) {
return this._local.set( name, value );
}
getLocal( name ) {
return this._local.get( name );
}
onRefresh() {
this._refresh();
}
getInputLayout( id ) {
for ( const element of this.getLayout() ) {
if ( element.inputType && ( element.id === id || element.name === id ) ) {
return element;
}
}
}
getOutputLayout( id ) {
for ( const element of this.getLayout() ) {
if ( element.outputType && ( element.id === id || element.name === id ) ) {
return element;
}
}
}
setOutput( name, value ) {
const outputs = this._outputs;
if ( outputs[ name ] === undefined ) {
outputs[ name ] = scriptableValue( value );
} else {
outputs[ name ].value = value;
}
return this;
}
getOutput( name ) {
return this._outputs[ name ];
}
getParameter( name ) {
return this.parameters[ name ];
}
setParameter( name, value ) {
const parameters = this.parameters;
if ( value && value.isScriptableNode ) {
this.deleteParameter( name );
parameters[ name ] = value;
parameters[ name ].getDefaultOutput().events.addEventListener( 'refresh', this.onRefresh );
} else if ( value && value.isScriptableValueNode ) {
this.deleteParameter( name );
parameters[ name ] = value;
parameters[ name ].events.addEventListener( 'refresh', this.onRefresh );
} else if ( parameters[ name ] === undefined ) {
parameters[ name ] = scriptableValue( value );
parameters[ name ].events.addEventListener( 'refresh', this.onRefresh );
} else {
parameters[ name ].value = value;
}
return this;
}
getValue() {
return this.getDefaultOutput().getValue();
}
deleteParameter( name ) {
let valueNode = this.parameters[ name ];
if ( valueNode ) {
if ( valueNode.isScriptableNode ) valueNode = valueNode.getDefaultOutput();
valueNode.events.removeEventListener( 'refresh', this.onRefresh );
}
return this;
}
clearParameters() {
for ( const name of Object.keys( this.parameters ) ) {
this.deleteParameter( name );
}
this.needsUpdate = true;
return this;
}
call( name, ...params ) {
const object = this.getObject();
const method = object[ name ];
if ( typeof method === 'function' ) {
return method( ...params );
}
}
async callAsync( name, ...params ) {
const object = this.getObject();
const method = object[ name ];
if ( typeof method === 'function' ) {
return method.constructor.name === 'AsyncFunction' ? await method( ...params ) : method( ...params );
}
}
getNodeType( builder ) {
return this.getDefaultOutputNode().getNodeType( builder );
}
refresh( output = null ) {
if ( output !== null ) {
this.getOutput( output ).refresh();
} else {
this._refresh();
}
}
getObject() {
if ( this.needsUpdate ) this.dispose();
if ( this._object !== null ) return this._object;
//
const refresh = () => this.refresh();
const setOutput = ( id, value ) => this.setOutput( id, value );
const parameters = new Parameters( this );
const THREE = global.get( 'THREE' );
const TSL = global.get( 'TSL' );
const method = this.getMethod( this.codeNode );
const params = [ parameters, this._local, global, refresh, setOutput, THREE, TSL ];
this._object = method( ...params );
const layout = this._object.layout;
if ( layout ) {
if ( layout.cache === false ) {
this._local.clear();
}
// default output
this._output.outputType = layout.outputType || null;
if ( Array.isArray( layout.elements ) ) {
for ( const element of layout.elements ) {
const id = element.id || element.name;
if ( element.inputType ) {
if ( this.getParameter( id ) === undefined ) this.setParameter( id, null );
this.getParameter( id ).inputType = element.inputType;
}
if ( element.outputType ) {
if ( this.getOutput( id ) === undefined ) this.setOutput( id, null );
this.getOutput( id ).outputType = element.outputType;
}
}
}
}
return this._object;
}
deserialize( data ) {
super.deserialize( data );
for ( const name in this.parameters ) {
let valueNode = this.parameters[ name ];
if ( valueNode.isScriptableNode ) valueNode = valueNode.getDefaultOutput();
valueNode.events.addEventListener( 'refresh', this.onRefresh );
}
}
getLayout() {
return this.getObject().layout;
}
getDefaultOutputNode() {
const output = this.getDefaultOutput().value;
if ( output && output.isNode ) {
return output;
}
return float();
}
getDefaultOutput() {
return this._exec()._output;
}
getMethod() {
if ( this.needsUpdate ) this.dispose();
if ( this._method !== null ) return this._method;
//
const parametersProps = [ 'parameters', 'local', 'global', 'refresh', 'setOutput', 'THREE', 'TSL' ];
const interfaceProps = [ 'layout', 'init', 'main', 'dispose' ];
const properties = interfaceProps.join( ', ' );
const declarations = 'var ' + properties + '; var output = {};\n';
const returns = '\nreturn { ...output, ' + properties + ' };';
const code = declarations + this.codeNode.code + returns;
//
this._method = new Function( ...parametersProps, code );
return this._method;
}
dispose() {
if ( this._method === null ) return;
if ( this._object && typeof this._object.dispose === 'function' ) {
this._object.dispose();
}
this._method = null;
this._object = null;
this._source = null;
this._value = null;
this._needsOutputUpdate = true;
this._output.value = null;
this._outputs = {};
}
setup() {
return this.getDefaultOutputNode();
}
getCacheKey( force ) {
const cacheKey = [ this.source, this.getDefaultOutputNode().getCacheKey( force ) ];
for ( const param in this.parameters ) {
cacheKey.push( this.parameters[ param ].getCacheKey( force ) );
}
return cacheKey.join( ',' );
}
set needsUpdate( value ) {
if ( value === true ) this.dispose();
}
get needsUpdate() {
return this.source !== this._source;
}
_exec() {
if ( this.codeNode === null ) return this;
if ( this._needsOutputUpdate === true ) {
this._value = this.call( 'main' );
this._needsOutputUpdate = false;
}
this._output.value = this._value;
return this;
}
_refresh() {
this.needsUpdate = true;
this._exec();
this._output.refresh();
}
}
const scriptable = nodeProxy( ScriptableNode );
addNodeElement( 'scriptable', scriptable );
addNodeClass( 'ScriptableNode', ScriptableNode );
class FogNode extends Node {
constructor( colorNode, factorNode ) {
super( 'float' );
this.isFogNode = true;
this.colorNode = colorNode;
this.factorNode = factorNode;
}
getViewZNode( builder ) {
let viewZ;
const getViewZ = builder.context.getViewZ;
if ( getViewZ !== undefined ) {
viewZ = getViewZ( this );
}
return ( viewZ || positionView.z ).negate();
}
setup() {
return this.factorNode;
}
}
const fog = nodeProxy( FogNode );
addNodeElement( 'fog', fog );
addNodeClass( 'FogNode', FogNode );
class FogRangeNode extends FogNode {
constructor( colorNode, nearNode, farNode ) {
super( colorNode );
this.isFogRangeNode = true;
this.nearNode = nearNode;
this.farNode = farNode;
}
setup( builder ) {
const viewZ = this.getViewZNode( builder );
return smoothstep( this.nearNode, this.farNode, viewZ );
}
}
const rangeFog = nodeProxy( FogRangeNode );
addNodeElement( 'rangeFog', rangeFog );
addNodeClass( 'FogRangeNode', FogRangeNode );
class FogExp2Node extends FogNode {
constructor( colorNode, densityNode ) {
super( colorNode );
this.isFogExp2Node = true;
this.densityNode = densityNode;
}
setup( builder ) {
const viewZ = this.getViewZNode( builder );
const density = this.densityNode;
return density.mul( density, viewZ, viewZ ).negate().exp().oneMinus();
}
}
const densityFog = nodeProxy( FogExp2Node );
addNodeElement( 'densityFog', densityFog );
addNodeClass( 'FogExp2Node', FogExp2Node );
let min = null;
let max = null;
class RangeNode extends Node {
constructor( minNode = float(), maxNode = float() ) {
super();
this.minNode = minNode;
this.maxNode = maxNode;
}
getVectorLength( builder ) {
const minLength = builder.getTypeLength( getValueType( this.minNode.value ) );
const maxLength = builder.getTypeLength( getValueType( this.maxNode.value ) );
return minLength > maxLength ? minLength : maxLength;
}
getNodeType( builder ) {
return builder.object.count > 1 ? builder.getTypeFromLength( this.getVectorLength( builder ) ) : 'float';
}
setup( builder ) {
const object = builder.object;
let output = null;
if ( object.count > 1 ) {
const minValue = this.minNode.value;
const maxValue = this.maxNode.value;
const minLength = builder.getTypeLength( getValueType( minValue ) );
const maxLength = builder.getTypeLength( getValueType( maxValue ) );
min = min || new Vector4();
max = max || new Vector4();
min.setScalar( 0 );
max.setScalar( 0 );
if ( minLength === 1 ) min.setScalar( minValue );
else if ( minValue.isColor ) min.set( minValue.r, minValue.g, minValue.b );
else min.set( minValue.x, minValue.y, minValue.z || 0, minValue.w || 0 );
if ( maxLength === 1 ) max.setScalar( maxValue );
else if ( maxValue.isColor ) max.set( maxValue.r, maxValue.g, maxValue.b );
else max.set( maxValue.x, maxValue.y, maxValue.z || 0, maxValue.w || 0 );
const stride = 4;
const length = stride * object.count;
const array = new Float32Array( length );
for ( let i = 0; i < length; i ++ ) {
const index = i % stride;
const minElementValue = min.getComponent( index );
const maxElementValue = max.getComponent( index );
array[ i ] = MathUtils.lerp( minElementValue, maxElementValue, Math.random() );
}
const nodeType = this.getNodeType( builder );
if ( object.count <= 4096 ) {
output = buffer( array, 'vec4', object.count ).element( instanceIndex ).convert( nodeType );
} else {
// TODO: Improve anonymous buffer attribute creation removing this part
const bufferAttribute = new InstancedBufferAttribute( array, 4 );
builder.geometry.setAttribute( '__range' + this.id, bufferAttribute );
output = instancedBufferAttribute( bufferAttribute ).convert( nodeType );
}
} else {
output = float( 0 );
}
return output;
}
}
const range = nodeProxy( RangeNode );
addNodeClass( 'RangeNode', RangeNode );
class ComputeNode extends Node {
constructor( computeNode, count, workgroupSize = [ 64 ] ) {
super( 'void' );
this.isComputeNode = true;
this.computeNode = computeNode;
this.count = count;
this.workgroupSize = workgroupSize;
this.dispatchCount = 0;
this.version = 1;
this.updateBeforeType = NodeUpdateType.OBJECT;
this.updateDispatchCount();
}
dispose() {
this.dispatchEvent( { type: 'dispose' } );
}
set needsUpdate( value ) {
if ( value === true ) this.version ++;
}
updateDispatchCount() {
const { count, workgroupSize } = this;
let size = workgroupSize[ 0 ];
for ( let i = 1; i < workgroupSize.length; i ++ )
size *= workgroupSize[ i ];
this.dispatchCount = Math.ceil( count / size );
}
onInit() { }
updateBefore( { renderer } ) {
renderer.compute( this );
}
generate( builder ) {
const { shaderStage } = builder;
if ( shaderStage === 'compute' ) {
const snippet = this.computeNode.build( builder, 'void' );
if ( snippet !== '' ) {
builder.addLineFlowCode( snippet );
}
}
}
}
const compute = ( node, count, workgroupSize ) => nodeObject( new ComputeNode( nodeObject( node ), count, workgroupSize ) );
addNodeElement( 'compute', compute );
addNodeClass( 'ComputeNode', ComputeNode );
class LightNode extends Node {
constructor( scope = LightNode.TARGET_DIRECTION, light = null ) {
super();
this.scope = scope;
this.light = light;
}
setup() {
const { scope, light } = this;
let output = null;
if ( scope === LightNode.TARGET_DIRECTION ) {
output = cameraViewMatrix.transformDirection( objectPosition( light ).sub( objectPosition( light.target ) ) );
}
return output;
}
serialize( data ) {
super.serialize( data );
data.scope = this.scope;
}
deserialize( data ) {
super.deserialize( data );
this.scope = data.scope;
}
}
LightNode.TARGET_DIRECTION = 'targetDirection';
const lightTargetDirection = nodeProxy( LightNode, LightNode.TARGET_DIRECTION );
addNodeClass( 'LightNode', LightNode );
const getDistanceAttenuation = tslFn( ( inputs ) => {
const { lightDistance, cutoffDistance, decayExponent } = inputs;
// based upon Frostbite 3 Moving to Physically-based Rendering
// page 32, equation 26: E[window1]
// https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
const distanceFalloff = lightDistance.pow( decayExponent ).max( 0.01 ).reciprocal();
return cutoffDistance.greaterThan( 0 ).cond(
distanceFalloff.mul( lightDistance.div( cutoffDistance ).pow4().oneMinus().clamp().pow2() ),
distanceFalloff
);
} ); // validated
class PointLightNode extends AnalyticLightNode {
constructor( light = null ) {
super( light );
this.cutoffDistanceNode = uniform( 0 );
this.decayExponentNode = uniform( 0 );
}
update( frame ) {
const { light } = this;
super.update( frame );
this.cutoffDistanceNode.value = light.distance;
this.decayExponentNode.value = light.decay;
}
setup( builder ) {
const { colorNode, cutoffDistanceNode, decayExponentNode, light } = this;
const lightingModel = builder.context.lightingModel;
const lVector = objectViewPosition( light ).sub( positionView ); // @TODO: Add it into LightNode
const lightDirection = lVector.normalize();
const lightDistance = lVector.length();
const lightAttenuation = getDistanceAttenuation( {
lightDistance,
cutoffDistance: cutoffDistanceNode,
decayExponent: decayExponentNode
} );
const lightColor = colorNode.mul( lightAttenuation );
const reflectedLight = builder.context.reflectedLight;
lightingModel.direct( {
lightDirection,
lightColor,
reflectedLight
}, builder.stack, builder );
}
}
addNodeClass( 'PointLightNode', PointLightNode );
addLightNode( PointLight, PointLightNode );
class DirectionalLightNode extends AnalyticLightNode {
constructor( light = null ) {
super( light );
}
setup( builder ) {
super.setup( builder );
const lightingModel = builder.context.lightingModel;
const lightColor = this.colorNode;
const lightDirection = lightTargetDirection( this.light );
const reflectedLight = builder.context.reflectedLight;
lightingModel.direct( {
lightDirection,
lightColor,
reflectedLight
}, builder.stack, builder );
}
}
addNodeClass( 'DirectionalLightNode', DirectionalLightNode );
addLightNode( DirectionalLight, DirectionalLightNode );
const _matrix41 = /*@__PURE__*/ new Matrix4();
const _matrix42 = /*@__PURE__*/ new Matrix4();
let ltcLib = null;
class RectAreaLightNode extends AnalyticLightNode {
constructor( light = null ) {
super( light );
this.halfHeight = uniform( new Vector3() );
this.halfWidth = uniform( new Vector3() );
}
update( frame ) {
super.update( frame );
const { light } = this;
const viewMatrix = frame.camera.matrixWorldInverse;
_matrix42.identity();
_matrix41.copy( light.matrixWorld );
_matrix41.premultiply( viewMatrix );
_matrix42.extractRotation( _matrix41 );
this.halfWidth.value.set( light.width * 0.5, 0.0, 0.0 );
this.halfHeight.value.set( 0.0, light.height * 0.5, 0.0 );
this.halfWidth.value.applyMatrix4( _matrix42 );
this.halfHeight.value.applyMatrix4( _matrix42 );
}
setup( builder ) {
super.setup( builder );
let ltc_1, ltc_2;
if ( builder.isAvailable( 'float32Filterable' ) ) {
ltc_1 = texture( ltcLib.LTC_FLOAT_1 );
ltc_2 = texture( ltcLib.LTC_FLOAT_2 );
} else {
ltc_1 = texture( ltcLib.LTC_HALF_1 );
ltc_2 = texture( ltcLib.LTC_HALF_2 );
}
const { colorNode, light } = this;
const lightingModel = builder.context.lightingModel;
const lightPosition = objectViewPosition( light );
const reflectedLight = builder.context.reflectedLight;
lightingModel.directRectArea( {
lightColor: colorNode,
lightPosition,
halfWidth: this.halfWidth,
halfHeight: this.halfHeight,
reflectedLight,
ltc_1,
ltc_2
}, builder.stack, builder );
}
static setLTC( ltc ) {
ltcLib = ltc;
}
}
addNodeClass( 'RectAreaLightNode', RectAreaLightNode );
addLightNode( RectAreaLight, RectAreaLightNode );
class SpotLightNode extends AnalyticLightNode {
constructor( light = null ) {
super( light );
this.coneCosNode = uniform( 0 );
this.penumbraCosNode = uniform( 0 );
this.cutoffDistanceNode = uniform( 0 );
this.decayExponentNode = uniform( 0 );
}
update( frame ) {
super.update( frame );
const { light } = this;
this.coneCosNode.value = Math.cos( light.angle );
this.penumbraCosNode.value = Math.cos( light.angle * ( 1 - light.penumbra ) );
this.cutoffDistanceNode.value = light.distance;
this.decayExponentNode.value = light.decay;
}
getSpotAttenuation( angleCosine ) {
const { coneCosNode, penumbraCosNode } = this;
return smoothstep( coneCosNode, penumbraCosNode, angleCosine );
}
setup( builder ) {
super.setup( builder );
const lightingModel = builder.context.lightingModel;
const { colorNode, cutoffDistanceNode, decayExponentNode, light } = this;
const lVector = objectViewPosition( light ).sub( positionView ); // @TODO: Add it into LightNode
const lightDirection = lVector.normalize();
const angleCos = lightDirection.dot( lightTargetDirection( light ) );
const spotAttenuation = this.getSpotAttenuation( angleCos );
const lightDistance = lVector.length();
const lightAttenuation = getDistanceAttenuation( {
lightDistance,
cutoffDistance: cutoffDistanceNode,
decayExponent: decayExponentNode
} );
const lightColor = colorNode.mul( spotAttenuation ).mul( lightAttenuation );
const reflectedLight = builder.context.reflectedLight;
lightingModel.direct( {
lightDirection,
lightColor,
reflectedLight
}, builder.stack, builder );
}
}
addNodeClass( 'SpotLightNode', SpotLightNode );
addLightNode( SpotLight, SpotLightNode );
class IESSpotLight extends SpotLight {
constructor( color, intensity, distance, angle, penumbra, decay ) {
super( color, intensity, distance, angle, penumbra, decay );
this.iesMap = null;
}
copy( source, recursive ) {
super.copy( source, recursive );
this.iesMap = source.iesMap;
return this;
}
}
class IESSpotLightNode extends SpotLightNode {
getSpotAttenuation( angleCosine ) {
const iesMap = this.light.iesMap;
let spotAttenuation = null;
if ( iesMap && iesMap.isTexture === true ) {
const angle = angleCosine.acos().mul( 1.0 / Math.PI );
spotAttenuation = texture( iesMap, vec2( angle, 0 ), 0 ).r;
} else {
spotAttenuation = super.getSpotAttenuation( angleCosine );
}
return spotAttenuation;
}
}
addNodeClass( 'IESSpotLightNode', IESSpotLightNode );
addLightNode( IESSpotLight, IESSpotLightNode );
class AmbientLightNode extends AnalyticLightNode {
constructor( light = null ) {
super( light );
}
setup( { context } ) {
context.irradiance.addAssign( this.colorNode );
}
}
addNodeClass( 'AmbientLightNode', AmbientLightNode );
addLightNode( AmbientLight, AmbientLightNode );
class HemisphereLightNode extends AnalyticLightNode {
constructor( light = null ) {
super( light );
this.lightPositionNode = objectPosition( light );
this.lightDirectionNode = this.lightPositionNode.normalize();
this.groundColorNode = uniform( new Color() );
}
update( frame ) {
const { light } = this;
super.update( frame );
this.lightPositionNode.object3d = light;
this.groundColorNode.value.copy( light.groundColor ).multiplyScalar( light.intensity );
}
setup( builder ) {
const { colorNode, groundColorNode, lightDirectionNode } = this;
const dotNL = normalView.dot( lightDirectionNode );
const hemiDiffuseWeight = dotNL.mul( 0.5 ).add( 0.5 );
const irradiance = mix( groundColorNode, colorNode, hemiDiffuseWeight );
builder.context.irradiance.addAssign( irradiance );
}
}
addNodeClass( 'HemisphereLightNode', HemisphereLightNode );
addLightNode( HemisphereLight, HemisphereLightNode );
let _generator = null;
const _cache = new WeakMap();
function _generateCubeUVSize( imageHeight ) {
const maxMip = Math.log2( imageHeight ) - 2;
const texelHeight = 1.0 / imageHeight;
const texelWidth = 1.0 / ( 3 * Math.max( Math.pow( 2, maxMip ), 7 * 16 ) );
return { texelWidth, texelHeight, maxMip };
}
function _getPMREMFromTexture( texture ) {
let cacheTexture = _cache.get( texture );
const pmremVersion = cacheTexture !== undefined ? cacheTexture.pmremVersion : - 1;
if ( pmremVersion !== texture.pmremVersion ) {
if ( texture.isCubeTexture ) {
if ( texture.source.data.some( ( texture ) => texture === undefined ) ) {
throw new Error( 'PMREMNode: Undefined texture in CubeTexture. Use onLoad callback or async loader' );
}
cacheTexture = _generator.fromCubemap( texture, cacheTexture );
} else {
if ( texture.image === undefined ) {
throw new Error( 'PMREMNode: Undefined image in Texture. Use onLoad callback or async loader' );
}
cacheTexture = _generator.fromEquirectangular( texture, cacheTexture );
}
cacheTexture.pmremVersion = texture.pmremVersion;
_cache.set( texture, cacheTexture );
}
return cacheTexture.texture;
}
class PMREMNode extends TempNode {
constructor( value, uvNode = null, levelNode = null ) {
super( 'vec3' );
this._value = value;
this._pmrem = null;
this.uvNode = uvNode;
this.levelNode = levelNode;
this._generator = null;
this._texture = texture( null );
this._width = uniform( 0 );
this._height = uniform( 0 );
this._maxMip = uniform( 0 );
this.updateBeforeType = NodeUpdateType.RENDER;
}
set value( value ) {
this._value = value;
this._pmrem = null;
}
get value() {
return this._value;
}
updateFromTexture( texture ) {
const cubeUVSize = _generateCubeUVSize( texture.image.height );
this._texture.value = texture;
this._width.value = cubeUVSize.texelWidth;
this._height.value = cubeUVSize.texelHeight;
this._maxMip.value = cubeUVSize.maxMip;
}
updateBefore() {
let pmrem = this._pmrem;
const pmremVersion = pmrem ? pmrem.pmremVersion : - 1;
const texture = this._value;
if ( pmremVersion !== texture.pmremVersion ) {
if ( texture.isPMREMTexture === true ) {
pmrem = texture;
} else {
pmrem = _getPMREMFromTexture( texture );
}
this._pmrem = pmrem;
this.updateFromTexture( pmrem );
}
}
setup( builder ) {
if ( _generator === null ) {
_generator = builder.createPMREMGenerator();
}
//
this.updateBefore( builder );
//
let uvNode = this.uvNode;
if ( uvNode === null && builder.context.getUV ) {
uvNode = builder.context.getUV( this );
}
//
const texture = this.value;
if ( builder.renderer.coordinateSystem === WebGLCoordinateSystem && texture.isPMREMTexture !== true && texture.isRenderTargetTexture === true ) {
uvNode = vec3( uvNode.x.negate(), uvNode.yz );
}
//
let levelNode = this.levelNode;
if ( levelNode === null && builder.context.getTextureLevel ) {
levelNode = builder.context.getTextureLevel( this );
}
//
return textureCubeUV( this._texture, uvNode, levelNode, this._width, this._height, this._maxMip );
}
}
const pmremTexture = nodeProxy( PMREMNode );
addNodeClass( 'PMREMNode', PMREMNode );
const _envNodeCache = new WeakMap();
class EnvironmentNode extends LightingNode {
constructor( envNode = null ) {
super();
this.envNode = envNode;
}
setup( builder ) {
let envNode = this.envNode;
if ( envNode.isTextureNode ) {
let cacheEnvNode = _envNodeCache.get( envNode.value );
if ( cacheEnvNode === undefined ) {
cacheEnvNode = pmremTexture( envNode.value );
_envNodeCache.set( envNode.value, cacheEnvNode );
}
envNode = cacheEnvNode;
}
//
const { material } = builder;
const envMap = material.envMap;
const intensity = envMap ? reference( 'envMapIntensity', 'float', builder.material ) : reference( 'environmentIntensity', 'float', builder.scene ); // @TODO: Add materialEnvIntensity in MaterialNode
const useAnisotropy = material.useAnisotropy === true || material.anisotropy > 0;
const radianceNormalView = useAnisotropy ? transformedBentNormalView : transformedNormalView;
const radiance = context( envNode, createRadianceContext( roughness, radianceNormalView ) ).mul( intensity );
const irradiance = context( envNode, createIrradianceContext( transformedNormalWorld ) ).mul( Math.PI ).mul( intensity );
const isolateRadiance = cache( radiance );
const isolateIrradiance = cache( irradiance );
//
builder.context.radiance.addAssign( isolateRadiance );
builder.context.iblIrradiance.addAssign( isolateIrradiance );
//
const clearcoatRadiance = builder.context.lightingModel.clearcoatRadiance;
if ( clearcoatRadiance ) {
const clearcoatRadianceContext = context( envNode, createRadianceContext( clearcoatRoughness, transformedClearcoatNormalView ) ).mul( intensity );
const isolateClearcoatRadiance = cache( clearcoatRadianceContext );
clearcoatRadiance.addAssign( isolateClearcoatRadiance );
}
}
}
const createRadianceContext = ( roughnessNode, normalViewNode ) => {
let reflectVec = null;
return {
getUV: () => {
if ( reflectVec === null ) {
reflectVec = positionViewDirection.negate().reflect( normalViewNode );
// Mixing the reflection with the normal is more accurate and keeps rough objects from gathering light from behind their tangent plane.
reflectVec = roughnessNode.mul( roughnessNode ).mix( reflectVec, normalViewNode ).normalize();
reflectVec = reflectVec.transformDirection( cameraViewMatrix );
}
return reflectVec;
},
getTextureLevel: () => {
return roughnessNode;
}
};
};
const createIrradianceContext = ( normalWorldNode ) => {
return {
getUV: () => {
return normalWorldNode;
},
getTextureLevel: () => {
return float( 1.0 );
}
};
};
addNodeClass( 'EnvironmentNode', EnvironmentNode );
class BasicEnvironmentNode extends LightingNode {
constructor( envNode = null ) {
super();
this.envNode = envNode;
}
setup( builder ) {
// environment property is used in the finish() method of BasicLightingModel
builder.context.environment = this.envNode;
}
}
addNodeClass( 'BasicEnvironmentNode', BasicEnvironmentNode );
const checkerShaderNode = tslFn( ( inputs ) => {
const uv = inputs.uv.mul( 2.0 );
const cx = uv.x.floor();
const cy = uv.y.floor();
const result = cx.add( cy ).mod( 2.0 );
return result.sign();
} );
class CheckerNode extends TempNode {
constructor( uvNode = uv() ) {
super( 'float' );
this.uvNode = uvNode;
}
setup() {
return checkerShaderNode( { uv: this.uvNode } );
}
}
const checker = nodeProxy( CheckerNode );
addNodeElement( 'checker', checker );
addNodeClass( 'CheckerNode', CheckerNode );
class NodeLoader extends Loader {
constructor( manager ) {
super( manager );
this.textures = {};
}
load( url, onLoad, onProgress, onError ) {
const loader = new FileLoader( this.manager );
loader.setPath( this.path );
loader.setRequestHeader( this.requestHeader );
loader.setWithCredentials( this.withCredentials );
loader.load( url, ( text ) => {
try {
onLoad( this.parse( JSON.parse( text ) ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
this.manager.itemError( url );
}
}, onProgress, onError );
}
parseNodes( json ) {
const nodes = {};
if ( json !== undefined ) {
for ( const nodeJSON of json ) {
const { uuid, type } = nodeJSON;
nodes[ uuid ] = nodeObject( createNodeFromType( type ) ); // @TODO: Maybe nodeObjectify the node in createNodeFromType?
nodes[ uuid ].uuid = uuid;
}
const meta = { nodes, textures: this.textures };
for ( const nodeJSON of json ) {
nodeJSON.meta = meta;
const node = nodes[ nodeJSON.uuid ];
node.deserialize( nodeJSON );
delete nodeJSON.meta;
}
}
return nodes;
}
parse( json ) {
const node = nodeObject( createNodeFromType( json.type ) );
node.uuid = json.uuid;
const nodes = this.parseNodes( json.nodes );
const meta = { nodes, textures: this.textures };
json.meta = meta;
node.deserialize( json );
delete json.meta;
return node;
}
setTextures( value ) {
this.textures = value;
return this;
}
}
const _defaultValues$e = /*@__PURE__*/ new PointsMaterial();
class InstancedPointsNodeMaterial extends NodeMaterial {
constructor( params = {} ) {
super();
this.normals = false;
this.lights = false;
this.useAlphaToCoverage = true;
this.useColor = params.vertexColors;
this.pointWidth = 1;
this.pointColorNode = null;
this.setDefaultValues( _defaultValues$e );
this.setupShaders();
this.setValues( params );
}
setupShaders() {
const useAlphaToCoverage = this.alphaToCoverage;
const useColor = this.useColor;
this.vertexNode = tslFn( () => {
//vUv = uv;
varying( vec2(), 'vUv' ).assign( uv() ); // @TODO: Analyze other way to do this
const instancePosition = attribute( 'instancePosition' );
// camera space
const mvPos = property( 'vec4', 'mvPos' );
mvPos.assign( modelViewMatrix.mul( vec4( instancePosition, 1.0 ) ) );
const aspect = viewport.z.div( viewport.w );
// clip space
const clipPos = cameraProjectionMatrix.mul( mvPos );
// offset in ndc space
const offset = property( 'vec2', 'offset' );
offset.assign( positionGeometry.xy );
offset.assign( offset.mul( materialPointWidth ) );
offset.assign( offset.div( viewport.z ) );
offset.y.assign( offset.y.mul( aspect ) );
// back to clip space
offset.assign( offset.mul( clipPos.w ) );
//clipPos.xy += offset;
clipPos.assign( clipPos.add( vec4( offset, 0, 0 ) ) );
return clipPos;
//vec4 mvPosition = mvPos; // this was used for somethihng...
} )();
this.fragmentNode = tslFn( () => {
const vUv = varying( vec2(), 'vUv' );
// force assignment into correct place in flow
const alpha = property( 'float', 'alpha' );
alpha.assign( 1 );
const a = vUv.x;
const b = vUv.y;
const len2 = a.mul( a ).add( b.mul( b ) );
if ( useAlphaToCoverage ) {
// force assignment out of following 'if' statement - to avoid uniform control flow errors
const dlen = property( 'float', 'dlen' );
dlen.assign( len2.fwidth() );
alpha.assign( smoothstep( dlen.oneMinus(), dlen.add( 1 ), len2 ).oneMinus() );
} else {
len2.greaterThan( 1.0 ).discard();
}
let pointColorNode;
if ( this.pointColorNode ) {
pointColorNode = this.pointColorNode;
} else {
if ( useColor ) {
const instanceColor = attribute( 'instanceColor' );
pointColorNode = instanceColor.mul( materialColor );
} else {
pointColorNode = materialColor;
}
}
return vec4( pointColorNode, alpha );
} )();
this.needsUpdate = true;
}
get alphaToCoverage() {
return this.useAlphaToCoverage;
}
set alphaToCoverage( value ) {
if ( this.useAlphaToCoverage !== value ) {
this.useAlphaToCoverage = value;
this.setupShaders();
}
}
}
addNodeMaterial( 'InstancedPointsNodeMaterial', InstancedPointsNodeMaterial );
const _defaultValues$d = /*@__PURE__*/ new LineBasicMaterial();
class LineBasicNodeMaterial extends NodeMaterial {
constructor( parameters ) {
super();
this.isLineBasicNodeMaterial = true;
this.lights = false;
this.normals = false;
this.setDefaultValues( _defaultValues$d );
this.setValues( parameters );
}
}
addNodeMaterial( 'LineBasicNodeMaterial', LineBasicNodeMaterial );
const _defaultValues$c = /*@__PURE__*/ new LineDashedMaterial();
class LineDashedNodeMaterial extends NodeMaterial {
constructor( parameters ) {
super();
this.isLineDashedNodeMaterial = true;
this.lights = false;
this.normals = false;
this.setDefaultValues( _defaultValues$c );
this.offsetNode = null;
this.dashScaleNode = null;
this.dashSizeNode = null;
this.gapSizeNode = null;
this.setValues( parameters );
}
setupVariants() {
const offsetNode = this.offsetNode;
const dashScaleNode = this.dashScaleNode ? float( this.dashScaleNode ) : materialLineScale;
const dashSizeNode = this.dashSizeNode ? float( this.dashSizeNode ) : materialLineDashSize;
const gapSizeNode = this.dashSizeNode ? float( this.dashGapNode ) : materialLineGapSize;
dashSize.assign( dashSizeNode );
gapSize.assign( gapSizeNode );
const vLineDistance = varying( attribute( 'lineDistance' ).mul( dashScaleNode ) );
const vLineDistanceOffset = offsetNode ? vLineDistance.add( offsetNode ) : vLineDistance;
vLineDistanceOffset.mod( dashSize.add( gapSize ) ).greaterThan( dashSize ).discard();
}
}
addNodeMaterial( 'LineDashedNodeMaterial', LineDashedNodeMaterial );
const _defaultValues$b = /*@__PURE__*/ new LineDashedMaterial();
class Line2NodeMaterial extends NodeMaterial {
constructor( params = {} ) {
super();
this.normals = false;
this.lights = false;
this.setDefaultValues( _defaultValues$b );
this.useAlphaToCoverage = true;
this.useColor = params.vertexColors;
this.useDash = params.dashed;
this.useWorldUnits = false;
this.dashOffset = 0;
this.lineWidth = 1;
this.lineColorNode = null;
this.offsetNode = null;
this.dashScaleNode = null;
this.dashSizeNode = null;
this.gapSizeNode = null;
this.setValues( params );
}
setup( builder ) {
this.setupShaders();
super.setup( builder );
}
setupShaders() {
const useAlphaToCoverage = this.alphaToCoverage;
const useColor = this.useColor;
const useDash = this.dashed;
const useWorldUnits = this.worldUnits;
const trimSegment = tslFn( ( { start, end } ) => {
const a = cameraProjectionMatrix.element( 2 ).element( 2 ); // 3nd entry in 3th column
const b = cameraProjectionMatrix.element( 3 ).element( 2 ); // 3nd entry in 4th column
const nearEstimate = b.mul( - 0.5 ).div( a );
const alpha = nearEstimate.sub( start.z ).div( end.z.sub( start.z ) );
return vec4( mix( start.xyz, end.xyz, alpha ), end.w );
} );
this.vertexNode = tslFn( () => {
varyingProperty( 'vec2', 'vUv' ).assign( uv() );
const instanceStart = attribute( 'instanceStart' );
const instanceEnd = attribute( 'instanceEnd' );
// camera space
const start = property( 'vec4', 'start' );
const end = property( 'vec4', 'end' );
start.assign( modelViewMatrix.mul( vec4( instanceStart, 1.0 ) ) ); // force assignment into correct place in flow
end.assign( modelViewMatrix.mul( vec4( instanceEnd, 1.0 ) ) );
if ( useWorldUnits ) {
varyingProperty( 'vec3', 'worldStart' ).assign( start.xyz );
varyingProperty( 'vec3', 'worldEnd' ).assign( end.xyz );
}
const aspect = viewport.z.div( viewport.w );
// special case for perspective projection, and segments that terminate either in, or behind, the camera plane
// clearly the gpu firmware has a way of addressing this issue when projecting into ndc space
// but we need to perform ndc-space calculations in the shader, so we must address this issue directly
// perhaps there is a more elegant solution -- WestLangley
const perspective = cameraProjectionMatrix.element( 2 ).element( 3 ).equal( - 1.0 ); // 4th entry in the 3rd column
If( perspective, () => {
If( start.z.lessThan( 0.0 ).and( end.z.greaterThan( 0.0 ) ), () => {
end.assign( trimSegment( { start: start, end: end } ) );
} ).elseif( end.z.lessThan( 0.0 ).and( start.z.greaterThanEqual( 0.0 ) ), () => {
start.assign( trimSegment( { start: end, end: start } ) );
} );
} );
// clip space
const clipStart = cameraProjectionMatrix.mul( start );
const clipEnd = cameraProjectionMatrix.mul( end );
// ndc space
const ndcStart = clipStart.xyz.div( clipStart.w );
const ndcEnd = clipEnd.xyz.div( clipEnd.w );
// direction
const dir = ndcEnd.xy.sub( ndcStart.xy ).temp();
// account for clip-space aspect ratio
dir.x.assign( dir.x.mul( aspect ) );
dir.assign( dir.normalize() );
const clip = temp( vec4() );
if ( useWorldUnits ) {
// get the offset direction as perpendicular to the view vector
const worldDir = end.xyz.sub( start.xyz ).normalize();
const tmpFwd = mix( start.xyz, end.xyz, 0.5 ).normalize();
const worldUp = worldDir.cross( tmpFwd ).normalize();
const worldFwd = worldDir.cross( worldUp );
const worldPos = varyingProperty( 'vec4', 'worldPos' );
worldPos.assign( positionGeometry.y.lessThan( 0.5 ).cond( start, end ) );
// height offset
const hw = materialLineWidth.mul( 0.5 );
worldPos.addAssign( vec4( positionGeometry.x.lessThan( 0.0 ).cond( worldUp.mul( hw ), worldUp.mul( hw ).negate() ), 0 ) );
// don't extend the line if we're rendering dashes because we
// won't be rendering the endcaps
if ( ! useDash ) {
// cap extension
worldPos.addAssign( vec4( positionGeometry.y.lessThan( 0.5 ).cond( worldDir.mul( hw ).negate(), worldDir.mul( hw ) ), 0 ) );
// add width to the box
worldPos.addAssign( vec4( worldFwd.mul( hw ), 0 ) );
// endcaps
If( positionGeometry.y.greaterThan( 1.0 ).or( positionGeometry.y.lessThan( 0.0 ) ), () => {
worldPos.subAssign( vec4( worldFwd.mul( 2.0 ).mul( hw ), 0 ) );
} );
}
// project the worldpos
clip.assign( cameraProjectionMatrix.mul( worldPos ) );
// shift the depth of the projected points so the line
// segments overlap neatly
const clipPose = temp( vec3() );
clipPose.assign( positionGeometry.y.lessThan( 0.5 ).cond( ndcStart, ndcEnd ) );
clip.z.assign( clipPose.z.mul( clip.w ) );
} else {
const offset = property( 'vec2', 'offset' );
offset.assign( vec2( dir.y, dir.x.negate() ) );
// undo aspect ratio adjustment
dir.x.assign( dir.x.div( aspect ) );
offset.x.assign( offset.x.div( aspect ) );
// sign flip
offset.assign( positionGeometry.x.lessThan( 0.0 ).cond( offset.negate(), offset ) );
// endcaps
If( positionGeometry.y.lessThan( 0.0 ), () => {
offset.assign( offset.sub( dir ) );
} ).elseif( positionGeometry.y.greaterThan( 1.0 ), () => {
offset.assign( offset.add( dir ) );
} );
// adjust for linewidth
offset.assign( offset.mul( materialLineWidth ) );
// adjust for clip-space to screen-space conversion // maybe resolution should be based on viewport ...
offset.assign( offset.div( viewport.w ) );
// select end
clip.assign( positionGeometry.y.lessThan( 0.5 ).cond( clipStart, clipEnd ) );
// back to clip space
offset.assign( offset.mul( clip.w ) );
clip.assign( clip.add( vec4( offset, 0, 0 ) ) );
}
return clip;
} )();
const closestLineToLine = tslFn( ( { p1, p2, p3, p4 } ) => {
const p13 = p1.sub( p3 );
const p43 = p4.sub( p3 );
const p21 = p2.sub( p1 );
const d1343 = p13.dot( p43 );
const d4321 = p43.dot( p21 );
const d1321 = p13.dot( p21 );
const d4343 = p43.dot( p43 );
const d2121 = p21.dot( p21 );
const denom = d2121.mul( d4343 ).sub( d4321.mul( d4321 ) );
const numer = d1343.mul( d4321 ).sub( d1321.mul( d4343 ) );
const mua = numer.div( denom ).clamp();
const mub = d1343.add( d4321.mul( mua ) ).div( d4343 ).clamp();
return vec2( mua, mub );
} );
this.fragmentNode = tslFn( () => {
const vUv = varyingProperty( 'vec2', 'vUv' );
if ( useDash ) {
const offsetNode = this.offsetNode ? float( this.offsetNodeNode ) : materialLineDashOffset;
const dashScaleNode = this.dashScaleNode ? float( this.dashScaleNode ) : materialLineScale;
const dashSizeNode = this.dashSizeNode ? float( this.dashSizeNode ) : materialLineDashSize;
const gapSizeNode = this.dashSizeNode ? float( this.dashGapNode ) : materialLineGapSize;
dashSize.assign( dashSizeNode );
gapSize.assign( gapSizeNode );
const instanceDistanceStart = attribute( 'instanceDistanceStart' );
const instanceDistanceEnd = attribute( 'instanceDistanceEnd' );
const lineDistance = positionGeometry.y.lessThan( 0.5 ).cond( dashScaleNode.mul( instanceDistanceStart ), materialLineScale.mul( instanceDistanceEnd ) );
const vLineDistance = varying( lineDistance.add( materialLineDashOffset ) );
const vLineDistanceOffset = offsetNode ? vLineDistance.add( offsetNode ) : vLineDistance;
vUv.y.lessThan( - 1.0 ).or( vUv.y.greaterThan( 1.0 ) ).discard(); // discard endcaps
vLineDistanceOffset.mod( dashSize.add( gapSize ) ).greaterThan( dashSize ).discard(); // todo - FIX
}
// force assignment into correct place in flow
const alpha = property( 'float', 'alpha' );
alpha.assign( 1 );
if ( useWorldUnits ) {
const worldStart = varyingProperty( 'vec3', 'worldStart' );
const worldEnd = varyingProperty( 'vec3', 'worldEnd' );
// Find the closest points on the view ray and the line segment
const rayEnd = varyingProperty( 'vec4', 'worldPos' ).xyz.normalize().mul( 1e5 );
const lineDir = worldEnd.sub( worldStart );
const params = closestLineToLine( { p1: worldStart, p2: worldEnd, p3: vec3( 0.0, 0.0, 0.0 ), p4: rayEnd } );
const p1 = worldStart.add( lineDir.mul( params.x ) );
const p2 = rayEnd.mul( params.y );
const delta = p1.sub( p2 );
const len = delta.length();
const norm = len.div( materialLineWidth );
if ( ! useDash ) {
if ( useAlphaToCoverage ) {
const dnorm = norm.fwidth();
alpha.assign( smoothstep( dnorm.negate().add( 0.5 ), dnorm.add( 0.5 ), norm ).oneMinus() );
} else {
norm.greaterThan( 0.5 ).discard();
}
}
} else {
// round endcaps
if ( useAlphaToCoverage ) {
const a = vUv.x;
const b = vUv.y.greaterThan( 0.0 ).cond( vUv.y.sub( 1.0 ), vUv.y.add( 1.0 ) );
const len2 = a.mul( a ).add( b.mul( b ) );
// force assignment out of following 'if' statement - to avoid uniform control flow errors
const dlen = property( 'float', 'dlen' );
dlen.assign( len2.fwidth() );
If( vUv.y.abs().greaterThan( 1.0 ), () => {
alpha.assign( smoothstep( dlen.oneMinus(), dlen.add( 1 ), len2 ).oneMinus() );
} );
} else {
If( vUv.y.abs().greaterThan( 1.0 ), () => {
const a = vUv.x;
const b = vUv.y.greaterThan( 0.0 ).cond( vUv.y.sub( 1.0 ), vUv.y.add( 1.0 ) );
const len2 = a.mul( a ).add( b.mul( b ) );
len2.greaterThan( 1.0 ).discard();
} );
}
}
let lineColorNode;
if ( this.lineColorNode ) {
lineColorNode = this.lineColorNode;
} else {
if ( useColor ) {
const instanceColorStart = attribute( 'instanceColorStart' );
const instanceColorEnd = attribute( 'instanceColorEnd' );
const instanceColor = positionGeometry.y.lessThan( 0.5 ).cond( instanceColorStart, instanceColorEnd );
lineColorNode = instanceColor.mul( materialColor );
} else {
lineColorNode = materialColor;
}
}
return vec4( lineColorNode, alpha );
} )();
}
get worldUnits() {
return this.useWorldUnits;
}
set worldUnits( value ) {
if ( this.useWorldUnits !== value ) {
this.useWorldUnits = value;
this.needsUpdate = true;
}
}
get dashed() {
return this.useDash;
}
set dashed( value ) {
if ( this.useDash !== value ) {
this.useDash = value;
this.needsUpdate = true;
}
}
get alphaToCoverage() {
return this.useAlphaToCoverage;
}
set alphaToCoverage( value ) {
if ( this.useAlphaToCoverage !== value ) {
this.useAlphaToCoverage = value;
this.needsUpdate = true;
}
}
}
addNodeMaterial( 'Line2NodeMaterial', Line2NodeMaterial );
const _defaultValues$a = /*@__PURE__*/ new MeshNormalMaterial();
class MeshNormalNodeMaterial extends NodeMaterial {
constructor( parameters ) {
super();
this.lights = false;
this.isMeshNormalNodeMaterial = true;
this.setDefaultValues( _defaultValues$a );
this.setValues( parameters );
}
setupDiffuseColor() {
const opacityNode = this.opacityNode ? float( this.opacityNode ) : materialOpacity;
diffuseColor.assign( vec4( directionToColor( transformedNormalView ), opacityNode ) );
}
}
addNodeMaterial( 'MeshNormalNodeMaterial', MeshNormalNodeMaterial );
class BasicLightMapNode extends LightingNode {
constructor( lightMapNode = null ) {
super();
this.lightMapNode = lightMapNode;
}
setup( builder ) {
// irradianceLightMap property is used in the indirectDiffuse() method of BasicLightingModel
const RECIPROCAL_PI = float( 1 / Math.PI );
builder.context.irradianceLightMap = this.lightMapNode.mul( RECIPROCAL_PI );
}
}
addNodeClass( 'BasicLightMapNode', BasicLightMapNode );
class BasicLightingModel extends LightingModel {
constructor() {
super();
}
indirect( context, stack, builder ) {
const ambientOcclusion = context.ambientOcclusion;
const reflectedLight = context.reflectedLight;
const irradianceLightMap = builder.context.irradianceLightMap;
reflectedLight.indirectDiffuse.assign( vec4( 0.0 ) );
// accumulation (baked indirect lighting only)
if ( irradianceLightMap ) {
reflectedLight.indirectDiffuse.addAssign( irradianceLightMap );
} else {
reflectedLight.indirectDiffuse.addAssign( vec4( 1.0, 1.0, 1.0, 0.0 ) );
}
// modulation
reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion );
reflectedLight.indirectDiffuse.mulAssign( diffuseColor.rgb );
}
finish( context, stack, builder ) {
const material = builder.material;
const outgoingLight = context.outgoingLight;
const envNode = builder.context.environment;
if ( envNode ) {
switch ( material.combine ) {
case MultiplyOperation:
outgoingLight.rgb.assign( mix( outgoingLight.rgb, outgoingLight.rgb.mul( envNode.rgb ), materialSpecularStrength.mul( materialReflectivity ) ) );
break;
case MixOperation:
outgoingLight.rgb.assign( mix( outgoingLight.rgb, envNode.rgb, materialSpecularStrength.mul( materialReflectivity ) ) );
break;
case AddOperation:
outgoingLight.rgb.addAssign( envNode.rgb.mul( materialSpecularStrength.mul( materialReflectivity ) ) );
break;
default:
console.warn( 'THREE.BasicLightingModel: Unsupported .combine value:', material.combine );
break;
}
}
}
}
const _defaultValues$9 = /*@__PURE__*/ new MeshBasicMaterial();
class MeshBasicNodeMaterial extends NodeMaterial {
constructor( parameters ) {
super();
this.isMeshBasicNodeMaterial = true;
this.lights = true;
//this.normals = false; @TODO: normals usage by context
this.setDefaultValues( _defaultValues$9 );
this.setValues( parameters );
}
setupNormal() {
transformedNormalView.assign( normalView ); // see #28839
}
setupEnvironment( builder ) {
const envNode = super.setupEnvironment( builder );
return envNode ? new BasicEnvironmentNode( envNode ) : null;
}
setupLightMap( builder ) {
let node = null;
if ( builder.material.lightMap ) {
node = new BasicLightMapNode( materialLightMap );
}
return node;
}
setupOutgoingLight() {
return diffuseColor.rgb;
}
setupLightingModel() {
return new BasicLightingModel();
}
}
addNodeMaterial( 'MeshBasicNodeMaterial', MeshBasicNodeMaterial );
const F_Schlick = tslFn( ( { f0, f90, dotVH } ) => {
// Original approximation by Christophe Schlick '94
// float fresnel = pow( 1.0 - dotVH, 5.0 );
// Optimized variant (presented by Epic at SIGGRAPH '13)
// https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
const fresnel = dotVH.mul( - 5.55473 ).sub( 6.98316 ).mul( dotVH ).exp2();
return f0.mul( fresnel.oneMinus() ).add( f90.mul( fresnel ) );
} ); // validated
const BRDF_Lambert = tslFn( ( inputs ) => {
return inputs.diffuseColor.mul( 1 / Math.PI ); // punctual light
} ); // validated
const G_BlinnPhong_Implicit = () => float( 0.25 );
const D_BlinnPhong = tslFn( ( { dotNH } ) => {
return shininess.mul( float( 0.5 ) ).add( 1.0 ).mul( float( 1 / Math.PI ) ).mul( dotNH.pow( shininess ) );
} );
const BRDF_BlinnPhong = tslFn( ( { lightDirection } ) => {
const halfDir = lightDirection.add( positionViewDirection ).normalize();
const dotNH = transformedNormalView.dot( halfDir ).clamp();
const dotVH = positionViewDirection.dot( halfDir ).clamp();
const F = F_Schlick( { f0: specularColor, f90: 1.0, dotVH } );
const G = G_BlinnPhong_Implicit();
const D = D_BlinnPhong( { dotNH } );
return F.mul( G ).mul( D );
} );
class PhongLightingModel extends BasicLightingModel {
constructor( specular = true ) {
super();
this.specular = specular;
}
direct( { lightDirection, lightColor, reflectedLight } ) {
const dotNL = transformedNormalView.dot( lightDirection ).clamp();
const irradiance = dotNL.mul( lightColor );
reflectedLight.directDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor: diffuseColor.rgb } ) ) );
if ( this.specular === true ) {
reflectedLight.directSpecular.addAssign( irradiance.mul( BRDF_BlinnPhong( { lightDirection } ) ).mul( materialSpecularStrength ) );
}
}
indirect( { ambientOcclusion, irradiance, reflectedLight } ) {
reflectedLight.indirectDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor } ) ) );
reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion );
}
}
const _defaultValues$8 = /*@__PURE__*/ new MeshLambertMaterial();
class MeshLambertNodeMaterial extends NodeMaterial {
constructor( parameters ) {
super();
this.isMeshLambertNodeMaterial = true;
this.lights = true;
this.setDefaultValues( _defaultValues$8 );
this.setValues( parameters );
}
setupEnvironment( builder ) {
const envNode = super.setupEnvironment( builder );
return envNode ? new BasicEnvironmentNode( envNode ) : null;
}
setupLightingModel( /*builder*/ ) {
return new PhongLightingModel( false ); // ( specular ) -> force lambert
}
}
addNodeMaterial( 'MeshLambertNodeMaterial', MeshLambertNodeMaterial );
const _defaultValues$7 = /*@__PURE__*/ new MeshPhongMaterial();
class MeshPhongNodeMaterial extends NodeMaterial {
constructor( parameters ) {
super();
this.isMeshPhongNodeMaterial = true;
this.lights = true;
this.shininessNode = null;
this.specularNode = null;
this.setDefaultValues( _defaultValues$7 );
this.setValues( parameters );
}
setupEnvironment( builder ) {
const envNode = super.setupEnvironment( builder );
return envNode ? new BasicEnvironmentNode( envNode ) : null;
}
setupLightingModel( /*builder*/ ) {
return new PhongLightingModel();
}
setupVariants() {
// SHININESS
const shininessNode = ( this.shininessNode ? float( this.shininessNode ) : materialShininess ).max( 1e-4 ); // to prevent pow( 0.0, 0.0 )
shininess.assign( shininessNode );
// SPECULAR COLOR
const specularNode = this.specularNode || materialSpecular;
specularColor.assign( specularNode );
}
copy( source ) {
this.shininessNode = source.shininessNode;
this.specularNode = source.specularNode;
return super.copy( source );
}
}
addNodeMaterial( 'MeshPhongNodeMaterial', MeshPhongNodeMaterial );
const getGeometryRoughness = tslFn( () => {
const dxy = normalGeometry.dFdx().abs().max( normalGeometry.dFdy().abs() );
const geometryRoughness = dxy.x.max( dxy.y ).max( dxy.z );
return geometryRoughness;
} );
const getRoughness = tslFn( ( inputs ) => {
const { roughness } = inputs;
const geometryRoughness = getGeometryRoughness();
let roughnessFactor = roughness.max( 0.0525 ); // 0.0525 corresponds to the base mip of a 256 cubemap.
roughnessFactor = roughnessFactor.add( geometryRoughness );
roughnessFactor = roughnessFactor.min( 1.0 );
return roughnessFactor;
} );
// Moving Frostbite to Physically Based Rendering 3.0 - page 12, listing 2
// https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
const V_GGX_SmithCorrelated = tslFn( ( { alpha, dotNL, dotNV } ) => {
const a2 = alpha.pow2();
const gv = dotNL.mul( a2.add( a2.oneMinus().mul( dotNV.pow2() ) ).sqrt() );
const gl = dotNV.mul( a2.add( a2.oneMinus().mul( dotNL.pow2() ) ).sqrt() );
return div( 0.5, gv.add( gl ).max( EPSILON ) );
} ).setLayout( {
name: 'V_GGX_SmithCorrelated',
type: 'float',
inputs: [
{ name: 'alpha', type: 'float' },
{ name: 'dotNL', type: 'float' },
{ name: 'dotNV', type: 'float' }
]
} ); // validated
// https://google.github.io/filament/Filament.md.html#materialsystem/anisotropicmodel/anisotropicspecularbrdf
const V_GGX_SmithCorrelated_Anisotropic = tslFn( ( { alphaT, alphaB, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL } ) => {
const gv = dotNL.mul( vec3( alphaT.mul( dotTV ), alphaB.mul( dotBV ), dotNV ).length() );
const gl = dotNV.mul( vec3( alphaT.mul( dotTL ), alphaB.mul( dotBL ), dotNL ).length() );
const v = div( 0.5, gv.add( gl ) );
return v.saturate();
} ).setLayout( {
name: 'V_GGX_SmithCorrelated_Anisotropic',
type: 'float',
inputs: [
{ name: 'alphaT', type: 'float', qualifier: 'in' },
{ name: 'alphaB', type: 'float', qualifier: 'in' },
{ name: 'dotTV', type: 'float', qualifier: 'in' },
{ name: 'dotBV', type: 'float', qualifier: 'in' },
{ name: 'dotTL', type: 'float', qualifier: 'in' },
{ name: 'dotBL', type: 'float', qualifier: 'in' },
{ name: 'dotNV', type: 'float', qualifier: 'in' },
{ name: 'dotNL', type: 'float', qualifier: 'in' }
]
} );
// Microfacet Models for Refraction through Rough Surfaces - equation (33)
// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html
// alpha is "roughness squared" in Disneys reparameterization
const D_GGX = tslFn( ( { alpha, dotNH } ) => {
const a2 = alpha.pow2();
const denom = dotNH.pow2().mul( a2.oneMinus() ).oneMinus(); // avoid alpha = 0 with dotNH = 1
return a2.div( denom.pow2() ).mul( 1 / Math.PI );
} ).setLayout( {
name: 'D_GGX',
type: 'float',
inputs: [
{ name: 'alpha', type: 'float' },
{ name: 'dotNH', type: 'float' }
]
} ); // validated
const RECIPROCAL_PI = float( 1 / Math.PI );
// https://google.github.io/filament/Filament.md.html#materialsystem/anisotropicmodel/anisotropicspecularbrdf
const D_GGX_Anisotropic = tslFn( ( { alphaT, alphaB, dotNH, dotTH, dotBH } ) => {
const a2 = alphaT.mul( alphaB );
const v = vec3( alphaB.mul( dotTH ), alphaT.mul( dotBH ), a2.mul( dotNH ) );
const v2 = v.dot( v );
const w2 = a2.div( v2 );
return RECIPROCAL_PI.mul( a2.mul( w2.pow2() ) );
} ).setLayout( {
name: 'D_GGX_Anisotropic',
type: 'float',
inputs: [
{ name: 'alphaT', type: 'float', qualifier: 'in' },
{ name: 'alphaB', type: 'float', qualifier: 'in' },
{ name: 'dotNH', type: 'float', qualifier: 'in' },
{ name: 'dotTH', type: 'float', qualifier: 'in' },
{ name: 'dotBH', type: 'float', qualifier: 'in' }
]
} );
// GGX Distribution, Schlick Fresnel, GGX_SmithCorrelated Visibility
const BRDF_GGX = tslFn( ( inputs ) => {
const { lightDirection, f0, f90, roughness, f, USE_IRIDESCENCE, USE_ANISOTROPY } = inputs;
const normalView = inputs.normalView || transformedNormalView;
const alpha = roughness.pow2(); // UE4's roughness
const halfDir = lightDirection.add( positionViewDirection ).normalize();
const dotNL = normalView.dot( lightDirection ).clamp();
const dotNV = normalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV
const dotNH = normalView.dot( halfDir ).clamp();
const dotVH = positionViewDirection.dot( halfDir ).clamp();
let F = F_Schlick( { f0, f90, dotVH } );
let V, D;
if ( defined( USE_IRIDESCENCE ) ) {
F = iridescence.mix( F, f );
}
if ( defined( USE_ANISOTROPY ) ) {
const dotTL = anisotropyT.dot( lightDirection );
const dotTV = anisotropyT.dot( positionViewDirection );
const dotTH = anisotropyT.dot( halfDir );
const dotBL = anisotropyB.dot( lightDirection );
const dotBV = anisotropyB.dot( positionViewDirection );
const dotBH = anisotropyB.dot( halfDir );
V = V_GGX_SmithCorrelated_Anisotropic( { alphaT, alphaB: alpha, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL } );
D = D_GGX_Anisotropic( { alphaT, alphaB: alpha, dotNH, dotTH, dotBH } );
} else {
V = V_GGX_SmithCorrelated( { alpha, dotNL, dotNV } );
D = D_GGX( { alpha, dotNH } );
}
return F.mul( V ).mul( D );
} ); // validated
// Analytical approximation of the DFG LUT, one half of the
// split-sum approximation used in indirect specular lighting.
// via 'environmentBRDF' from "Physically Based Shading on Mobile"
// https://www.unrealengine.com/blog/physically-based-shading-on-mobile
const DFGApprox = tslFn( ( { roughness, dotNV } ) => {
const c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );
const c1 = vec4( 1, 0.0425, 1.04, - 0.04 );
const r = roughness.mul( c0 ).add( c1 );
const a004 = r.x.mul( r.x ).min( dotNV.mul( - 9.28 ).exp2() ).mul( r.x ).add( r.y );
const fab = vec2( - 1.04, 1.04 ).mul( a004 ).add( r.zw );
return fab;
} ).setLayout( {
name: 'DFGApprox',
type: 'vec2',
inputs: [
{ name: 'roughness', type: 'float' },
{ name: 'dotNV', type: 'vec3' }
]
} );
const EnvironmentBRDF = tslFn( ( inputs ) => {
const { dotNV, specularColor, specularF90, roughness } = inputs;
const fab = DFGApprox( { dotNV, roughness } );
return specularColor.mul( fab.x ).add( specularF90.mul( fab.y ) );
} );
const Schlick_to_F0 = tslFn( ( { f, f90, dotVH } ) => {
const x = dotVH.oneMinus().saturate();
const x2 = x.mul( x );
const x5 = x.mul( x2, x2 ).clamp( 0, .9999 );
return f.sub( vec3( f90 ).mul( x5 ) ).div( x5.oneMinus() );
} ).setLayout( {
name: 'Schlick_to_F0',
type: 'vec3',
inputs: [
{ name: 'f', type: 'vec3' },
{ name: 'f90', type: 'float' },
{ name: 'dotVH', type: 'float' }
]
} );
// https://github.com/google/filament/blob/master/shaders/src/brdf.fs
const D_Charlie = tslFn( ( { roughness, dotNH } ) => {
const alpha = roughness.pow2();
// Estevez and Kulla 2017, "Production Friendly Microfacet Sheen BRDF"
const invAlpha = float( 1.0 ).div( alpha );
const cos2h = dotNH.pow2();
const sin2h = cos2h.oneMinus().max( 0.0078125 ); // 2^(-14/2), so sin2h^2 > 0 in fp16
return float( 2.0 ).add( invAlpha ).mul( sin2h.pow( invAlpha.mul( 0.5 ) ) ).div( 2.0 * Math.PI );
} ).setLayout( {
name: 'D_Charlie',
type: 'float',
inputs: [
{ name: 'roughness', type: 'float' },
{ name: 'dotNH', type: 'float' }
]
} );
// https://github.com/google/filament/blob/master/shaders/src/brdf.fs
const V_Neubelt = tslFn( ( { dotNV, dotNL } ) => {
// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
return float( 1.0 ).div( float( 4.0 ).mul( dotNL.add( dotNV ).sub( dotNL.mul( dotNV ) ) ) );
} ).setLayout( {
name: 'V_Neubelt',
type: 'float',
inputs: [
{ name: 'dotNV', type: 'float' },
{ name: 'dotNL', type: 'float' }
]
} );
const BRDF_Sheen = tslFn( ( { lightDirection } ) => {
const halfDir = lightDirection.add( positionViewDirection ).normalize();
const dotNL = transformedNormalView.dot( lightDirection ).clamp();
const dotNV = transformedNormalView.dot( positionViewDirection ).clamp();
const dotNH = transformedNormalView.dot( halfDir ).clamp();
const D = D_Charlie( { roughness: sheenRoughness, dotNH } );
const V = V_Neubelt( { dotNV, dotNL } );
return sheen.mul( D ).mul( V );
} );
// Rect Area Light
// Real-Time Polygonal-Light Shading with Linearly Transformed Cosines
// by Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt
// code: https://github.com/selfshadow/ltc_code/
const LTC_Uv = tslFn( ( { N, V, roughness } ) => {
const LUT_SIZE = 64.0;
const LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;
const LUT_BIAS = 0.5 / LUT_SIZE;
const dotNV = N.dot( V ).saturate();
// texture parameterized by sqrt( GGX alpha ) and sqrt( 1 - cos( theta ) )
const uv = vec2( roughness, dotNV.oneMinus().sqrt() );
uv.assign( uv.mul( LUT_SCALE ).add( LUT_BIAS ) );
return uv;
} ).setLayout( {
name: 'LTC_Uv',
type: 'vec2',
inputs: [
{ name: 'N', type: 'vec3' },
{ name: 'V', type: 'vec3' },
{ name: 'roughness', type: 'float' }
]
} );
const LTC_ClippedSphereFormFactor = tslFn( ( { f } ) => {
// Real-Time Area Lighting: a Journey from Research to Production (p.102)
// An approximation of the form factor of a horizon-clipped rectangle.
const l = f.length();
return max$1( l.mul( l ).add( f.z ).div( l.add( 1.0 ) ), 0 );
} ).setLayout( {
name: 'LTC_ClippedSphereFormFactor',
type: 'float',
inputs: [
{ name: 'f', type: 'vec3' }
]
} );
const LTC_EdgeVectorFormFactor = tslFn( ( { v1, v2 } ) => {
const x = v1.dot( v2 );
const y = x.abs().toVar();
// rational polynomial approximation to theta / sin( theta ) / 2PI
const a = y.mul( 0.0145206 ).add( 0.4965155 ).mul( y ).add( 0.8543985 ).toVar();
const b = y.add( 4.1616724 ).mul( y ).add( 3.4175940 ).toVar();
const v = a.div( b );
const theta_sintheta = x.greaterThan( 0.0 ).cond( v, max$1( x.mul( x ).oneMinus(), 1e-7 ).inverseSqrt().mul( 0.5 ).sub( v ) );
return v1.cross( v2 ).mul( theta_sintheta );
} ).setLayout( {
name: 'LTC_EdgeVectorFormFactor',
type: 'vec3',
inputs: [
{ name: 'v1', type: 'vec3' },
{ name: 'v2', type: 'vec3' }
]
} );
const LTC_Evaluate = tslFn( ( { N, V, P, mInv, p0, p1, p2, p3 } ) => {
// bail if point is on back side of plane of light
// assumes ccw winding order of light vertices
const v1 = p1.sub( p0 ).toVar();
const v2 = p3.sub( p0 ).toVar();
const lightNormal = v1.cross( v2 );
const result = vec3().toVar();
If( lightNormal.dot( P.sub( p0 ) ).greaterThanEqual( 0.0 ), () => {
// construct orthonormal basis around N
const T1 = V.sub( N.mul( V.dot( N ) ) ).normalize();
const T2 = N.cross( T1 ).negate(); // negated from paper; possibly due to a different handedness of world coordinate system
// compute transform
const mat = mInv.mul( mat3( T1, T2, N ).transpose() ).toVar();
// transform rect
// & project rect onto sphere
const coords0 = mat.mul( p0.sub( P ) ).normalize().toVar();
const coords1 = mat.mul( p1.sub( P ) ).normalize().toVar();
const coords2 = mat.mul( p2.sub( P ) ).normalize().toVar();
const coords3 = mat.mul( p3.sub( P ) ).normalize().toVar();
// calculate vector form factor
const vectorFormFactor = vec3( 0 ).toVar();
vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords0, v2: coords1 } ) );
vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords1, v2: coords2 } ) );
vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords2, v2: coords3 } ) );
vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords3, v2: coords0 } ) );
// adjust for horizon clipping
result.assign( vec3( LTC_ClippedSphereFormFactor( { f: vectorFormFactor } ) ) );
} );
return result;
} ).setLayout( {
name: 'LTC_Evaluate',
type: 'vec3',
inputs: [
{ name: 'N', type: 'vec3' },
{ name: 'V', type: 'vec3' },
{ name: 'P', type: 'vec3' },
{ name: 'mInv', type: 'mat3' },
{ name: 'p0', type: 'vec3' },
{ name: 'p1', type: 'vec3' },
{ name: 'p2', type: 'vec3' },
{ name: 'p3', type: 'vec3' }
]
} );
//
// Transmission
//
const getVolumeTransmissionRay = tslFn( ( [ n, v, thickness, ior, modelMatrix ] ) => {
// Direction of refracted light.
const refractionVector = vec3( refract( v.negate(), normalize( n ), div( 1.0, ior ) ) );
// Compute rotation-independant scaling of the model matrix.
const modelScale = vec3(
length( modelMatrix[ 0 ].xyz ),
length( modelMatrix[ 1 ].xyz ),
length( modelMatrix[ 2 ].xyz )
);
// The thickness is specified in local space.
return normalize( refractionVector ).mul( thickness.mul( modelScale ) );
} ).setLayout( {
name: 'getVolumeTransmissionRay',
type: 'vec3',
inputs: [
{ name: 'n', type: 'vec3' },
{ name: 'v', type: 'vec3' },
{ name: 'thickness', type: 'float' },
{ name: 'ior', type: 'float' },
{ name: 'modelMatrix', type: 'mat4' }
]
} );
const applyIorToRoughness = tslFn( ( [ roughness, ior ] ) => {
// Scale roughness with IOR so that an IOR of 1.0 results in no microfacet refraction and
// an IOR of 1.5 results in the default amount of microfacet refraction.
return roughness.mul( clamp( ior.mul( 2.0 ).sub( 2.0 ), 0.0, 1.0 ) );
} ).setLayout( {
name: 'applyIorToRoughness',
type: 'float',
inputs: [
{ name: 'roughness', type: 'float' },
{ name: 'ior', type: 'float' }
]
} );
const singleViewportMipTexture = viewportMipTexture();
const getTransmissionSample = tslFn( ( [ fragCoord, roughness, ior ] ) => {
const transmissionSample = singleViewportMipTexture.uv( fragCoord );
//const transmissionSample = viewportMipTexture( fragCoord );
const lod = log2( float( viewportResolution.x ) ).mul( applyIorToRoughness( roughness, ior ) );
return transmissionSample.bicubic( lod );
} );
const volumeAttenuation = tslFn( ( [ transmissionDistance, attenuationColor, attenuationDistance ] ) => {
If( attenuationDistance.notEqual( 0 ), () => {
// Compute light attenuation using Beer's law.
const attenuationCoefficient = log( attenuationColor ).negate().div( attenuationDistance );
const transmittance = exp( attenuationCoefficient.negate().mul( transmissionDistance ) );
return transmittance;
} );
// Attenuation distance is +∞, i.e. the transmitted color is not attenuated at all.
return vec3( 1.0 );
} ).setLayout( {
name: 'volumeAttenuation',
type: 'vec3',
inputs: [
{ name: 'transmissionDistance', type: 'float' },
{ name: 'attenuationColor', type: 'vec3' },
{ name: 'attenuationDistance', type: 'float' }
]
} );
const getIBLVolumeRefraction = tslFn( ( [ n, v, roughness, diffuseColor, specularColor, specularF90, position, modelMatrix, viewMatrix, projMatrix, ior, thickness, attenuationColor, attenuationDistance, dispersion ] ) => {
let transmittedLight, transmittance;
if ( dispersion ) {
transmittedLight = vec4().toVar();
transmittance = vec3().toVar();
const halfSpread = ior.sub( 1.0 ).mul( dispersion.mul( 0.025 ) );
const iors = vec3( ior.sub( halfSpread ), ior, ior.add( halfSpread ) );
loop( { start: 0, end: 3 }, ( { i } ) => {
const ior = iors.element( i );
const transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );
const refractedRayExit = position.add( transmissionRay );
// Project refracted vector on the framebuffer, while mapping to normalized device coordinates.
const ndcPos = projMatrix.mul( viewMatrix.mul( vec4( refractedRayExit, 1.0 ) ) );
const refractionCoords = vec2( ndcPos.xy.div( ndcPos.w ) ).toVar();
refractionCoords.addAssign( 1.0 );
refractionCoords.divAssign( 2.0 );
refractionCoords.assign( vec2( refractionCoords.x, refractionCoords.y.oneMinus() ) ); // webgpu
// Sample framebuffer to get pixel the refracted ray hits.
const transmissionSample = getTransmissionSample( refractionCoords, roughness, ior );
transmittedLight.element( i ).assign( transmissionSample.element( i ) );
transmittedLight.a.addAssign( transmissionSample.a );
transmittance.element( i ).assign( diffuseColor.element( i ).mul( volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance ).element( i ) ) );
} );
transmittedLight.a.divAssign( 3.0 );
} else {
const transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );
const refractedRayExit = position.add( transmissionRay );
// Project refracted vector on the framebuffer, while mapping to normalized device coordinates.
const ndcPos = projMatrix.mul( viewMatrix.mul( vec4( refractedRayExit, 1.0 ) ) );
const refractionCoords = vec2( ndcPos.xy.div( ndcPos.w ) ).toVar();
refractionCoords.addAssign( 1.0 );
refractionCoords.divAssign( 2.0 );
refractionCoords.assign( vec2( refractionCoords.x, refractionCoords.y.oneMinus() ) ); // webgpu
// Sample framebuffer to get pixel the refracted ray hits.
transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );
transmittance = diffuseColor.mul( volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance ) );
}
const attenuatedColor = transmittance.rgb.mul( transmittedLight.rgb );
const dotNV = n.dot( v ).clamp();
// Get the specular component.
const F = vec3( EnvironmentBRDF( { // n, v, specularColor, specularF90, roughness
dotNV,
specularColor,
specularF90,
roughness
} ) );
// As less light is transmitted, the opacity should be increased. This simple approximation does a decent job
// of modulating a CSS background, and has no effect when the buffer is opaque, due to a solid object or clear color.
const transmittanceFactor = transmittance.r.add( transmittance.g, transmittance.b ).div( 3.0 );
return vec4( F.oneMinus().mul( attenuatedColor ), transmittedLight.a.oneMinus().mul( transmittanceFactor ).oneMinus() );
} );
//
// Iridescence
//
// XYZ to linear-sRGB color space
const XYZ_TO_REC709 = mat3(
3.2404542, - 0.9692660, 0.0556434,
- 1.5371385, 1.8760108, - 0.2040259,
- 0.4985314, 0.0415560, 1.0572252
);
// Assume air interface for top
// Note: We don't handle the case fresnel0 == 1
const Fresnel0ToIor = ( fresnel0 ) => {
const sqrtF0 = fresnel0.sqrt();
return vec3( 1.0 ).add( sqrtF0 ).div( vec3( 1.0 ).sub( sqrtF0 ) );
};
// ior is a value between 1.0 and 3.0. 1.0 is air interface
const IorToFresnel0 = ( transmittedIor, incidentIor ) => {
return transmittedIor.sub( incidentIor ).div( transmittedIor.add( incidentIor ) ).pow2();
};
// Fresnel equations for dielectric/dielectric interfaces.
// Ref: https://belcour.github.io/blog/research/2017/05/01/brdf-thin-film.html
// Evaluation XYZ sensitivity curves in Fourier space
const evalSensitivity = ( OPD, shift ) => {
const phase = OPD.mul( 2.0 * Math.PI * 1.0e-9 );
const val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 );
const pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 );
const VAR = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 );
const x = float( 9.7470e-14 * Math.sqrt( 2.0 * Math.PI * 4.5282e+09 ) ).mul( phase.mul( 2.2399e+06 ).add( shift.x ).cos() ).mul( phase.pow2().mul( - 4.5282e+09 ).exp() );
let xyz = val.mul( VAR.mul( 2.0 * Math.PI ).sqrt() ).mul( pos.mul( phase ).add( shift ).cos() ).mul( phase.pow2().negate().mul( VAR ).exp() );
xyz = vec3( xyz.x.add( x ), xyz.y, xyz.z ).div( 1.0685e-7 );
const rgb = XYZ_TO_REC709.mul( xyz );
return rgb;
};
const evalIridescence = tslFn( ( { outsideIOR, eta2, cosTheta1, thinFilmThickness, baseF0 } ) => {
// Force iridescenceIOR -> outsideIOR when thinFilmThickness -> 0.0
const iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) );
// Evaluate the cosTheta on the base layer (Snell law)
const sinTheta2Sq = outsideIOR.div( iridescenceIOR ).pow2().mul( float( 1 ).sub( cosTheta1.pow2() ) );
// Handle TIR:
const cosTheta2Sq = float( 1 ).sub( sinTheta2Sq );
/*if ( cosTheta2Sq < 0.0 ) {
return vec3( 1.0 );
}*/
const cosTheta2 = cosTheta2Sq.sqrt();
// First interface
const R0 = IorToFresnel0( iridescenceIOR, outsideIOR );
const R12 = F_Schlick( { f0: R0, f90: 1.0, dotVH: cosTheta1 } );
//const R21 = R12;
const T121 = R12.oneMinus();
const phi12 = iridescenceIOR.lessThan( outsideIOR ).cond( Math.PI, 0.0 );
const phi21 = float( Math.PI ).sub( phi12 );
// Second interface
const baseIOR = Fresnel0ToIor( baseF0.clamp( 0.0, 0.9999 ) ); // guard against 1.0
const R1 = IorToFresnel0( baseIOR, iridescenceIOR.toVec3() );
const R23 = F_Schlick( { f0: R1, f90: 1.0, dotVH: cosTheta2 } );
const phi23 = vec3(
baseIOR.x.lessThan( iridescenceIOR ).cond( Math.PI, 0.0 ),
baseIOR.y.lessThan( iridescenceIOR ).cond( Math.PI, 0.0 ),
baseIOR.z.lessThan( iridescenceIOR ).cond( Math.PI, 0.0 )
);
// Phase shift
const OPD = iridescenceIOR.mul( thinFilmThickness, cosTheta2, 2.0 );
const phi = vec3( phi21 ).add( phi23 );
// Compound terms
const R123 = R12.mul( R23 ).clamp( 1e-5, 0.9999 );
const r123 = R123.sqrt();
const Rs = T121.pow2().mul( R23 ).div( vec3( 1.0 ).sub( R123 ) );
// Reflectance term for m = 0 (DC term amplitude)
const C0 = R12.add( Rs );
let I = C0;
// Reflectance term for m > 0 (pairs of diracs)
let Cm = Rs.sub( T121 );
for ( let m = 1; m <= 2; ++ m ) {
Cm = Cm.mul( r123 );
const Sm = evalSensitivity( float( m ).mul( OPD ), float( m ).mul( phi ) ).mul( 2.0 );
I = I.add( Cm.mul( Sm ) );
}
// Since out of gamut colors might be produced, negative color values are clamped to 0.
return I.max( vec3( 0.0 ) );
} ).setLayout( {
name: 'evalIridescence',
type: 'vec3',
inputs: [
{ name: 'outsideIOR', type: 'float' },
{ name: 'eta2', type: 'float' },
{ name: 'cosTheta1', type: 'float' },
{ name: 'thinFilmThickness', type: 'float' },
{ name: 'baseF0', type: 'vec3' }
]
} );
//
// Sheen
//
// This is a curve-fit approxmation to the "Charlie sheen" BRDF integrated over the hemisphere from
// Estevez and Kulla 2017, "Production Friendly Microfacet Sheen BRDF". The analysis can be found
// in the Sheen section of https://drive.google.com/file/d/1T0D1VSyR4AllqIJTQAraEIzjlb5h4FKH/view?usp=sharing
const IBLSheenBRDF = tslFn( ( { normal, viewDir, roughness } ) => {
const dotNV = normal.dot( viewDir ).saturate();
const r2 = roughness.pow2();
const a = cond(
roughness.lessThan( 0.25 ),
float( - 339.2 ).mul( r2 ).add( float( 161.4 ).mul( roughness ) ).sub( 25.9 ),
float( - 8.48 ).mul( r2 ).add( float( 14.3 ).mul( roughness ) ).sub( 9.95 )
);
const b = cond(
roughness.lessThan( 0.25 ),
float( 44.0 ).mul( r2 ).sub( float( 23.7 ).mul( roughness ) ).add( 3.26 ),
float( 1.97 ).mul( r2 ).sub( float( 3.27 ).mul( roughness ) ).add( 0.72 )
);
const DG = cond( roughness.lessThan( 0.25 ), 0.0, float( 0.1 ).mul( roughness ).sub( 0.025 ) ).add( a.mul( dotNV ).add( b ).exp() );
return DG.mul( 1.0 / Math.PI ).saturate();
} );
const clearcoatF0 = vec3( 0.04 );
const clearcoatF90 = float( 1 );
//
class PhysicalLightingModel extends LightingModel {
constructor( clearcoat = false, sheen = false, iridescence = false, anisotropy = false, transmission = false, dispersion = false ) {
super();
this.clearcoat = clearcoat;
this.sheen = sheen;
this.iridescence = iridescence;
this.anisotropy = anisotropy;
this.transmission = transmission;
this.dispersion = dispersion;
this.clearcoatRadiance = null;
this.clearcoatSpecularDirect = null;
this.clearcoatSpecularIndirect = null;
this.sheenSpecularDirect = null;
this.sheenSpecularIndirect = null;
this.iridescenceFresnel = null;
this.iridescenceF0 = null;
}
start( context ) {
if ( this.clearcoat === true ) {
this.clearcoatRadiance = vec3().temp( 'clearcoatRadiance' );
this.clearcoatSpecularDirect = vec3().temp( 'clearcoatSpecularDirect' );
this.clearcoatSpecularIndirect = vec3().temp( 'clearcoatSpecularIndirect' );
}
if ( this.sheen === true ) {
this.sheenSpecularDirect = vec3().temp( 'sheenSpecularDirect' );
this.sheenSpecularIndirect = vec3().temp( 'sheenSpecularIndirect' );
}
if ( this.iridescence === true ) {
const dotNVi = transformedNormalView.dot( positionViewDirection ).clamp();
this.iridescenceFresnel = evalIridescence( {
outsideIOR: float( 1.0 ),
eta2: iridescenceIOR,
cosTheta1: dotNVi,
thinFilmThickness: iridescenceThickness,
baseF0: specularColor
} );
this.iridescenceF0 = Schlick_to_F0( { f: this.iridescenceFresnel, f90: 1.0, dotVH: dotNVi } );
}
if ( this.transmission === true ) {
const position = positionWorld;
const v = cameraPosition.sub( positionWorld ).normalize(); // TODO: Create Node for this, same issue in MaterialX
const n = transformedNormalWorld;
context.backdrop = getIBLVolumeRefraction(
n,
v,
roughness,
diffuseColor,
specularColor,
specularF90, // specularF90
position, // positionWorld
modelWorldMatrix, // modelMatrix
cameraViewMatrix, // viewMatrix
cameraProjectionMatrix, // projMatrix
ior,
thickness,
attenuationColor,
attenuationDistance,
this.dispersion ? dispersion : null
);
context.backdropAlpha = transmission;
diffuseColor.a.mulAssign( mix( 1, context.backdrop.a, transmission ) );
}
}
// Fdez-Agüera's "Multiple-Scattering Microfacet Model for Real-Time Image Based Lighting"
// Approximates multiscattering in order to preserve energy.
// http://www.jcgt.org/published/0008/01/03/
computeMultiscattering( singleScatter, multiScatter, specularF90 ) {
const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV
const fab = DFGApprox( { roughness, dotNV } );
const Fr = this.iridescenceF0 ? iridescence.mix( specularColor, this.iridescenceF0 ) : specularColor;
const FssEss = Fr.mul( fab.x ).add( specularF90.mul( fab.y ) );
const Ess = fab.x.add( fab.y );
const Ems = Ess.oneMinus();
const Favg = specularColor.add( specularColor.oneMinus().mul( 0.047619 ) ); // 1/21
const Fms = FssEss.mul( Favg ).div( Ems.mul( Favg ).oneMinus() );
singleScatter.addAssign( FssEss );
multiScatter.addAssign( Fms.mul( Ems ) );
}
direct( { lightDirection, lightColor, reflectedLight } ) {
const dotNL = transformedNormalView.dot( lightDirection ).clamp();
const irradiance = dotNL.mul( lightColor );
if ( this.sheen === true ) {
this.sheenSpecularDirect.addAssign( irradiance.mul( BRDF_Sheen( { lightDirection } ) ) );
}
if ( this.clearcoat === true ) {
const dotNLcc = transformedClearcoatNormalView.dot( lightDirection ).clamp();
const ccIrradiance = dotNLcc.mul( lightColor );
this.clearcoatSpecularDirect.addAssign( ccIrradiance.mul( BRDF_GGX( { lightDirection, f0: clearcoatF0, f90: clearcoatF90, roughness: clearcoatRoughness, normalView: transformedClearcoatNormalView } ) ) );
}
reflectedLight.directDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor: diffuseColor.rgb } ) ) );
reflectedLight.directSpecular.addAssign( irradiance.mul( BRDF_GGX( { lightDirection, f0: specularColor, f90: 1, roughness, iridescence: this.iridescence, f: this.iridescenceFresnel, USE_IRIDESCENCE: this.iridescence, USE_ANISOTROPY: this.anisotropy } ) ) );
}
directRectArea( { lightColor, lightPosition, halfWidth, halfHeight, reflectedLight, ltc_1, ltc_2 } ) {
const p0 = lightPosition.add( halfWidth ).sub( halfHeight ); // counterclockwise; light shines in local neg z direction
const p1 = lightPosition.sub( halfWidth ).sub( halfHeight );
const p2 = lightPosition.sub( halfWidth ).add( halfHeight );
const p3 = lightPosition.add( halfWidth ).add( halfHeight );
const N = transformedNormalView;
const V = positionViewDirection;
const P = positionView.toVar();
const uv = LTC_Uv( { N, V, roughness } );
const t1 = ltc_1.uv( uv ).toVar();
const t2 = ltc_2.uv( uv ).toVar();
const mInv = mat3(
vec3( t1.x, 0, t1.y ),
vec3( 0, 1, 0 ),
vec3( t1.z, 0, t1.w )
).toVar();
// LTC Fresnel Approximation by Stephen Hill
// http://blog.selfshadow.com/publications/s2016-advances/s2016_ltc_fresnel.pdf
const fresnel = specularColor.mul( t2.x ).add( specularColor.oneMinus().mul( t2.y ) ).toVar();
reflectedLight.directSpecular.addAssign( lightColor.mul( fresnel ).mul( LTC_Evaluate( { N, V, P, mInv, p0, p1, p2, p3 } ) ) );
reflectedLight.directDiffuse.addAssign( lightColor.mul( diffuseColor ).mul( LTC_Evaluate( { N, V, P, mInv: mat3( 1, 0, 0, 0, 1, 0, 0, 0, 1 ), p0, p1, p2, p3 } ) ) );
}
indirect( context, stack, builder ) {
this.indirectDiffuse( context, stack, builder );
this.indirectSpecular( context, stack, builder );
this.ambientOcclusion( context, stack, builder );
}
indirectDiffuse( { irradiance, reflectedLight } ) {
reflectedLight.indirectDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor } ) ) );
}
indirectSpecular( { radiance, iblIrradiance, reflectedLight } ) {
if ( this.sheen === true ) {
this.sheenSpecularIndirect.addAssign( iblIrradiance.mul(
sheen,
IBLSheenBRDF( {
normal: transformedNormalView,
viewDir: positionViewDirection,
roughness: sheenRoughness
} )
) );
}
if ( this.clearcoat === true ) {
const dotNVcc = transformedClearcoatNormalView.dot( positionViewDirection ).clamp();
const clearcoatEnv = EnvironmentBRDF( {
dotNV: dotNVcc,
specularColor: clearcoatF0,
specularF90: clearcoatF90,
roughness: clearcoatRoughness
} );
this.clearcoatSpecularIndirect.addAssign( this.clearcoatRadiance.mul( clearcoatEnv ) );
}
// Both indirect specular and indirect diffuse light accumulate here
const singleScattering = vec3().temp( 'singleScattering' );
const multiScattering = vec3().temp( 'multiScattering' );
const cosineWeightedIrradiance = iblIrradiance.mul( 1 / Math.PI );
this.computeMultiscattering( singleScattering, multiScattering, specularF90 );
const totalScattering = singleScattering.add( multiScattering );
const diffuse = diffuseColor.mul( totalScattering.r.max( totalScattering.g ).max( totalScattering.b ).oneMinus() );
reflectedLight.indirectSpecular.addAssign( radiance.mul( singleScattering ) );
reflectedLight.indirectSpecular.addAssign( multiScattering.mul( cosineWeightedIrradiance ) );
reflectedLight.indirectDiffuse.addAssign( diffuse.mul( cosineWeightedIrradiance ) );
}
ambientOcclusion( { ambientOcclusion, reflectedLight } ) {
const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV
const aoNV = dotNV.add( ambientOcclusion );
const aoExp = roughness.mul( - 16.0 ).oneMinus().negate().exp2();
const aoNode = ambientOcclusion.sub( aoNV.pow( aoExp ).oneMinus() ).clamp();
if ( this.clearcoat === true ) {
this.clearcoatSpecularIndirect.mulAssign( ambientOcclusion );
}
if ( this.sheen === true ) {
this.sheenSpecularIndirect.mulAssign( ambientOcclusion );
}
reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion );
reflectedLight.indirectSpecular.mulAssign( aoNode );
}
finish( context ) {
const { outgoingLight } = context;
if ( this.clearcoat === true ) {
const dotNVcc = transformedClearcoatNormalView.dot( positionViewDirection ).clamp();
const Fcc = F_Schlick( {
dotVH: dotNVcc,
f0: clearcoatF0,
f90: clearcoatF90
} );
const clearcoatLight = outgoingLight.mul( clearcoat.mul( Fcc ).oneMinus() ).add( this.clearcoatSpecularDirect.add( this.clearcoatSpecularIndirect ).mul( clearcoat ) );
outgoingLight.assign( clearcoatLight );
}
if ( this.sheen === true ) {
const sheenEnergyComp = sheen.r.max( sheen.g ).max( sheen.b ).mul( 0.157 ).oneMinus();
const sheenLight = outgoingLight.mul( sheenEnergyComp ).add( this.sheenSpecularDirect, this.sheenSpecularIndirect );
outgoingLight.assign( sheenLight );
}
}
}
const _defaultValues$6 = /*@__PURE__*/ new MeshStandardMaterial();
class MeshStandardNodeMaterial extends NodeMaterial {
constructor( parameters ) {
super();
this.isMeshStandardNodeMaterial = true;
this.lights = true;
this.emissiveNode = null;
this.metalnessNode = null;
this.roughnessNode = null;
this.setDefaultValues( _defaultValues$6 );
this.setValues( parameters );
}
setupEnvironment( builder ) {
const envNode = super.setupEnvironment( builder );
return envNode ? new EnvironmentNode( envNode ) : null;
}
setupLightingModel( /*builder*/ ) {
return new PhysicalLightingModel();
}
setupSpecular() {
const specularColorNode = mix( vec3( 0.04 ), diffuseColor.rgb, metalness );
specularColor.assign( specularColorNode );
specularF90.assign( 1.0 );
}
setupVariants() {
// METALNESS
const metalnessNode = this.metalnessNode ? float( this.metalnessNode ) : materialMetalness;
metalness.assign( metalnessNode );
// ROUGHNESS
let roughnessNode = this.roughnessNode ? float( this.roughnessNode ) : materialRoughness;
roughnessNode = getRoughness( { roughness: roughnessNode } );
roughness.assign( roughnessNode );
// SPECULAR COLOR
this.setupSpecular();
// DIFFUSE COLOR
diffuseColor.assign( vec4( diffuseColor.rgb.mul( metalnessNode.oneMinus() ), diffuseColor.a ) );
}
copy( source ) {
this.emissiveNode = source.emissiveNode;
this.metalnessNode = source.metalnessNode;
this.roughnessNode = source.roughnessNode;
return super.copy( source );
}
}
addNodeMaterial( 'MeshStandardNodeMaterial', MeshStandardNodeMaterial );
const _defaultValues$5 = /*@__PURE__*/ new MeshPhysicalMaterial();
class MeshPhysicalNodeMaterial extends MeshStandardNodeMaterial {
constructor( parameters ) {
super();
this.isMeshPhysicalNodeMaterial = true;
this.clearcoatNode = null;
this.clearcoatRoughnessNode = null;
this.clearcoatNormalNode = null;
this.sheenNode = null;
this.sheenRoughnessNode = null;
this.iridescenceNode = null;
this.iridescenceIORNode = null;
this.iridescenceThicknessNode = null;
this.specularIntensityNode = null;
this.specularColorNode = null;
this.iorNode = null;
this.transmissionNode = null;
this.thicknessNode = null;
this.attenuationDistanceNode = null;
this.attenuationColorNode = null;
this.dispersionNode = null;
this.anisotropyNode = null;
this.setDefaultValues( _defaultValues$5 );
this.setValues( parameters );
}
get useClearcoat() {
return this.clearcoat > 0 || this.clearcoatNode !== null;
}
get useIridescence() {
return this.iridescence > 0 || this.iridescenceNode !== null;
}
get useSheen() {
return this.sheen > 0 || this.sheenNode !== null;
}
get useAnisotropy() {
return this.anisotropy > 0 || this.anisotropyNode !== null;
}
get useTransmission() {
return this.transmission > 0 || this.transmissionNode !== null;
}
get useDispersion() {
return this.dispersion > 0 || this.dispersionNode !== null;
}
setupSpecular() {
const iorNode = this.iorNode ? float( this.iorNode ) : materialIOR;
ior.assign( iorNode );
specularColor.assign( mix( min$1( pow2( ior.sub( 1.0 ).div( ior.add( 1.0 ) ) ).mul( materialSpecularColor ), vec3( 1.0 ) ).mul( materialSpecularIntensity ), diffuseColor.rgb, metalness ) );
specularF90.assign( mix( materialSpecularIntensity, 1.0, metalness ) );
}
setupLightingModel( /*builder*/ ) {
return new PhysicalLightingModel( this.useClearcoat, this.useSheen, this.useIridescence, this.useAnisotropy, this.useTransmission, this.useDispersion );
}
setupVariants( builder ) {
super.setupVariants( builder );
// CLEARCOAT
if ( this.useClearcoat ) {
const clearcoatNode = this.clearcoatNode ? float( this.clearcoatNode ) : materialClearcoat;
const clearcoatRoughnessNode = this.clearcoatRoughnessNode ? float( this.clearcoatRoughnessNode ) : materialClearcoatRoughness;
clearcoat.assign( clearcoatNode );
clearcoatRoughness.assign( getRoughness( { roughness: clearcoatRoughnessNode } ) );
}
// SHEEN
if ( this.useSheen ) {
const sheenNode = this.sheenNode ? vec3( this.sheenNode ) : materialSheen;
const sheenRoughnessNode = this.sheenRoughnessNode ? float( this.sheenRoughnessNode ) : materialSheenRoughness;
sheen.assign( sheenNode );
sheenRoughness.assign( sheenRoughnessNode );
}
// IRIDESCENCE
if ( this.useIridescence ) {
const iridescenceNode = this.iridescenceNode ? float( this.iridescenceNode ) : materialIridescence;
const iridescenceIORNode = this.iridescenceIORNode ? float( this.iridescenceIORNode ) : materialIridescenceIOR;
const iridescenceThicknessNode = this.iridescenceThicknessNode ? float( this.iridescenceThicknessNode ) : materialIridescenceThickness;
iridescence.assign( iridescenceNode );
iridescenceIOR.assign( iridescenceIORNode );
iridescenceThickness.assign( iridescenceThicknessNode );
}
// ANISOTROPY
if ( this.useAnisotropy ) {
const anisotropyV = ( this.anisotropyNode ? vec2( this.anisotropyNode ) : materialAnisotropy ).toVar();
anisotropy.assign( anisotropyV.length() );
If( anisotropy.equal( 0.0 ), () => {
anisotropyV.assign( vec2( 1.0, 0.0 ) );
} ).else( () => {
anisotropyV.divAssign( vec2( anisotropy ) );
anisotropy.assign( anisotropy.saturate() );
} );
// Roughness along the anisotropy bitangent is the material roughness, while the tangent roughness increases with anisotropy.
alphaT.assign( anisotropy.pow2().mix( roughness.pow2(), 1.0 ) );
anisotropyT.assign( TBNViewMatrix[ 0 ].mul( anisotropyV.x ).add( TBNViewMatrix[ 1 ].mul( anisotropyV.y ) ) );
anisotropyB.assign( TBNViewMatrix[ 1 ].mul( anisotropyV.x ).sub( TBNViewMatrix[ 0 ].mul( anisotropyV.y ) ) );
}
// TRANSMISSION
if ( this.useTransmission ) {
const transmissionNode = this.transmissionNode ? float( this.transmissionNode ) : materialTransmission;
const thicknessNode = this.thicknessNode ? float( this.thicknessNode ) : materialThickness;
const attenuationDistanceNode = this.attenuationDistanceNode ? float( this.attenuationDistanceNode ) : materialAttenuationDistance;
const attenuationColorNode = this.attenuationColorNode ? vec3( this.attenuationColorNode ) : materialAttenuationColor;
transmission.assign( transmissionNode );
thickness.assign( thicknessNode );
attenuationDistance.assign( attenuationDistanceNode );
attenuationColor.assign( attenuationColorNode );
if ( this.useDispersion ) {
const dispersionNode = this.dispersionNode ? float( this.dispersionNode ) : materialDispersion;
dispersion.assign( dispersionNode );
}
}
}
setupNormal( builder ) {
super.setupNormal( builder );
// CLEARCOAT NORMAL
const clearcoatNormalNode = this.clearcoatNormalNode ? vec3( this.clearcoatNormalNode ) : materialClearcoatNormal;
transformedClearcoatNormalView.assign( clearcoatNormalNode );
}
copy( source ) {
this.clearcoatNode = source.clearcoatNode;
this.clearcoatRoughnessNode = source.clearcoatRoughnessNode;
this.clearcoatNormalNode = source.clearcoatNormalNode;
this.sheenNode = source.sheenNode;
this.sheenRoughnessNode = source.sheenRoughnessNode;
this.iridescenceNode = source.iridescenceNode;
this.iridescenceIORNode = source.iridescenceIORNode;
this.iridescenceThicknessNode = source.iridescenceThicknessNode;
this.specularIntensityNode = source.specularIntensityNode;
this.specularColorNode = source.specularColorNode;
this.transmissionNode = source.transmissionNode;
this.thicknessNode = source.thicknessNode;
this.attenuationDistanceNode = source.attenuationDistanceNode;
this.attenuationColorNode = source.attenuationColorNode;
this.dispersionNode = source.dispersionNode;
this.anisotropyNode = source.anisotropyNode;
return super.copy( source );
}
}
addNodeMaterial( 'MeshPhysicalNodeMaterial', MeshPhysicalNodeMaterial );
class SSSLightingModel extends PhysicalLightingModel {
constructor( useClearcoat, useSheen, useIridescence, useSSS ) {
super( useClearcoat, useSheen, useIridescence );
this.useSSS = useSSS;
}
direct( { lightDirection, lightColor, reflectedLight }, stack, builder ) {
if ( this.useSSS === true ) {
const material = builder.material;
const { thicknessColorNode, thicknessDistortionNode, thicknessAmbientNode, thicknessAttenuationNode, thicknessPowerNode, thicknessScaleNode } = material;
const scatteringHalf = lightDirection.add( transformedNormalView.mul( thicknessDistortionNode ) ).normalize();
const scatteringDot = float( positionViewDirection.dot( scatteringHalf.negate() ).saturate().pow( thicknessPowerNode ).mul( thicknessScaleNode ) );
const scatteringIllu = vec3( scatteringDot.add( thicknessAmbientNode ).mul( thicknessColorNode ) );
reflectedLight.directDiffuse.addAssign( scatteringIllu.mul( thicknessAttenuationNode.mul( lightColor ) ) );
}
super.direct( { lightDirection, lightColor, reflectedLight }, stack, builder );
}
}
class MeshSSSNodeMaterial extends MeshPhysicalNodeMaterial {
constructor( parameters ) {
super( parameters );
this.thicknessColorNode = null;
this.thicknessDistortionNode = float( 0.1 );
this.thicknessAmbientNode = float( 0.0 );
this.thicknessAttenuationNode = float( .1 );
this.thicknessPowerNode = float( 2.0 );
this.thicknessScaleNode = float( 10.0 );
}
get useSSS() {
return this.thicknessColorNode !== null;
}
setupLightingModel( /*builder*/ ) {
return new SSSLightingModel( this.useClearcoat, this.useSheen, this.useIridescence, this.useSSS );
}
copy( source ) {
this.thicknessColorNode = source.thicknessColorNode;
this.thicknessDistortionNode = source.thicknessDistortionNode;
this.thicknessAmbientNode = source.thicknessAmbientNode;
this.thicknessAttenuationNode = source.thicknessAttenuationNode;
this.thicknessPowerNode = source.thicknessPowerNode;
this.thicknessScaleNode = source.thicknessScaleNode;
return super.copy( source );
}
}
addNodeMaterial( 'MeshSSSNodeMaterial', MeshSSSNodeMaterial );
const getGradientIrradiance = tslFn( ( { normal, lightDirection, builder } ) => {
// dotNL will be from -1.0 to 1.0
const dotNL = normal.dot( lightDirection );
const coord = vec2( dotNL.mul( 0.5 ).add( 0.5 ), 0.0 );
if ( builder.material.gradientMap ) {
const gradientMap = materialReference( 'gradientMap', 'texture' ).context( { getUV: () => coord } );
return vec3( gradientMap.r );
} else {
const fw = coord.fwidth().mul( 0.5 );
return mix( vec3( 0.7 ), vec3( 1.0 ), smoothstep( float( 0.7 ).sub( fw.x ), float( 0.7 ).add( fw.x ), coord.x ) );
}
} );
class ToonLightingModel extends LightingModel {
direct( { lightDirection, lightColor, reflectedLight }, stack, builder ) {
const irradiance = getGradientIrradiance( { normal: normalGeometry, lightDirection, builder } ).mul( lightColor );
reflectedLight.directDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor: diffuseColor.rgb } ) ) );
}
indirect( { ambientOcclusion, irradiance, reflectedLight } ) {
reflectedLight.indirectDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor } ) ) );
reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion );
}
}
const _defaultValues$4 = /*@__PURE__*/ new MeshToonMaterial();
class MeshToonNodeMaterial extends NodeMaterial {
constructor( parameters ) {
super();
this.isMeshToonNodeMaterial = true;
this.lights = true;
this.setDefaultValues( _defaultValues$4 );
this.setValues( parameters );
}
setupLightingModel( /*builder*/ ) {
return new ToonLightingModel();
}
}
addNodeMaterial( 'MeshToonNodeMaterial', MeshToonNodeMaterial );
const _defaultValues$3 = /*@__PURE__*/ new MeshMatcapMaterial();
class MeshMatcapNodeMaterial extends NodeMaterial {
constructor( parameters ) {
super();
this.lights = false;
this.isMeshMatcapNodeMaterial = true;
this.setDefaultValues( _defaultValues$3 );
this.setValues( parameters );
}
setupVariants( builder ) {
const uv = matcapUV;
let matcapColor;
if ( builder.material.matcap ) {
matcapColor = materialReference( 'matcap', 'texture' ).context( { getUV: () => uv } );
} else {
matcapColor = vec3( mix( 0.2, 0.8, uv.y ) ); // default if matcap is missing
}
diffuseColor.rgb.mulAssign( matcapColor.rgb );
}
}
addNodeMaterial( 'MeshMatcapNodeMaterial', MeshMatcapNodeMaterial );
const _defaultValues$2 = /*@__PURE__*/ new PointsMaterial();
class PointsNodeMaterial extends NodeMaterial {
constructor( parameters ) {
super();
this.isPointsNodeMaterial = true;
this.lights = false;
this.normals = false;
this.transparent = true;
this.sizeNode = null;
this.setDefaultValues( _defaultValues$2 );
this.setValues( parameters );
}
copy( source ) {
this.sizeNode = source.sizeNode;
return super.copy( source );
}
}
addNodeMaterial( 'PointsNodeMaterial', PointsNodeMaterial );
const _defaultValues$1 = /*@__PURE__*/ new SpriteMaterial();
class SpriteNodeMaterial extends NodeMaterial {
constructor( parameters ) {
super();
this.isSpriteNodeMaterial = true;
this.lights = false;
this.normals = false;
this.positionNode = null;
this.rotationNode = null;
this.scaleNode = null;
this.setDefaultValues( _defaultValues$1 );
this.setValues( parameters );
}
setupPosition( { object, context } ) {
// < VERTEX STAGE >
const { positionNode, rotationNode, scaleNode } = this;
const vertex = positionLocal;
let mvPosition = modelViewMatrix.mul( vec3( positionNode || 0 ) );
let scale = vec2( modelWorldMatrix[ 0 ].xyz.length(), modelWorldMatrix[ 1 ].xyz.length() );
if ( scaleNode !== null ) {
scale = scale.mul( scaleNode );
}
let alignedPosition = vertex.xy;
if ( object.center && object.center.isVector2 === true ) {
alignedPosition = alignedPosition.sub( uniform( object.center ).sub( 0.5 ) );
}
alignedPosition = alignedPosition.mul( scale );
const rotation = float( rotationNode || materialRotation );
const rotatedPosition = alignedPosition.rotate( rotation );
mvPosition = vec4( mvPosition.xy.add( rotatedPosition ), mvPosition.zw );
const modelViewProjection = cameraProjectionMatrix.mul( mvPosition );
context.vertex = vertex;
return modelViewProjection;
}
copy( source ) {
this.positionNode = source.positionNode;
this.rotationNode = source.rotationNode;
this.scaleNode = source.scaleNode;
return super.copy( source );
}
}
addNodeMaterial( 'SpriteNodeMaterial', SpriteNodeMaterial );
class ShadowMaskModel extends LightingModel {
constructor() {
super();
this.shadowNode = float( 1 ).toVar( 'shadowMask' );
}
direct( { shadowMask } ) {
this.shadowNode.mulAssign( shadowMask );
}
finish( context ) {
diffuseColor.a.mulAssign( this.shadowNode.oneMinus() );
context.outgoingLight.rgb.assign( diffuseColor.rgb ); // TODO: Optimize LightsNode to avoid this assignment
}
}
const _defaultValues = /*@__PURE__*/ new ShadowMaterial();
class ShadowNodeMaterial extends NodeMaterial {
constructor( parameters ) {
super();
this.isShadowNodeMaterial = true;
this.lights = true;
this.setDefaultValues( _defaultValues );
this.setValues( parameters );
}
setupLightingModel( /*builder*/ ) {
return new ShadowMaskModel();
}
}
addNodeMaterial( 'ShadowNodeMaterial', ShadowNodeMaterial );
class VolumeNodeMaterial extends NodeMaterial {
constructor( params = {} ) {
super();
this.normals = false;
this.lights = false;
this.isVolumeNodeMaterial = true;
this.testNode = null;
this.setValues( params );
}
setup( builder ) {
const map = texture3D( this.map, null, 0 );
const hitBox = tslFn( ( { orig, dir } ) => {
const box_min = vec3( - 0.5 );
const box_max = vec3( 0.5 );
const inv_dir = dir.reciprocal();
const tmin_tmp = box_min.sub( orig ).mul( inv_dir );
const tmax_tmp = box_max.sub( orig ).mul( inv_dir );
const tmin = min$1( tmin_tmp, tmax_tmp );
const tmax = max$1( tmin_tmp, tmax_tmp );
const t0 = max$1( tmin.x, max$1( tmin.y, tmin.z ) );
const t1 = min$1( tmax.x, min$1( tmax.y, tmax.z ) );
return vec2( t0, t1 );
} );
this.fragmentNode = tslFn( () => {
const vOrigin = varying( vec3( modelWorldMatrixInverse.mul( vec4( cameraPosition, 1.0 ) ) ) );
const vDirection = varying( positionGeometry.sub( vOrigin ) );
const rayDir = vDirection.normalize();
const bounds = property( 'vec2', 'bounds' ).assign( hitBox( { orig: vOrigin, dir: rayDir } ) );
bounds.x.greaterThan( bounds.y ).discard();
bounds.assign( vec2( max$1( bounds.x, 0.0 ), bounds.y ) );
const p = property( 'vec3', 'p' ).assign( vOrigin.add( bounds.x.mul( rayDir ) ) );
const inc = property( 'vec3', 'inc' ).assign( vec3( rayDir.abs().reciprocal() ) );
const delta = property( 'float', 'delta' ).assign( min$1( inc.x, min$1( inc.y, inc.z ) ) );
delta.divAssign( materialReference( 'steps', 'float' ) );
const ac = property( 'vec4', 'ac' ).assign( vec4( materialReference( 'base', 'color' ), 0.0 ) );
loop( { type: 'float', start: bounds.x, end: bounds.y, update: '+= delta' }, () => {
const d = property( 'float', 'd' ).assign( map.uv( p.add( 0.5 ) ).r );
if ( this.testNode !== null ) {
this.testNode( { map: map, mapValue: d, probe: p, finalColor: ac } ).append();
} else {
// default to show surface of mesh
ac.a.assign( 1 );
Break();
}
p.addAssign( rayDir.mul( delta ) );
} );
ac.a.equal( 0 ).discard();
return vec4( ac );
} )();
super.setup( builder );
}
}
addNodeMaterial( 'VolumeNodeMaterial', VolumeNodeMaterial );
const superFromTypeFunction = MaterialLoader.createMaterialFromType;
MaterialLoader.createMaterialFromType = function ( type ) {
const material = createNodeMaterialFromType( type );
if ( material !== undefined ) {
return material;
}
return superFromTypeFunction.call( this, type );
};
class NodeMaterialLoader extends MaterialLoader {
constructor( manager ) {
super( manager );
this.nodes = {};
}
parse( json ) {
const material = super.parse( json );
const nodes = this.nodes;
const inputNodes = json.inputNodes;
for ( const property in inputNodes ) {
const uuid = inputNodes[ property ];
material[ property ] = nodes[ uuid ];
}
return material;
}
setNodes( value ) {
this.nodes = value;
return this;
}
}
class NodeObjectLoader extends ObjectLoader {
constructor( manager ) {
super( manager );
this._nodesJSON = null;
}
parse( json, onLoad ) {
this._nodesJSON = json.nodes;
const data = super.parse( json, onLoad );
this._nodesJSON = null; // dispose
return data;
}
parseNodes( json, textures ) {
if ( json !== undefined ) {
const loader = new NodeLoader();
loader.setTextures( textures );
return loader.parseNodes( json );
}
return {};
}
parseMaterials( json, textures ) {
const materials = {};
if ( json !== undefined ) {
const nodes = this.parseNodes( this._nodesJSON, textures );
const loader = new NodeMaterialLoader();
loader.setTextures( textures );
loader.setNodes( nodes );
for ( let i = 0, l = json.length; i < l; i ++ ) {
const data = json[ i ];
materials[ data.uuid ] = loader.parse( data );
}
}
return materials;
}
}
class NodeParser {
parseFunction( /*source*/ ) {
console.warn( 'Abstract function.' );
}
}
class NodeFunction {
constructor( type, inputs, name = '', precision = '' ) {
this.type = type;
this.inputs = inputs;
this.name = name;
this.precision = precision;
}
getCode( /*name = this.name*/ ) {
console.warn( 'Abstract function.' );
}
}
NodeFunction.isNodeFunction = true;
const declarationRegexp$1 = /^\s*(highp|mediump|lowp)?\s*([a-z_0-9]+)\s*([a-z_0-9]+)?\s*\(([\s\S]*?)\)/i;
const propertiesRegexp$1 = /[a-z_0-9]+/ig;
const pragmaMain = '#pragma main';
const parse$1 = ( source ) => {
source = source.trim();
const pragmaMainIndex = source.indexOf( pragmaMain );
const mainCode = pragmaMainIndex !== - 1 ? source.slice( pragmaMainIndex + pragmaMain.length ) : source;
const declaration = mainCode.match( declarationRegexp$1 );
if ( declaration !== null && declaration.length === 5 ) {
// tokenizer
const inputsCode = declaration[ 4 ];
const propsMatches = [];
let nameMatch = null;
while ( ( nameMatch = propertiesRegexp$1.exec( inputsCode ) ) !== null ) {
propsMatches.push( nameMatch );
}
// parser
const inputs = [];
let i = 0;
while ( i < propsMatches.length ) {
const isConst = propsMatches[ i ][ 0 ] === 'const';
if ( isConst === true ) {
i ++;
}
let qualifier = propsMatches[ i ][ 0 ];
if ( qualifier === 'in' || qualifier === 'out' || qualifier === 'inout' ) {
i ++;
} else {
qualifier = '';
}
const type = propsMatches[ i ++ ][ 0 ];
let count = Number.parseInt( propsMatches[ i ][ 0 ] );
if ( Number.isNaN( count ) === false ) i ++;
else count = null;
const name = propsMatches[ i ++ ][ 0 ];
inputs.push( new NodeFunctionInput( type, name, count, qualifier, isConst ) );
}
//
const blockCode = mainCode.substring( declaration[ 0 ].length );
const name = declaration[ 3 ] !== undefined ? declaration[ 3 ] : '';
const type = declaration[ 2 ];
const precision = declaration[ 1 ] !== undefined ? declaration[ 1 ] : '';
const headerCode = pragmaMainIndex !== - 1 ? source.slice( 0, pragmaMainIndex ) : '';
return {
type,
inputs,
name,
precision,
inputsCode,
blockCode,
headerCode
};
} else {
throw new Error( 'FunctionNode: Function is not a GLSL code.' );
}
};
class GLSLNodeFunction extends NodeFunction {
constructor( source ) {
const { type, inputs, name, precision, inputsCode, blockCode, headerCode } = parse$1( source );
super( type, inputs, name, precision );
this.inputsCode = inputsCode;
this.blockCode = blockCode;
this.headerCode = headerCode;
}
getCode( name = this.name ) {
let code;
const blockCode = this.blockCode;
if ( blockCode !== '' ) {
const { type, inputsCode, headerCode, precision } = this;
let declarationCode = `${ type } ${ name } ( ${ inputsCode.trim() } )`;
if ( precision !== '' ) {
declarationCode = `${ precision } ${ declarationCode }`;
}
code = headerCode + declarationCode + blockCode;
} else {
// interface function
code = '';
}
return code;
}
}
class GLSLNodeParser extends NodeParser {
parseFunction( source ) {
return new GLSLNodeFunction( source );
}
}
// Three.js Transpiler
// https://raw.githubusercontent.com/AcademySoftwareFoundation/MaterialX/main/libraries/stdlib/genglsl/lib/mx_noise.glsl
const mx_select = /*#__PURE__*/ tslFn( ( [ b_immutable, t_immutable, f_immutable ] ) => {
const f = float( f_immutable ).toVar();
const t = float( t_immutable ).toVar();
const b = bool( b_immutable ).toVar();
return cond( b, t, f );
} ).setLayout( {
name: 'mx_select',
type: 'float',
inputs: [
{ name: 'b', type: 'bool' },
{ name: 't', type: 'float' },
{ name: 'f', type: 'float' }
]
} );
const mx_negate_if = /*#__PURE__*/ tslFn( ( [ val_immutable, b_immutable ] ) => {
const b = bool( b_immutable ).toVar();
const val = float( val_immutable ).toVar();
return cond( b, val.negate(), val );
} ).setLayout( {
name: 'mx_negate_if',
type: 'float',
inputs: [
{ name: 'val', type: 'float' },
{ name: 'b', type: 'bool' }
]
} );
const mx_floor = /*#__PURE__*/ tslFn( ( [ x_immutable ] ) => {
const x = float( x_immutable ).toVar();
return int( floor( x ) );
} ).setLayout( {
name: 'mx_floor',
type: 'int',
inputs: [
{ name: 'x', type: 'float' }
]
} );
const mx_floorfrac = /*#__PURE__*/ tslFn( ( [ x_immutable, i ] ) => {
const x = float( x_immutable ).toVar();
i.assign( mx_floor( x ) );
return x.sub( float( i ) );
} );
const mx_bilerp_0 = /*#__PURE__*/ tslFn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, s_immutable, t_immutable ] ) => {
const t = float( t_immutable ).toVar();
const s = float( s_immutable ).toVar();
const v3 = float( v3_immutable ).toVar();
const v2 = float( v2_immutable ).toVar();
const v1 = float( v1_immutable ).toVar();
const v0 = float( v0_immutable ).toVar();
const s1 = float( sub( 1.0, s ) ).toVar();
return sub( 1.0, t ).mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) );
} ).setLayout( {
name: 'mx_bilerp_0',
type: 'float',
inputs: [
{ name: 'v0', type: 'float' },
{ name: 'v1', type: 'float' },
{ name: 'v2', type: 'float' },
{ name: 'v3', type: 'float' },
{ name: 's', type: 'float' },
{ name: 't', type: 'float' }
]
} );
const mx_bilerp_1 = /*#__PURE__*/ tslFn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, s_immutable, t_immutable ] ) => {
const t = float( t_immutable ).toVar();
const s = float( s_immutable ).toVar();
const v3 = vec3( v3_immutable ).toVar();
const v2 = vec3( v2_immutable ).toVar();
const v1 = vec3( v1_immutable ).toVar();
const v0 = vec3( v0_immutable ).toVar();
const s1 = float( sub( 1.0, s ) ).toVar();
return sub( 1.0, t ).mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) );
} ).setLayout( {
name: 'mx_bilerp_1',
type: 'vec3',
inputs: [
{ name: 'v0', type: 'vec3' },
{ name: 'v1', type: 'vec3' },
{ name: 'v2', type: 'vec3' },
{ name: 'v3', type: 'vec3' },
{ name: 's', type: 'float' },
{ name: 't', type: 'float' }
]
} );
const mx_bilerp = /*#__PURE__*/ overloadingFn( [ mx_bilerp_0, mx_bilerp_1 ] );
const mx_trilerp_0 = /*#__PURE__*/ tslFn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, v4_immutable, v5_immutable, v6_immutable, v7_immutable, s_immutable, t_immutable, r_immutable ] ) => {
const r = float( r_immutable ).toVar();
const t = float( t_immutable ).toVar();
const s = float( s_immutable ).toVar();
const v7 = float( v7_immutable ).toVar();
const v6 = float( v6_immutable ).toVar();
const v5 = float( v5_immutable ).toVar();
const v4 = float( v4_immutable ).toVar();
const v3 = float( v3_immutable ).toVar();
const v2 = float( v2_immutable ).toVar();
const v1 = float( v1_immutable ).toVar();
const v0 = float( v0_immutable ).toVar();
const s1 = float( sub( 1.0, s ) ).toVar();
const t1 = float( sub( 1.0, t ) ).toVar();
const r1 = float( sub( 1.0, r ) ).toVar();
return r1.mul( t1.mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) ) ).add( r.mul( t1.mul( v4.mul( s1 ).add( v5.mul( s ) ) ).add( t.mul( v6.mul( s1 ).add( v7.mul( s ) ) ) ) ) );
} ).setLayout( {
name: 'mx_trilerp_0',
type: 'float',
inputs: [
{ name: 'v0', type: 'float' },
{ name: 'v1', type: 'float' },
{ name: 'v2', type: 'float' },
{ name: 'v3', type: 'float' },
{ name: 'v4', type: 'float' },
{ name: 'v5', type: 'float' },
{ name: 'v6', type: 'float' },
{ name: 'v7', type: 'float' },
{ name: 's', type: 'float' },
{ name: 't', type: 'float' },
{ name: 'r', type: 'float' }
]
} );
const mx_trilerp_1 = /*#__PURE__*/ tslFn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, v4_immutable, v5_immutable, v6_immutable, v7_immutable, s_immutable, t_immutable, r_immutable ] ) => {
const r = float( r_immutable ).toVar();
const t = float( t_immutable ).toVar();
const s = float( s_immutable ).toVar();
const v7 = vec3( v7_immutable ).toVar();
const v6 = vec3( v6_immutable ).toVar();
const v5 = vec3( v5_immutable ).toVar();
const v4 = vec3( v4_immutable ).toVar();
const v3 = vec3( v3_immutable ).toVar();
const v2 = vec3( v2_immutable ).toVar();
const v1 = vec3( v1_immutable ).toVar();
const v0 = vec3( v0_immutable ).toVar();
const s1 = float( sub( 1.0, s ) ).toVar();
const t1 = float( sub( 1.0, t ) ).toVar();
const r1 = float( sub( 1.0, r ) ).toVar();
return r1.mul( t1.mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) ) ).add( r.mul( t1.mul( v4.mul( s1 ).add( v5.mul( s ) ) ).add( t.mul( v6.mul( s1 ).add( v7.mul( s ) ) ) ) ) );
} ).setLayout( {
name: 'mx_trilerp_1',
type: 'vec3',
inputs: [
{ name: 'v0', type: 'vec3' },
{ name: 'v1', type: 'vec3' },
{ name: 'v2', type: 'vec3' },
{ name: 'v3', type: 'vec3' },
{ name: 'v4', type: 'vec3' },
{ name: 'v5', type: 'vec3' },
{ name: 'v6', type: 'vec3' },
{ name: 'v7', type: 'vec3' },
{ name: 's', type: 'float' },
{ name: 't', type: 'float' },
{ name: 'r', type: 'float' }
]
} );
const mx_trilerp = /*#__PURE__*/ overloadingFn( [ mx_trilerp_0, mx_trilerp_1 ] );
const mx_gradient_float_0 = /*#__PURE__*/ tslFn( ( [ hash_immutable, x_immutable, y_immutable ] ) => {
const y = float( y_immutable ).toVar();
const x = float( x_immutable ).toVar();
const hash = uint( hash_immutable ).toVar();
const h = uint( hash.bitAnd( uint( 7 ) ) ).toVar();
const u = float( mx_select( h.lessThan( uint( 4 ) ), x, y ) ).toVar();
const v = float( mul( 2.0, mx_select( h.lessThan( uint( 4 ) ), y, x ) ) ).toVar();
return mx_negate_if( u, bool( h.bitAnd( uint( 1 ) ) ) ).add( mx_negate_if( v, bool( h.bitAnd( uint( 2 ) ) ) ) );
} ).setLayout( {
name: 'mx_gradient_float_0',
type: 'float',
inputs: [
{ name: 'hash', type: 'uint' },
{ name: 'x', type: 'float' },
{ name: 'y', type: 'float' }
]
} );
const mx_gradient_float_1 = /*#__PURE__*/ tslFn( ( [ hash_immutable, x_immutable, y_immutable, z_immutable ] ) => {
const z = float( z_immutable ).toVar();
const y = float( y_immutable ).toVar();
const x = float( x_immutable ).toVar();
const hash = uint( hash_immutable ).toVar();
const h = uint( hash.bitAnd( uint( 15 ) ) ).toVar();
const u = float( mx_select( h.lessThan( uint( 8 ) ), x, y ) ).toVar();
const v = float( mx_select( h.lessThan( uint( 4 ) ), y, mx_select( h.equal( uint( 12 ) ).or( h.equal( uint( 14 ) ) ), x, z ) ) ).toVar();
return mx_negate_if( u, bool( h.bitAnd( uint( 1 ) ) ) ).add( mx_negate_if( v, bool( h.bitAnd( uint( 2 ) ) ) ) );
} ).setLayout( {
name: 'mx_gradient_float_1',
type: 'float',
inputs: [
{ name: 'hash', type: 'uint' },
{ name: 'x', type: 'float' },
{ name: 'y', type: 'float' },
{ name: 'z', type: 'float' }
]
} );
const mx_gradient_float = /*#__PURE__*/ overloadingFn( [ mx_gradient_float_0, mx_gradient_float_1 ] );
const mx_gradient_vec3_0 = /*#__PURE__*/ tslFn( ( [ hash_immutable, x_immutable, y_immutable ] ) => {
const y = float( y_immutable ).toVar();
const x = float( x_immutable ).toVar();
const hash = uvec3( hash_immutable ).toVar();
return vec3( mx_gradient_float( hash.x, x, y ), mx_gradient_float( hash.y, x, y ), mx_gradient_float( hash.z, x, y ) );
} ).setLayout( {
name: 'mx_gradient_vec3_0',
type: 'vec3',
inputs: [
{ name: 'hash', type: 'uvec3' },
{ name: 'x', type: 'float' },
{ name: 'y', type: 'float' }
]
} );
const mx_gradient_vec3_1 = /*#__PURE__*/ tslFn( ( [ hash_immutable, x_immutable, y_immutable, z_immutable ] ) => {
const z = float( z_immutable ).toVar();
const y = float( y_immutable ).toVar();
const x = float( x_immutable ).toVar();
const hash = uvec3( hash_immutable ).toVar();
return vec3( mx_gradient_float( hash.x, x, y, z ), mx_gradient_float( hash.y, x, y, z ), mx_gradient_float( hash.z, x, y, z ) );
} ).setLayout( {
name: 'mx_gradient_vec3_1',
type: 'vec3',
inputs: [
{ name: 'hash', type: 'uvec3' },
{ name: 'x', type: 'float' },
{ name: 'y', type: 'float' },
{ name: 'z', type: 'float' }
]
} );
const mx_gradient_vec3 = /*#__PURE__*/ overloadingFn( [ mx_gradient_vec3_0, mx_gradient_vec3_1 ] );
const mx_gradient_scale2d_0 = /*#__PURE__*/ tslFn( ( [ v_immutable ] ) => {
const v = float( v_immutable ).toVar();
return mul( 0.6616, v );
} ).setLayout( {
name: 'mx_gradient_scale2d_0',
type: 'float',
inputs: [
{ name: 'v', type: 'float' }
]
} );
const mx_gradient_scale3d_0 = /*#__PURE__*/ tslFn( ( [ v_immutable ] ) => {
const v = float( v_immutable ).toVar();
return mul( 0.9820, v );
} ).setLayout( {
name: 'mx_gradient_scale3d_0',
type: 'float',
inputs: [
{ name: 'v', type: 'float' }
]
} );
const mx_gradient_scale2d_1 = /*#__PURE__*/ tslFn( ( [ v_immutable ] ) => {
const v = vec3( v_immutable ).toVar();
return mul( 0.6616, v );
} ).setLayout( {
name: 'mx_gradient_scale2d_1',
type: 'vec3',
inputs: [
{ name: 'v', type: 'vec3' }
]
} );
const mx_gradient_scale2d = /*#__PURE__*/ overloadingFn( [ mx_gradient_scale2d_0, mx_gradient_scale2d_1 ] );
const mx_gradient_scale3d_1 = /*#__PURE__*/ tslFn( ( [ v_immutable ] ) => {
const v = vec3( v_immutable ).toVar();
return mul( 0.9820, v );
} ).setLayout( {
name: 'mx_gradient_scale3d_1',
type: 'vec3',
inputs: [
{ name: 'v', type: 'vec3' }
]
} );
const mx_gradient_scale3d = /*#__PURE__*/ overloadingFn( [ mx_gradient_scale3d_0, mx_gradient_scale3d_1 ] );
const mx_rotl32 = /*#__PURE__*/ tslFn( ( [ x_immutable, k_immutable ] ) => {
const k = int( k_immutable ).toVar();
const x = uint( x_immutable ).toVar();
return x.shiftLeft( k ).bitOr( x.shiftRight( int( 32 ).sub( k ) ) );
} ).setLayout( {
name: 'mx_rotl32',
type: 'uint',
inputs: [
{ name: 'x', type: 'uint' },
{ name: 'k', type: 'int' }
]
} );
const mx_bjmix = /*#__PURE__*/ tslFn( ( [ a, b, c ] ) => {
a.subAssign( c );
a.bitXorAssign( mx_rotl32( c, int( 4 ) ) );
c.addAssign( b );
b.subAssign( a );
b.bitXorAssign( mx_rotl32( a, int( 6 ) ) );
a.addAssign( c );
c.subAssign( b );
c.bitXorAssign( mx_rotl32( b, int( 8 ) ) );
b.addAssign( a );
a.subAssign( c );
a.bitXorAssign( mx_rotl32( c, int( 16 ) ) );
c.addAssign( b );
b.subAssign( a );
b.bitXorAssign( mx_rotl32( a, int( 19 ) ) );
a.addAssign( c );
c.subAssign( b );
c.bitXorAssign( mx_rotl32( b, int( 4 ) ) );
b.addAssign( a );
} );
const mx_bjfinal = /*#__PURE__*/ tslFn( ( [ a_immutable, b_immutable, c_immutable ] ) => {
const c = uint( c_immutable ).toVar();
const b = uint( b_immutable ).toVar();
const a = uint( a_immutable ).toVar();
c.bitXorAssign( b );
c.subAssign( mx_rotl32( b, int( 14 ) ) );
a.bitXorAssign( c );
a.subAssign( mx_rotl32( c, int( 11 ) ) );
b.bitXorAssign( a );
b.subAssign( mx_rotl32( a, int( 25 ) ) );
c.bitXorAssign( b );
c.subAssign( mx_rotl32( b, int( 16 ) ) );
a.bitXorAssign( c );
a.subAssign( mx_rotl32( c, int( 4 ) ) );
b.bitXorAssign( a );
b.subAssign( mx_rotl32( a, int( 14 ) ) );
c.bitXorAssign( b );
c.subAssign( mx_rotl32( b, int( 24 ) ) );
return c;
} ).setLayout( {
name: 'mx_bjfinal',
type: 'uint',
inputs: [
{ name: 'a', type: 'uint' },
{ name: 'b', type: 'uint' },
{ name: 'c', type: 'uint' }
]
} );
const mx_bits_to_01 = /*#__PURE__*/ tslFn( ( [ bits_immutable ] ) => {
const bits = uint( bits_immutable ).toVar();
return float( bits ).div( float( uint( int( 0xffffffff ) ) ) );
} ).setLayout( {
name: 'mx_bits_to_01',
type: 'float',
inputs: [
{ name: 'bits', type: 'uint' }
]
} );
const mx_fade = /*#__PURE__*/ tslFn( ( [ t_immutable ] ) => {
const t = float( t_immutable ).toVar();
return t.mul( t ).mul( t ).mul( t.mul( t.mul( 6.0 ).sub( 15.0 ) ).add( 10.0 ) );
} ).setLayout( {
name: 'mx_fade',
type: 'float',
inputs: [
{ name: 't', type: 'float' }
]
} );
const mx_hash_int_0 = /*#__PURE__*/ tslFn( ( [ x_immutable ] ) => {
const x = int( x_immutable ).toVar();
const len = uint( uint( 1 ) ).toVar();
const seed = uint( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ).toVar();
return mx_bjfinal( seed.add( uint( x ) ), seed, seed );
} ).setLayout( {
name: 'mx_hash_int_0',
type: 'uint',
inputs: [
{ name: 'x', type: 'int' }
]
} );
const mx_hash_int_1 = /*#__PURE__*/ tslFn( ( [ x_immutable, y_immutable ] ) => {
const y = int( y_immutable ).toVar();
const x = int( x_immutable ).toVar();
const len = uint( uint( 2 ) ).toVar();
const a = uint().toVar(), b = uint().toVar(), c = uint().toVar();
a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) );
a.addAssign( uint( x ) );
b.addAssign( uint( y ) );
return mx_bjfinal( a, b, c );
} ).setLayout( {
name: 'mx_hash_int_1',
type: 'uint',
inputs: [
{ name: 'x', type: 'int' },
{ name: 'y', type: 'int' }
]
} );
const mx_hash_int_2 = /*#__PURE__*/ tslFn( ( [ x_immutable, y_immutable, z_immutable ] ) => {
const z = int( z_immutable ).toVar();
const y = int( y_immutable ).toVar();
const x = int( x_immutable ).toVar();
const len = uint( uint( 3 ) ).toVar();
const a = uint().toVar(), b = uint().toVar(), c = uint().toVar();
a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) );
a.addAssign( uint( x ) );
b.addAssign( uint( y ) );
c.addAssign( uint( z ) );
return mx_bjfinal( a, b, c );
} ).setLayout( {
name: 'mx_hash_int_2',
type: 'uint',
inputs: [
{ name: 'x', type: 'int' },
{ name: 'y', type: 'int' },
{ name: 'z', type: 'int' }
]
} );
const mx_hash_int_3 = /*#__PURE__*/ tslFn( ( [ x_immutable, y_immutable, z_immutable, xx_immutable ] ) => {
const xx = int( xx_immutable ).toVar();
const z = int( z_immutable ).toVar();
const y = int( y_immutable ).toVar();
const x = int( x_immutable ).toVar();
const len = uint( uint( 4 ) ).toVar();
const a = uint().toVar(), b = uint().toVar(), c = uint().toVar();
a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) );
a.addAssign( uint( x ) );
b.addAssign( uint( y ) );
c.addAssign( uint( z ) );
mx_bjmix( a, b, c );
a.addAssign( uint( xx ) );
return mx_bjfinal( a, b, c );
} ).setLayout( {
name: 'mx_hash_int_3',
type: 'uint',
inputs: [
{ name: 'x', type: 'int' },
{ name: 'y', type: 'int' },
{ name: 'z', type: 'int' },
{ name: 'xx', type: 'int' }
]
} );
const mx_hash_int_4 = /*#__PURE__*/ tslFn( ( [ x_immutable, y_immutable, z_immutable, xx_immutable, yy_immutable ] ) => {
const yy = int( yy_immutable ).toVar();
const xx = int( xx_immutable ).toVar();
const z = int( z_immutable ).toVar();
const y = int( y_immutable ).toVar();
const x = int( x_immutable ).toVar();
const len = uint( uint( 5 ) ).toVar();
const a = uint().toVar(), b = uint().toVar(), c = uint().toVar();
a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) );
a.addAssign( uint( x ) );
b.addAssign( uint( y ) );
c.addAssign( uint( z ) );
mx_bjmix( a, b, c );
a.addAssign( uint( xx ) );
b.addAssign( uint( yy ) );
return mx_bjfinal( a, b, c );
} ).setLayout( {
name: 'mx_hash_int_4',
type: 'uint',
inputs: [
{ name: 'x', type: 'int' },
{ name: 'y', type: 'int' },
{ name: 'z', type: 'int' },
{ name: 'xx', type: 'int' },
{ name: 'yy', type: 'int' }
]
} );
const mx_hash_int = /*#__PURE__*/ overloadingFn( [ mx_hash_int_0, mx_hash_int_1, mx_hash_int_2, mx_hash_int_3, mx_hash_int_4 ] );
const mx_hash_vec3_0 = /*#__PURE__*/ tslFn( ( [ x_immutable, y_immutable ] ) => {
const y = int( y_immutable ).toVar();
const x = int( x_immutable ).toVar();
const h = uint( mx_hash_int( x, y ) ).toVar();
const result = uvec3().toVar();
result.x.assign( h.bitAnd( int( 0xFF ) ) );
result.y.assign( h.shiftRight( int( 8 ) ).bitAnd( int( 0xFF ) ) );
result.z.assign( h.shiftRight( int( 16 ) ).bitAnd( int( 0xFF ) ) );
return result;
} ).setLayout( {
name: 'mx_hash_vec3_0',
type: 'uvec3',
inputs: [
{ name: 'x', type: 'int' },
{ name: 'y', type: 'int' }
]
} );
const mx_hash_vec3_1 = /*#__PURE__*/ tslFn( ( [ x_immutable, y_immutable, z_immutable ] ) => {
const z = int( z_immutable ).toVar();
const y = int( y_immutable ).toVar();
const x = int( x_immutable ).toVar();
const h = uint( mx_hash_int( x, y, z ) ).toVar();
const result = uvec3().toVar();
result.x.assign( h.bitAnd( int( 0xFF ) ) );
result.y.assign( h.shiftRight( int( 8 ) ).bitAnd( int( 0xFF ) ) );
result.z.assign( h.shiftRight( int( 16 ) ).bitAnd( int( 0xFF ) ) );
return result;
} ).setLayout( {
name: 'mx_hash_vec3_1',
type: 'uvec3',
inputs: [
{ name: 'x', type: 'int' },
{ name: 'y', type: 'int' },
{ name: 'z', type: 'int' }
]
} );
const mx_hash_vec3 = /*#__PURE__*/ overloadingFn( [ mx_hash_vec3_0, mx_hash_vec3_1 ] );
const mx_perlin_noise_float_0 = /*#__PURE__*/ tslFn( ( [ p_immutable ] ) => {
const p = vec2( p_immutable ).toVar();
const X = int().toVar(), Y = int().toVar();
const fx = float( mx_floorfrac( p.x, X ) ).toVar();
const fy = float( mx_floorfrac( p.y, Y ) ).toVar();
const u = float( mx_fade( fx ) ).toVar();
const v = float( mx_fade( fy ) ).toVar();
const result = float( mx_bilerp( mx_gradient_float( mx_hash_int( X, Y ), fx, fy ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y ), fx.sub( 1.0 ), fy ), mx_gradient_float( mx_hash_int( X, Y.add( int( 1 ) ) ), fx, fy.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ) ), u, v ) ).toVar();
return mx_gradient_scale2d( result );
} ).setLayout( {
name: 'mx_perlin_noise_float_0',
type: 'float',
inputs: [
{ name: 'p', type: 'vec2' }
]
} );
const mx_perlin_noise_float_1 = /*#__PURE__*/ tslFn( ( [ p_immutable ] ) => {
const p = vec3( p_immutable ).toVar();
const X = int().toVar(), Y = int().toVar(), Z = int().toVar();
const fx = float( mx_floorfrac( p.x, X ) ).toVar();
const fy = float( mx_floorfrac( p.y, Y ) ).toVar();
const fz = float( mx_floorfrac( p.z, Z ) ).toVar();
const u = float( mx_fade( fx ) ).toVar();
const v = float( mx_fade( fy ) ).toVar();
const w = float( mx_fade( fz ) ).toVar();
const result = float( mx_trilerp( mx_gradient_float( mx_hash_int( X, Y, Z ), fx, fy, fz ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y, Z ), fx.sub( 1.0 ), fy, fz ), mx_gradient_float( mx_hash_int( X, Y.add( int( 1 ) ), Z ), fx, fy.sub( 1.0 ), fz ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz ), mx_gradient_float( mx_hash_int( X, Y, Z.add( int( 1 ) ) ), fx, fy, fz.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y, Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy, fz.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X, Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx, fy.sub( 1.0 ), fz.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz.sub( 1.0 ) ), u, v, w ) ).toVar();
return mx_gradient_scale3d( result );
} ).setLayout( {
name: 'mx_perlin_noise_float_1',
type: 'float',
inputs: [
{ name: 'p', type: 'vec3' }
]
} );
const mx_perlin_noise_float = /*#__PURE__*/ overloadingFn( [ mx_perlin_noise_float_0, mx_perlin_noise_float_1 ] );
const mx_perlin_noise_vec3_0 = /*#__PURE__*/ tslFn( ( [ p_immutable ] ) => {
const p = vec2( p_immutable ).toVar();
const X = int().toVar(), Y = int().toVar();
const fx = float( mx_floorfrac( p.x, X ) ).toVar();
const fy = float( mx_floorfrac( p.y, Y ) ).toVar();
const u = float( mx_fade( fx ) ).toVar();
const v = float( mx_fade( fy ) ).toVar();
const result = vec3( mx_bilerp( mx_gradient_vec3( mx_hash_vec3( X, Y ), fx, fy ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y ), fx.sub( 1.0 ), fy ), mx_gradient_vec3( mx_hash_vec3( X, Y.add( int( 1 ) ) ), fx, fy.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ) ), u, v ) ).toVar();
return mx_gradient_scale2d( result );
} ).setLayout( {
name: 'mx_perlin_noise_vec3_0',
type: 'vec3',
inputs: [
{ name: 'p', type: 'vec2' }
]
} );
const mx_perlin_noise_vec3_1 = /*#__PURE__*/ tslFn( ( [ p_immutable ] ) => {
const p = vec3( p_immutable ).toVar();
const X = int().toVar(), Y = int().toVar(), Z = int().toVar();
const fx = float( mx_floorfrac( p.x, X ) ).toVar();
const fy = float( mx_floorfrac( p.y, Y ) ).toVar();
const fz = float( mx_floorfrac( p.z, Z ) ).toVar();
const u = float( mx_fade( fx ) ).toVar();
const v = float( mx_fade( fy ) ).toVar();
const w = float( mx_fade( fz ) ).toVar();
const result = vec3( mx_trilerp( mx_gradient_vec3( mx_hash_vec3( X, Y, Z ), fx, fy, fz ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y, Z ), fx.sub( 1.0 ), fy, fz ), mx_gradient_vec3( mx_hash_vec3( X, Y.add( int( 1 ) ), Z ), fx, fy.sub( 1.0 ), fz ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz ), mx_gradient_vec3( mx_hash_vec3( X, Y, Z.add( int( 1 ) ) ), fx, fy, fz.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y, Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy, fz.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X, Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx, fy.sub( 1.0 ), fz.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz.sub( 1.0 ) ), u, v, w ) ).toVar();
return mx_gradient_scale3d( result );
} ).setLayout( {
name: 'mx_perlin_noise_vec3_1',
type: 'vec3',
inputs: [
{ name: 'p', type: 'vec3' }
]
} );
const mx_perlin_noise_vec3 = /*#__PURE__*/ overloadingFn( [ mx_perlin_noise_vec3_0, mx_perlin_noise_vec3_1 ] );
const mx_cell_noise_float_0 = /*#__PURE__*/ tslFn( ( [ p_immutable ] ) => {
const p = float( p_immutable ).toVar();
const ix = int( mx_floor( p ) ).toVar();
return mx_bits_to_01( mx_hash_int( ix ) );
} ).setLayout( {
name: 'mx_cell_noise_float_0',
type: 'float',
inputs: [
{ name: 'p', type: 'float' }
]
} );
const mx_cell_noise_float_1 = /*#__PURE__*/ tslFn( ( [ p_immutable ] ) => {
const p = vec2( p_immutable ).toVar();
const ix = int( mx_floor( p.x ) ).toVar();
const iy = int( mx_floor( p.y ) ).toVar();
return mx_bits_to_01( mx_hash_int( ix, iy ) );
} ).setLayout( {
name: 'mx_cell_noise_float_1',
type: 'float',
inputs: [
{ name: 'p', type: 'vec2' }
]
} );
const mx_cell_noise_float_2 = /*#__PURE__*/ tslFn( ( [ p_immutable ] ) => {
const p = vec3( p_immutable ).toVar();
const ix = int( mx_floor( p.x ) ).toVar();
const iy = int( mx_floor( p.y ) ).toVar();
const iz = int( mx_floor( p.z ) ).toVar();
return mx_bits_to_01( mx_hash_int( ix, iy, iz ) );
} ).setLayout( {
name: 'mx_cell_noise_float_2',
type: 'float',
inputs: [
{ name: 'p', type: 'vec3' }
]
} );
const mx_cell_noise_float_3 = /*#__PURE__*/ tslFn( ( [ p_immutable ] ) => {
const p = vec4( p_immutable ).toVar();
const ix = int( mx_floor( p.x ) ).toVar();
const iy = int( mx_floor( p.y ) ).toVar();
const iz = int( mx_floor( p.z ) ).toVar();
const iw = int( mx_floor( p.w ) ).toVar();
return mx_bits_to_01( mx_hash_int( ix, iy, iz, iw ) );
} ).setLayout( {
name: 'mx_cell_noise_float_3',
type: 'float',
inputs: [
{ name: 'p', type: 'vec4' }
]
} );
const mx_cell_noise_float$1 = /*#__PURE__*/ overloadingFn( [ mx_cell_noise_float_0, mx_cell_noise_float_1, mx_cell_noise_float_2, mx_cell_noise_float_3 ] );
const mx_cell_noise_vec3_0 = /*#__PURE__*/ tslFn( ( [ p_immutable ] ) => {
const p = float( p_immutable ).toVar();
const ix = int( mx_floor( p ) ).toVar();
return vec3( mx_bits_to_01( mx_hash_int( ix, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, int( 2 ) ) ) );
} ).setLayout( {
name: 'mx_cell_noise_vec3_0',
type: 'vec3',
inputs: [
{ name: 'p', type: 'float' }
]
} );
const mx_cell_noise_vec3_1 = /*#__PURE__*/ tslFn( ( [ p_immutable ] ) => {
const p = vec2( p_immutable ).toVar();
const ix = int( mx_floor( p.x ) ).toVar();
const iy = int( mx_floor( p.y ) ).toVar();
return vec3( mx_bits_to_01( mx_hash_int( ix, iy, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, int( 2 ) ) ) );
} ).setLayout( {
name: 'mx_cell_noise_vec3_1',
type: 'vec3',
inputs: [
{ name: 'p', type: 'vec2' }
]
} );
const mx_cell_noise_vec3_2 = /*#__PURE__*/ tslFn( ( [ p_immutable ] ) => {
const p = vec3( p_immutable ).toVar();
const ix = int( mx_floor( p.x ) ).toVar();
const iy = int( mx_floor( p.y ) ).toVar();
const iz = int( mx_floor( p.z ) ).toVar();
return vec3( mx_bits_to_01( mx_hash_int( ix, iy, iz, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, int( 2 ) ) ) );
} ).setLayout( {
name: 'mx_cell_noise_vec3_2',
type: 'vec3',
inputs: [
{ name: 'p', type: 'vec3' }
]
} );
const mx_cell_noise_vec3_3 = /*#__PURE__*/ tslFn( ( [ p_immutable ] ) => {
const p = vec4( p_immutable ).toVar();
const ix = int( mx_floor( p.x ) ).toVar();
const iy = int( mx_floor( p.y ) ).toVar();
const iz = int( mx_floor( p.z ) ).toVar();
const iw = int( mx_floor( p.w ) ).toVar();
return vec3( mx_bits_to_01( mx_hash_int( ix, iy, iz, iw, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, iw, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, iw, int( 2 ) ) ) );
} ).setLayout( {
name: 'mx_cell_noise_vec3_3',
type: 'vec3',
inputs: [
{ name: 'p', type: 'vec4' }
]
} );
const mx_cell_noise_vec3 = /*#__PURE__*/ overloadingFn( [ mx_cell_noise_vec3_0, mx_cell_noise_vec3_1, mx_cell_noise_vec3_2, mx_cell_noise_vec3_3 ] );
const mx_fractal_noise_float$1 = /*#__PURE__*/ tslFn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => {
const diminish = float( diminish_immutable ).toVar();
const lacunarity = float( lacunarity_immutable ).toVar();
const octaves = int( octaves_immutable ).toVar();
const p = vec3( p_immutable ).toVar();
const result = float( 0.0 ).toVar();
const amplitude = float( 1.0 ).toVar();
loop( octaves, () => {
result.addAssign( amplitude.mul( mx_perlin_noise_float( p ) ) );
amplitude.mulAssign( diminish );
p.mulAssign( lacunarity );
} );
return result;
} ).setLayout( {
name: 'mx_fractal_noise_float',
type: 'float',
inputs: [
{ name: 'p', type: 'vec3' },
{ name: 'octaves', type: 'int' },
{ name: 'lacunarity', type: 'float' },
{ name: 'diminish', type: 'float' }
]
} );
const mx_fractal_noise_vec3$1 = /*#__PURE__*/ tslFn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => {
const diminish = float( diminish_immutable ).toVar();
const lacunarity = float( lacunarity_immutable ).toVar();
const octaves = int( octaves_immutable ).toVar();
const p = vec3( p_immutable ).toVar();
const result = vec3( 0.0 ).toVar();
const amplitude = float( 1.0 ).toVar();
loop( octaves, () => {
result.addAssign( amplitude.mul( mx_perlin_noise_vec3( p ) ) );
amplitude.mulAssign( diminish );
p.mulAssign( lacunarity );
} );
return result;
} ).setLayout( {
name: 'mx_fractal_noise_vec3',
type: 'vec3',
inputs: [
{ name: 'p', type: 'vec3' },
{ name: 'octaves', type: 'int' },
{ name: 'lacunarity', type: 'float' },
{ name: 'diminish', type: 'float' }
]
} );
const mx_fractal_noise_vec2$1 = /*#__PURE__*/ tslFn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => {
const diminish = float( diminish_immutable ).toVar();
const lacunarity = float( lacunarity_immutable ).toVar();
const octaves = int( octaves_immutable ).toVar();
const p = vec3( p_immutable ).toVar();
return vec2( mx_fractal_noise_float$1( p, octaves, lacunarity, diminish ), mx_fractal_noise_float$1( p.add( vec3( int( 19 ), int( 193 ), int( 17 ) ) ), octaves, lacunarity, diminish ) );
} ).setLayout( {
name: 'mx_fractal_noise_vec2',
type: 'vec2',
inputs: [
{ name: 'p', type: 'vec3' },
{ name: 'octaves', type: 'int' },
{ name: 'lacunarity', type: 'float' },
{ name: 'diminish', type: 'float' }
]
} );
const mx_fractal_noise_vec4$1 = /*#__PURE__*/ tslFn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => {
const diminish = float( diminish_immutable ).toVar();
const lacunarity = float( lacunarity_immutable ).toVar();
const octaves = int( octaves_immutable ).toVar();
const p = vec3( p_immutable ).toVar();
const c = vec3( mx_fractal_noise_vec3$1( p, octaves, lacunarity, diminish ) ).toVar();
const f = float( mx_fractal_noise_float$1( p.add( vec3( int( 19 ), int( 193 ), int( 17 ) ) ), octaves, lacunarity, diminish ) ).toVar();
return vec4( c, f );
} ).setLayout( {
name: 'mx_fractal_noise_vec4',
type: 'vec4',
inputs: [
{ name: 'p', type: 'vec3' },
{ name: 'octaves', type: 'int' },
{ name: 'lacunarity', type: 'float' },
{ name: 'diminish', type: 'float' }
]
} );
const mx_worley_distance_0 = /*#__PURE__*/ tslFn( ( [ p_immutable, x_immutable, y_immutable, xoff_immutable, yoff_immutable, jitter_immutable, metric_immutable ] ) => {
const metric = int( metric_immutable ).toVar();
const jitter = float( jitter_immutable ).toVar();
const yoff = int( yoff_immutable ).toVar();
const xoff = int( xoff_immutable ).toVar();
const y = int( y_immutable ).toVar();
const x = int( x_immutable ).toVar();
const p = vec2( p_immutable ).toVar();
const tmp = vec3( mx_cell_noise_vec3( vec2( x.add( xoff ), y.add( yoff ) ) ) ).toVar();
const off = vec2( tmp.x, tmp.y ).toVar();
off.subAssign( 0.5 );
off.mulAssign( jitter );
off.addAssign( 0.5 );
const cellpos = vec2( vec2( float( x ), float( y ) ).add( off ) ).toVar();
const diff = vec2( cellpos.sub( p ) ).toVar();
If( metric.equal( int( 2 ) ), () => {
return abs( diff.x ).add( abs( diff.y ) );
} );
If( metric.equal( int( 3 ) ), () => {
return max$1( abs( diff.x ), abs( diff.y ) );
} );
return dot( diff, diff );
} ).setLayout( {
name: 'mx_worley_distance_0',
type: 'float',
inputs: [
{ name: 'p', type: 'vec2' },
{ name: 'x', type: 'int' },
{ name: 'y', type: 'int' },
{ name: 'xoff', type: 'int' },
{ name: 'yoff', type: 'int' },
{ name: 'jitter', type: 'float' },
{ name: 'metric', type: 'int' }
]
} );
const mx_worley_distance_1 = /*#__PURE__*/ tslFn( ( [ p_immutable, x_immutable, y_immutable, z_immutable, xoff_immutable, yoff_immutable, zoff_immutable, jitter_immutable, metric_immutable ] ) => {
const metric = int( metric_immutable ).toVar();
const jitter = float( jitter_immutable ).toVar();
const zoff = int( zoff_immutable ).toVar();
const yoff = int( yoff_immutable ).toVar();
const xoff = int( xoff_immutable ).toVar();
const z = int( z_immutable ).toVar();
const y = int( y_immutable ).toVar();
const x = int( x_immutable ).toVar();
const p = vec3( p_immutable ).toVar();
const off = vec3( mx_cell_noise_vec3( vec3( x.add( xoff ), y.add( yoff ), z.add( zoff ) ) ) ).toVar();
off.subAssign( 0.5 );
off.mulAssign( jitter );
off.addAssign( 0.5 );
const cellpos = vec3( vec3( float( x ), float( y ), float( z ) ).add( off ) ).toVar();
const diff = vec3( cellpos.sub( p ) ).toVar();
If( metric.equal( int( 2 ) ), () => {
return abs( diff.x ).add( abs( diff.y ) ).add( abs( diff.z ) );
} );
If( metric.equal( int( 3 ) ), () => {
return max$1( max$1( abs( diff.x ), abs( diff.y ) ), abs( diff.z ) );
} );
return dot( diff, diff );
} ).setLayout( {
name: 'mx_worley_distance_1',
type: 'float',
inputs: [
{ name: 'p', type: 'vec3' },
{ name: 'x', type: 'int' },
{ name: 'y', type: 'int' },
{ name: 'z', type: 'int' },
{ name: 'xoff', type: 'int' },
{ name: 'yoff', type: 'int' },
{ name: 'zoff', type: 'int' },
{ name: 'jitter', type: 'float' },
{ name: 'metric', type: 'int' }
]
} );
const mx_worley_distance = /*#__PURE__*/ overloadingFn( [ mx_worley_distance_0, mx_worley_distance_1 ] );
const mx_worley_noise_float_0 = /*#__PURE__*/ tslFn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => {
const metric = int( metric_immutable ).toVar();
const jitter = float( jitter_immutable ).toVar();
const p = vec2( p_immutable ).toVar();
const X = int().toVar(), Y = int().toVar();
const localpos = vec2( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ) ).toVar();
const sqdist = float( 1e6 ).toVar();
loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => {
loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => {
const dist = float( mx_worley_distance( localpos, x, y, X, Y, jitter, metric ) ).toVar();
sqdist.assign( min$1( sqdist, dist ) );
} );
} );
If( metric.equal( int( 0 ) ), () => {
sqdist.assign( sqrt( sqdist ) );
} );
return sqdist;
} ).setLayout( {
name: 'mx_worley_noise_float_0',
type: 'float',
inputs: [
{ name: 'p', type: 'vec2' },
{ name: 'jitter', type: 'float' },
{ name: 'metric', type: 'int' }
]
} );
const mx_worley_noise_vec2_0 = /*#__PURE__*/ tslFn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => {
const metric = int( metric_immutable ).toVar();
const jitter = float( jitter_immutable ).toVar();
const p = vec2( p_immutable ).toVar();
const X = int().toVar(), Y = int().toVar();
const localpos = vec2( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ) ).toVar();
const sqdist = vec2( 1e6, 1e6 ).toVar();
loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => {
loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => {
const dist = float( mx_worley_distance( localpos, x, y, X, Y, jitter, metric ) ).toVar();
If( dist.lessThan( sqdist.x ), () => {
sqdist.y.assign( sqdist.x );
sqdist.x.assign( dist );
} ).elseif( dist.lessThan( sqdist.y ), () => {
sqdist.y.assign( dist );
} );
} );
} );
If( metric.equal( int( 0 ) ), () => {
sqdist.assign( sqrt( sqdist ) );
} );
return sqdist;
} ).setLayout( {
name: 'mx_worley_noise_vec2_0',
type: 'vec2',
inputs: [
{ name: 'p', type: 'vec2' },
{ name: 'jitter', type: 'float' },
{ name: 'metric', type: 'int' }
]
} );
const mx_worley_noise_vec3_0 = /*#__PURE__*/ tslFn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => {
const metric = int( metric_immutable ).toVar();
const jitter = float( jitter_immutable ).toVar();
const p = vec2( p_immutable ).toVar();
const X = int().toVar(), Y = int().toVar();
const localpos = vec2( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ) ).toVar();
const sqdist = vec3( 1e6, 1e6, 1e6 ).toVar();
loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => {
loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => {
const dist = float( mx_worley_distance( localpos, x, y, X, Y, jitter, metric ) ).toVar();
If( dist.lessThan( sqdist.x ), () => {
sqdist.z.assign( sqdist.y );
sqdist.y.assign( sqdist.x );
sqdist.x.assign( dist );
} ).elseif( dist.lessThan( sqdist.y ), () => {
sqdist.z.assign( sqdist.y );
sqdist.y.assign( dist );
} ).elseif( dist.lessThan( sqdist.z ), () => {
sqdist.z.assign( dist );
} );
} );
} );
If( metric.equal( int( 0 ) ), () => {
sqdist.assign( sqrt( sqdist ) );
} );
return sqdist;
} ).setLayout( {
name: 'mx_worley_noise_vec3_0',
type: 'vec3',
inputs: [
{ name: 'p', type: 'vec2' },
{ name: 'jitter', type: 'float' },
{ name: 'metric', type: 'int' }
]
} );
const mx_worley_noise_float_1 = /*#__PURE__*/ tslFn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => {
const metric = int( metric_immutable ).toVar();
const jitter = float( jitter_immutable ).toVar();
const p = vec3( p_immutable ).toVar();
const X = int().toVar(), Y = int().toVar(), Z = int().toVar();
const localpos = vec3( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ), mx_floorfrac( p.z, Z ) ).toVar();
const sqdist = float( 1e6 ).toVar();
loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => {
loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => {
loop( { start: - 1, end: int( 1 ), name: 'z', condition: '<=' }, ( { z } ) => {
const dist = float( mx_worley_distance( localpos, x, y, z, X, Y, Z, jitter, metric ) ).toVar();
sqdist.assign( min$1( sqdist, dist ) );
} );
} );
} );
If( metric.equal( int( 0 ) ), () => {
sqdist.assign( sqrt( sqdist ) );
} );
return sqdist;
} ).setLayout( {
name: 'mx_worley_noise_float_1',
type: 'float',
inputs: [
{ name: 'p', type: 'vec3' },
{ name: 'jitter', type: 'float' },
{ name: 'metric', type: 'int' }
]
} );
const mx_worley_noise_float$1 = /*#__PURE__*/ overloadingFn( [ mx_worley_noise_float_0, mx_worley_noise_float_1 ] );
const mx_worley_noise_vec2_1 = /*#__PURE__*/ tslFn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => {
const metric = int( metric_immutable ).toVar();
const jitter = float( jitter_immutable ).toVar();
const p = vec3( p_immutable ).toVar();
const X = int().toVar(), Y = int().toVar(), Z = int().toVar();
const localpos = vec3( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ), mx_floorfrac( p.z, Z ) ).toVar();
const sqdist = vec2( 1e6, 1e6 ).toVar();
loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => {
loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => {
loop( { start: - 1, end: int( 1 ), name: 'z', condition: '<=' }, ( { z } ) => {
const dist = float( mx_worley_distance( localpos, x, y, z, X, Y, Z, jitter, metric ) ).toVar();
If( dist.lessThan( sqdist.x ), () => {
sqdist.y.assign( sqdist.x );
sqdist.x.assign( dist );
} ).elseif( dist.lessThan( sqdist.y ), () => {
sqdist.y.assign( dist );
} );
} );
} );
} );
If( metric.equal( int( 0 ) ), () => {
sqdist.assign( sqrt( sqdist ) );
} );
return sqdist;
} ).setLayout( {
name: 'mx_worley_noise_vec2_1',
type: 'vec2',
inputs: [
{ name: 'p', type: 'vec3' },
{ name: 'jitter', type: 'float' },
{ name: 'metric', type: 'int' }
]
} );
const mx_worley_noise_vec2$1 = /*#__PURE__*/ overloadingFn( [ mx_worley_noise_vec2_0, mx_worley_noise_vec2_1 ] );
const mx_worley_noise_vec3_1 = /*#__PURE__*/ tslFn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => {
const metric = int( metric_immutable ).toVar();
const jitter = float( jitter_immutable ).toVar();
const p = vec3( p_immutable ).toVar();
const X = int().toVar(), Y = int().toVar(), Z = int().toVar();
const localpos = vec3( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ), mx_floorfrac( p.z, Z ) ).toVar();
const sqdist = vec3( 1e6, 1e6, 1e6 ).toVar();
loop( { start: - 1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => {
loop( { start: - 1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => {
loop( { start: - 1, end: int( 1 ), name: 'z', condition: '<=' }, ( { z } ) => {
const dist = float( mx_worley_distance( localpos, x, y, z, X, Y, Z, jitter, metric ) ).toVar();
If( dist.lessThan( sqdist.x ), () => {
sqdist.z.assign( sqdist.y );
sqdist.y.assign( sqdist.x );
sqdist.x.assign( dist );
} ).elseif( dist.lessThan( sqdist.y ), () => {
sqdist.z.assign( sqdist.y );
sqdist.y.assign( dist );
} ).elseif( dist.lessThan( sqdist.z ), () => {
sqdist.z.assign( dist );
} );
} );
} );
} );
If( metric.equal( int( 0 ) ), () => {
sqdist.assign( sqrt( sqdist ) );
} );
return sqdist;
} ).setLayout( {
name: 'mx_worley_noise_vec3_1',
type: 'vec3',
inputs: [
{ name: 'p', type: 'vec3' },
{ name: 'jitter', type: 'float' },
{ name: 'metric', type: 'int' }
]
} );
const mx_worley_noise_vec3$1 = /*#__PURE__*/ overloadingFn( [ mx_worley_noise_vec3_0, mx_worley_noise_vec3_1 ] );
// Three.js Transpiler
// https://github.com/AcademySoftwareFoundation/MaterialX/blob/main/libraries/stdlib/genglsl/lib/mx_hsv.glsl
const mx_hsvtorgb = /*#__PURE__*/ tslFn( ( [ hsv_immutable ] ) => {
const hsv = vec3( hsv_immutable ).toVar();
const h = float( hsv.x ).toVar();
const s = float( hsv.y ).toVar();
const v = float( hsv.z ).toVar();
If( s.lessThan( 0.0001 ), () => {
return vec3( v, v, v );
} ).else( () => {
h.assign( mul( 6.0, h.sub( floor( h ) ) ) );
const hi = int( trunc( h ) ).toVar();
const f = float( h.sub( float( hi ) ) ).toVar();
const p = float( v.mul( sub( 1.0, s ) ) ).toVar();
const q = float( v.mul( sub( 1.0, s.mul( f ) ) ) ).toVar();
const t = float( v.mul( sub( 1.0, s.mul( sub( 1.0, f ) ) ) ) ).toVar();
If( hi.equal( int( 0 ) ), () => {
return vec3( v, t, p );
} ).elseif( hi.equal( int( 1 ) ), () => {
return vec3( q, v, p );
} ).elseif( hi.equal( int( 2 ) ), () => {
return vec3( p, v, t );
} ).elseif( hi.equal( int( 3 ) ), () => {
return vec3( p, q, v );
} ).elseif( hi.equal( int( 4 ) ), () => {
return vec3( t, p, v );
} );
return vec3( v, p, q );
} );
} ).setLayout( {
name: 'mx_hsvtorgb',
type: 'vec3',
inputs: [
{ name: 'hsv', type: 'vec3' }
]
} );
const mx_rgbtohsv = /*#__PURE__*/ tslFn( ( [ c_immutable ] ) => {
const c = vec3( c_immutable ).toVar();
const r = float( c.x ).toVar();
const g = float( c.y ).toVar();
const b = float( c.z ).toVar();
const mincomp = float( min$1( r, min$1( g, b ) ) ).toVar();
const maxcomp = float( max$1( r, max$1( g, b ) ) ).toVar();
const delta = float( maxcomp.sub( mincomp ) ).toVar();
const h = float().toVar(), s = float().toVar(), v = float().toVar();
v.assign( maxcomp );
If( maxcomp.greaterThan( 0.0 ), () => {
s.assign( delta.div( maxcomp ) );
} ).else( () => {
s.assign( 0.0 );
} );
If( s.lessThanEqual( 0.0 ), () => {
h.assign( 0.0 );
} ).else( () => {
If( r.greaterThanEqual( maxcomp ), () => {
h.assign( g.sub( b ).div( delta ) );
} ).elseif( g.greaterThanEqual( maxcomp ), () => {
h.assign( add( 2.0, b.sub( r ).div( delta ) ) );
} ).else( () => {
h.assign( add( 4.0, r.sub( g ).div( delta ) ) );
} );
h.mulAssign( 1.0 / 6.0 );
If( h.lessThan( 0.0 ), () => {
h.addAssign( 1.0 );
} );
} );
return vec3( h, s, v );
} ).setLayout( {
name: 'mx_rgbtohsv',
type: 'vec3',
inputs: [
{ name: 'c', type: 'vec3' }
]
} );
// Three.js Transpiler
// https://github.com/AcademySoftwareFoundation/MaterialX/blob/main/libraries/stdlib/genglsl/lib/mx_transform_color.glsl
const mx_srgb_texture_to_lin_rec709 = /*#__PURE__*/ tslFn( ( [ color_immutable ] ) => {
const color = vec3( color_immutable ).toVar();
const isAbove = bvec3( greaterThan( color, vec3( 0.04045 ) ) ).toVar();
const linSeg = vec3( color.div( 12.92 ) ).toVar();
const powSeg = vec3( pow( max$1( color.add( vec3( 0.055 ) ), vec3( 0.0 ) ).div( 1.055 ), vec3( 2.4 ) ) ).toVar();
return mix( linSeg, powSeg, isAbove );
} ).setLayout( {
name: 'mx_srgb_texture_to_lin_rec709',
type: 'vec3',
inputs: [
{ name: 'color', type: 'vec3' }
]
} );
const mx_aastep = ( threshold, value ) => {
threshold = float( threshold );
value = float( value );
const afwidth = vec2( value.dFdx(), value.dFdy() ).length().mul( 0.70710678118654757 );
return smoothstep( threshold.sub( afwidth ), threshold.add( afwidth ), value );
};
const _ramp = ( a, b, uv, p ) => mix( a, b, uv[ p ].clamp() );
const mx_ramplr = ( valuel, valuer, texcoord = uv() ) => _ramp( valuel, valuer, texcoord, 'x' );
const mx_ramptb = ( valuet, valueb, texcoord = uv() ) => _ramp( valuet, valueb, texcoord, 'y' );
const _split = ( a, b, center, uv, p ) => mix( a, b, mx_aastep( center, uv[ p ] ) );
const mx_splitlr = ( valuel, valuer, center, texcoord = uv() ) => _split( valuel, valuer, center, texcoord, 'x' );
const mx_splittb = ( valuet, valueb, center, texcoord = uv() ) => _split( valuet, valueb, center, texcoord, 'y' );
const mx_transform_uv = ( uv_scale = 1, uv_offset = 0, uv_geo = uv() ) => uv_geo.mul( uv_scale ).add( uv_offset );
const mx_safepower = ( in1, in2 = 1 ) => {
in1 = float( in1 );
return in1.abs().pow( in2 ).mul( in1.sign() );
};
const mx_contrast = ( input, amount = 1, pivot = .5 ) => float( input ).sub( pivot ).mul( amount ).add( pivot );
const mx_noise_float = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => mx_perlin_noise_float( texcoord.convert( 'vec2|vec3' ) ).mul( amplitude ).add( pivot );
//export const mx_noise_vec2 = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => mx_perlin_noise_vec3( texcoord.convert( 'vec2|vec3' ) ).mul( amplitude ).add( pivot );
const mx_noise_vec3 = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => mx_perlin_noise_vec3( texcoord.convert( 'vec2|vec3' ) ).mul( amplitude ).add( pivot );
const mx_noise_vec4 = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => {
texcoord = texcoord.convert( 'vec2|vec3' ); // overloading type
const noise_vec4 = vec4( mx_perlin_noise_vec3( texcoord ), mx_perlin_noise_float( texcoord.add( vec2( 19, 73 ) ) ) );
return noise_vec4.mul( amplitude ).add( pivot );
};
const mx_worley_noise_float = ( texcoord = uv(), jitter = 1 ) => mx_worley_noise_float$1( texcoord.convert( 'vec2|vec3' ), jitter, int( 1 ) );
const mx_worley_noise_vec2 = ( texcoord = uv(), jitter = 1 ) => mx_worley_noise_vec2$1( texcoord.convert( 'vec2|vec3' ), jitter, int( 1 ) );
const mx_worley_noise_vec3 = ( texcoord = uv(), jitter = 1 ) => mx_worley_noise_vec3$1( texcoord.convert( 'vec2|vec3' ), jitter, int( 1 ) );
const mx_cell_noise_float = ( texcoord = uv() ) => mx_cell_noise_float$1( texcoord.convert( 'vec2|vec3' ) );
const mx_fractal_noise_float = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_float$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude );
const mx_fractal_noise_vec2 = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_vec2$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude );
const mx_fractal_noise_vec3 = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_vec3$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude );
const mx_fractal_noise_vec4 = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_vec4$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude );
function painterSortStable( a, b ) {
if ( a.groupOrder !== b.groupOrder ) {
return a.groupOrder - b.groupOrder;
} else if ( a.renderOrder !== b.renderOrder ) {
return a.renderOrder - b.renderOrder;
} else if ( a.material.id !== b.material.id ) {
return a.material.id - b.material.id;
} else if ( a.z !== b.z ) {
return a.z - b.z;
} else {
return a.id - b.id;
}
}
function reversePainterSortStable( a, b ) {
if ( a.groupOrder !== b.groupOrder ) {
return a.groupOrder - b.groupOrder;
} else if ( a.renderOrder !== b.renderOrder ) {
return a.renderOrder - b.renderOrder;
} else if ( a.z !== b.z ) {
return b.z - a.z;
} else {
return a.id - b.id;
}
}
class RenderList {
constructor() {
this.renderItems = [];
this.renderItemsIndex = 0;
this.opaque = [];
this.transparent = [];
this.bundles = [];
this.lightsNode = new LightsNode( [] );
this.lightsArray = [];
this.occlusionQueryCount = 0;
}
begin() {
this.renderItemsIndex = 0;
this.opaque.length = 0;
this.transparent.length = 0;
this.bundles.length = 0;
this.lightsArray.length = 0;
this.occlusionQueryCount = 0;
return this;
}
getNextRenderItem( object, geometry, material, groupOrder, z, group ) {
let renderItem = this.renderItems[ this.renderItemsIndex ];
if ( renderItem === undefined ) {
renderItem = {
id: object.id,
object: object,
geometry: geometry,
material: material,
groupOrder: groupOrder,
renderOrder: object.renderOrder,
z: z,
group: group
};
this.renderItems[ this.renderItemsIndex ] = renderItem;
} else {
renderItem.id = object.id;
renderItem.object = object;
renderItem.geometry = geometry;
renderItem.material = material;
renderItem.groupOrder = groupOrder;
renderItem.renderOrder = object.renderOrder;
renderItem.z = z;
renderItem.group = group;
}
this.renderItemsIndex ++;
return renderItem;
}
push( object, geometry, material, groupOrder, z, group ) {
const renderItem = this.getNextRenderItem( object, geometry, material, groupOrder, z, group );
if ( object.occlusionTest === true ) this.occlusionQueryCount ++;
( material.transparent === true || material.transmission > 0 ? this.transparent : this.opaque ).push( renderItem );
}
unshift( object, geometry, material, groupOrder, z, group ) {
const renderItem = this.getNextRenderItem( object, geometry, material, groupOrder, z, group );
( material.transparent === true ? this.transparent : this.opaque ).unshift( renderItem );
}
pushBundle( group ) {
this.bundles.push( group );
}
pushLight( light ) {
this.lightsArray.push( light );
}
getLightsNode() {
return this.lightsNode.fromLights( this.lightsArray );
}
sort( customOpaqueSort, customTransparentSort ) {
if ( this.opaque.length > 1 ) this.opaque.sort( customOpaqueSort || painterSortStable );
if ( this.transparent.length > 1 ) this.transparent.sort( customTransparentSort || reversePainterSortStable );
}
finish() {
// update lights
this.lightsNode.fromLights( this.lightsArray );
// Clear references from inactive renderItems in the list
for ( let i = this.renderItemsIndex, il = this.renderItems.length; i < il; i ++ ) {
const renderItem = this.renderItems[ i ];
if ( renderItem.id === null ) break;
renderItem.id = null;
renderItem.object = null;
renderItem.geometry = null;
renderItem.material = null;
renderItem.groupOrder = null;
renderItem.renderOrder = null;
renderItem.z = null;
renderItem.group = null;
}
}
}
class RenderLists {
constructor() {
this.lists = new ChainMap();
}
get( scene, camera ) {
const lists = this.lists;
const keys = [ scene, camera ];
let list = lists.get( keys );
if ( list === undefined ) {
list = new RenderList();
lists.set( keys, list );
}
return list;
}
dispose() {
this.lists = new ChainMap();
}
}
let id = 0;
class RenderContext {
constructor() {
this.id = id ++;
this.color = true;
this.clearColor = true;
this.clearColorValue = { r: 0, g: 0, b: 0, a: 1 };
this.depth = true;
this.clearDepth = true;
this.clearDepthValue = 1;
this.stencil = false;
this.clearStencil = true;
this.clearStencilValue = 1;
this.viewport = false;
this.viewportValue = new Vector4();
this.scissor = false;
this.scissorValue = new Vector4();
this.textures = null;
this.depthTexture = null;
this.activeCubeFace = 0;
this.sampleCount = 1;
this.width = 0;
this.height = 0;
this.isRenderContext = true;
}
}
class RenderContexts {
constructor() {
this.chainMaps = {};
}
get( scene, camera, renderTarget = null ) {
const chainKey = [ scene, camera ];
let attachmentState;
if ( renderTarget === null ) {
attachmentState = 'default';
} else {
const format = renderTarget.texture.format;
const count = renderTarget.textures.length;
attachmentState = `${ count }:${ format }:${ renderTarget.samples }:${ renderTarget.depthBuffer }:${ renderTarget.stencilBuffer }`;
}
const chainMap = this.getChainMap( attachmentState );
let renderState = chainMap.get( chainKey );
if ( renderState === undefined ) {
renderState = new RenderContext();
chainMap.set( chainKey, renderState );
}
if ( renderTarget !== null ) renderState.sampleCount = renderTarget.samples === 0 ? 1 : renderTarget.samples;
return renderState;
}
getChainMap( attachmentState ) {
return this.chainMaps[ attachmentState ] || ( this.chainMaps[ attachmentState ] = new ChainMap() );
}
dispose() {
this.chainMaps = {};
}
}
const _size = /*@__PURE__*/ new Vector3();
class Textures extends DataMap {
constructor( renderer, backend, info ) {
super();
this.renderer = renderer;
this.backend = backend;
this.info = info;
}
updateRenderTarget( renderTarget, activeMipmapLevel = 0 ) {
const renderTargetData = this.get( renderTarget );
const sampleCount = renderTarget.samples === 0 ? 1 : renderTarget.samples;
const depthTextureMips = renderTargetData.depthTextureMips || ( renderTargetData.depthTextureMips = {} );
const texture = renderTarget.texture;
const textures = renderTarget.textures;
const size = this.getSize( texture );
const mipWidth = size.width >> activeMipmapLevel;
const mipHeight = size.height >> activeMipmapLevel;
let depthTexture = renderTarget.depthTexture || depthTextureMips[ activeMipmapLevel ];
let textureNeedsUpdate = false;
if ( depthTexture === undefined ) {
depthTexture = new DepthTexture();
depthTexture.format = renderTarget.stencilBuffer ? DepthStencilFormat : DepthFormat;
depthTexture.type = renderTarget.stencilBuffer ? UnsignedInt248Type : UnsignedIntType; // FloatType
depthTexture.image.width = mipWidth;
depthTexture.image.height = mipHeight;
depthTextureMips[ activeMipmapLevel ] = depthTexture;
}
if ( renderTargetData.width !== size.width || size.height !== renderTargetData.height ) {
textureNeedsUpdate = true;
depthTexture.needsUpdate = true;
depthTexture.image.width = mipWidth;
depthTexture.image.height = mipHeight;
}
renderTargetData.width = size.width;
renderTargetData.height = size.height;
renderTargetData.textures = textures;
renderTargetData.depthTexture = depthTexture;
renderTargetData.depth = renderTarget.depthBuffer;
renderTargetData.stencil = renderTarget.stencilBuffer;
renderTargetData.renderTarget = renderTarget;
if ( renderTargetData.sampleCount !== sampleCount ) {
textureNeedsUpdate = true;
depthTexture.needsUpdate = true;
renderTargetData.sampleCount = sampleCount;
}
//
const options = { sampleCount };
for ( let i = 0; i < textures.length; i ++ ) {
const texture = textures[ i ];
if ( textureNeedsUpdate ) texture.needsUpdate = true;
this.updateTexture( texture, options );
}
this.updateTexture( depthTexture, options );
// dispose handler
if ( renderTargetData.initialized !== true ) {
renderTargetData.initialized = true;
// dispose
const onDispose = () => {
renderTarget.removeEventListener( 'dispose', onDispose );
if ( textures !== undefined ) {
for ( let i = 0; i < textures.length; i ++ ) {
this._destroyTexture( textures[ i ] );
}
} else {
this._destroyTexture( texture );
}
this._destroyTexture( depthTexture );
this.delete( renderTarget );
};
renderTarget.addEventListener( 'dispose', onDispose );
}
}
updateTexture( texture, options = {} ) {
const textureData = this.get( texture );
if ( textureData.initialized === true && textureData.version === texture.version ) return;
const isRenderTarget = texture.isRenderTargetTexture || texture.isDepthTexture || texture.isFramebufferTexture;
const backend = this.backend;
if ( isRenderTarget && textureData.initialized === true ) {
// it's an update
backend.destroySampler( texture );
backend.destroyTexture( texture );
}
//
if ( texture.isFramebufferTexture ) {
const renderer = this.renderer;
const renderTarget = renderer.getRenderTarget();
if ( renderTarget ) {
texture.type = renderTarget.texture.type;
} else {
texture.type = UnsignedByteType;
}
}
//
const { width, height, depth } = this.getSize( texture );
options.width = width;
options.height = height;
options.depth = depth;
options.needsMipmaps = this.needsMipmaps( texture );
options.levels = options.needsMipmaps ? this.getMipLevels( texture, width, height ) : 1;
//
if ( isRenderTarget || texture.isStorageTexture === true ) {
backend.createSampler( texture );
backend.createTexture( texture, options );
} else {
const needsCreate = textureData.initialized !== true;
if ( needsCreate ) backend.createSampler( texture );
if ( texture.version > 0 ) {
const image = texture.image;
if ( image === undefined ) {
console.warn( 'THREE.Renderer: Texture marked for update but image is undefined.' );
} else if ( image.complete === false ) {
console.warn( 'THREE.Renderer: Texture marked for update but image is incomplete.' );
} else {
if ( texture.images ) {
const images = [];
for ( const image of texture.images ) {
images.push( image );
}
options.images = images;
} else {
options.image = image;
}
if ( textureData.isDefaultTexture === undefined || textureData.isDefaultTexture === true ) {
backend.createTexture( texture, options );
textureData.isDefaultTexture = false;
}
if ( texture.source.dataReady === true ) backend.updateTexture( texture, options );
if ( options.needsMipmaps && texture.mipmaps.length === 0 ) backend.generateMipmaps( texture );
}
} else {
// async update
backend.createDefaultTexture( texture );
textureData.isDefaultTexture = true;
}
}
// dispose handler
if ( textureData.initialized !== true ) {
textureData.initialized = true;
//
this.info.memory.textures ++;
// dispose
const onDispose = () => {
texture.removeEventListener( 'dispose', onDispose );
this._destroyTexture( texture );
this.info.memory.textures --;
};
texture.addEventListener( 'dispose', onDispose );
}
//
textureData.version = texture.version;
}
getSize( texture, target = _size ) {
let image = texture.images ? texture.images[ 0 ] : texture.image;
if ( image ) {
if ( image.image !== undefined ) image = image.image;
target.width = image.width;
target.height = image.height;
target.depth = texture.isCubeTexture ? 6 : ( image.depth || 1 );
} else {
target.width = target.height = target.depth = 1;
}
return target;
}
getMipLevels( texture, width, height ) {
let mipLevelCount;
if ( texture.isCompressedTexture ) {
mipLevelCount = texture.mipmaps.length;
} else {
mipLevelCount = Math.floor( Math.log2( Math.max( width, height ) ) ) + 1;
}
return mipLevelCount;
}
needsMipmaps( texture ) {
if ( this.isEnvironmentTexture( texture ) ) return true;
return ( texture.isCompressedTexture === true ) || ( ( texture.minFilter !== NearestFilter ) && ( texture.minFilter !== LinearFilter ) );
}
isEnvironmentTexture( texture ) {
const mapping = texture.mapping;
return ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ) || ( mapping === CubeReflectionMapping || mapping === CubeRefractionMapping );
}
_destroyTexture( texture ) {
this.backend.destroySampler( texture );
this.backend.destroyTexture( texture );
this.delete( texture );
}
}
class Color4 extends Color {
constructor( r, g, b, a = 1 ) {
super( r, g, b );
this.a = a;
}
set( r, g, b, a = 1 ) {
this.a = a;
return super.set( r, g, b );
}
copy( color ) {
if ( color.a !== undefined ) this.a = color.a;
return super.copy( color );
}
clone() {
return new this.constructor( this.r, this.g, this.b, this.a );
}
}
const _clearColor = /*@__PURE__*/ new Color4();
class Background extends DataMap {
constructor( renderer, nodes ) {
super();
this.renderer = renderer;
this.nodes = nodes;
}
update( scene, renderList, renderContext ) {
const renderer = this.renderer;
const background = this.nodes.getBackgroundNode( scene ) || scene.background;
let forceClear = false;
if ( background === null ) {
// no background settings, use clear color configuration from the renderer
renderer._clearColor.getRGB( _clearColor, LinearSRGBColorSpace );
_clearColor.a = renderer._clearColor.a;
} else if ( background.isColor === true ) {
// background is an opaque color
background.getRGB( _clearColor, LinearSRGBColorSpace );
_clearColor.a = 1;
forceClear = true;
} else if ( background.isNode === true ) {
const sceneData = this.get( scene );
const backgroundNode = background;
_clearColor.copy( renderer._clearColor );
let backgroundMesh = sceneData.backgroundMesh;
if ( backgroundMesh === undefined ) {
const backgroundMeshNode = context( vec4( backgroundNode ).mul( backgroundIntensity ), {
// @TODO: Add Texture2D support using node context
getUV: () => normalWorld,
getTextureLevel: () => backgroundBlurriness
} );
let viewProj = modelViewProjection();
viewProj = viewProj.setZ( viewProj.w );
const nodeMaterial = new NodeMaterial();
nodeMaterial.name = 'Background.material';
nodeMaterial.side = BackSide;
nodeMaterial.depthTest = false;
nodeMaterial.depthWrite = false;
nodeMaterial.fog = false;
nodeMaterial.lights = false;
nodeMaterial.vertexNode = viewProj;
nodeMaterial.colorNode = backgroundMeshNode;
sceneData.backgroundMeshNode = backgroundMeshNode;
sceneData.backgroundMesh = backgroundMesh = new Mesh( new SphereGeometry( 1, 32, 32 ), nodeMaterial );
backgroundMesh.frustumCulled = false;
backgroundMesh.name = 'Background.mesh';
backgroundMesh.onBeforeRender = function ( renderer, scene, camera ) {
this.matrixWorld.copyPosition( camera.matrixWorld );
};
}
const backgroundCacheKey = backgroundNode.getCacheKey();
if ( sceneData.backgroundCacheKey !== backgroundCacheKey ) {
sceneData.backgroundMeshNode.node = vec4( backgroundNode ).mul( backgroundIntensity );
backgroundMesh.material.needsUpdate = true;
sceneData.backgroundCacheKey = backgroundCacheKey;
}
renderList.unshift( backgroundMesh, backgroundMesh.geometry, backgroundMesh.material, 0, 0, null );
} else {
console.error( 'THREE.Renderer: Unsupported background configuration.', background );
}
//
if ( renderer.autoClear === true || forceClear === true ) {
_clearColor.multiplyScalar( _clearColor.a );
const clearColorValue = renderContext.clearColorValue;
clearColorValue.r = _clearColor.r;
clearColorValue.g = _clearColor.g;
clearColorValue.b = _clearColor.b;
clearColorValue.a = _clearColor.a;
renderContext.depthClearValue = renderer._clearDepth;
renderContext.stencilClearValue = renderer._clearStencil;
renderContext.clearColor = renderer.autoClearColor === true;
renderContext.clearDepth = renderer.autoClearDepth === true;
renderContext.clearStencil = renderer.autoClearStencil === true;
} else {
renderContext.clearColor = false;
renderContext.clearDepth = false;
renderContext.clearStencil = false;
}
}
}
class NodeBuilderState {
constructor( vertexShader, fragmentShader, computeShader, nodeAttributes, bindings, updateNodes, updateBeforeNodes, updateAfterNodes, instanceBindGroups = true, transforms = [] ) {
this.vertexShader = vertexShader;
this.fragmentShader = fragmentShader;
this.computeShader = computeShader;
this.transforms = transforms;
this.nodeAttributes = nodeAttributes;
this.bindings = bindings;
this.updateNodes = updateNodes;
this.updateBeforeNodes = updateBeforeNodes;
this.updateAfterNodes = updateAfterNodes;
this.instanceBindGroups = instanceBindGroups;
this.usedTimes = 0;
}
createBindings() {
const bindings = [];
for ( const instanceGroup of this.bindings ) {
const shared = this.instanceBindGroups && instanceGroup.bindings[ 0 ].groupNode.shared;
if ( shared !== true ) {
const bindingsGroup = new BindGroup( instanceGroup.name );
bindings.push( bindingsGroup );
for ( const instanceBinding of instanceGroup.bindings ) {
bindingsGroup.bindings.push( instanceBinding.clone() );
}
} else {
bindings.push( instanceGroup );
}
}
return bindings;
}
}
const outputNodeMap = new WeakMap();
class Nodes extends DataMap {
constructor( renderer, backend ) {
super();
this.renderer = renderer;
this.backend = backend;
this.nodeFrame = new NodeFrame();
this.nodeBuilderCache = new Map();
this.callHashCache = new ChainMap();
this.groupsData = new ChainMap();
}
updateGroup( nodeUniformsGroup ) {
const groupNode = nodeUniformsGroup.groupNode;
const name = groupNode.name;
// objectGroup is every updated
if ( name === objectGroup.name ) return true;
// renderGroup is updated once per render/compute call
if ( name === renderGroup.name ) {
const uniformsGroupData = this.get( nodeUniformsGroup );
const renderId = this.nodeFrame.renderId;
if ( uniformsGroupData.renderId !== renderId ) {
uniformsGroupData.renderId = renderId;
return true;
}
return false;
}
// frameGroup is updated once per frame
if ( name === frameGroup.name ) {
const uniformsGroupData = this.get( nodeUniformsGroup );
const frameId = this.nodeFrame.frameId;
if ( uniformsGroupData.frameId !== frameId ) {
uniformsGroupData.frameId = frameId;
return true;
}
return false;
}
// other groups are updated just when groupNode.needsUpdate is true
const groupChain = [ groupNode, nodeUniformsGroup ];
let groupData = this.groupsData.get( groupChain );
if ( groupData === undefined ) this.groupsData.set( groupChain, groupData = {} );
if ( groupData.version !== groupNode.version ) {
groupData.version = groupNode.version;
return true;
}
return false;
}
getForRenderCacheKey( renderObject ) {
return renderObject.initialCacheKey;
}
getForRender( renderObject ) {
const renderObjectData = this.get( renderObject );
let nodeBuilderState = renderObjectData.nodeBuilderState;
if ( nodeBuilderState === undefined ) {
const { nodeBuilderCache } = this;
const cacheKey = this.getForRenderCacheKey( renderObject );
nodeBuilderState = nodeBuilderCache.get( cacheKey );
if ( nodeBuilderState === undefined ) {
const nodeBuilder = this.backend.createNodeBuilder( renderObject.object, this.renderer );
nodeBuilder.scene = renderObject.scene;
nodeBuilder.material = renderObject.material;
nodeBuilder.camera = renderObject.camera;
nodeBuilder.context.material = renderObject.material;
nodeBuilder.lightsNode = renderObject.lightsNode;
nodeBuilder.environmentNode = this.getEnvironmentNode( renderObject.scene );
nodeBuilder.fogNode = this.getFogNode( renderObject.scene );
nodeBuilder.clippingContext = renderObject.clippingContext;
nodeBuilder.build();
nodeBuilderState = this._createNodeBuilderState( nodeBuilder );
nodeBuilderCache.set( cacheKey, nodeBuilderState );
}
nodeBuilderState.usedTimes ++;
renderObjectData.nodeBuilderState = nodeBuilderState;
}
return nodeBuilderState;
}
delete( object ) {
if ( object.isRenderObject ) {
const nodeBuilderState = this.get( object ).nodeBuilderState;
nodeBuilderState.usedTimes --;
if ( nodeBuilderState.usedTimes === 0 ) {
this.nodeBuilderCache.delete( this.getForRenderCacheKey( object ) );
}
}
return super.delete( object );
}
getForCompute( computeNode ) {
const computeData = this.get( computeNode );
let nodeBuilderState = computeData.nodeBuilderState;
if ( nodeBuilderState === undefined ) {
const nodeBuilder = this.backend.createNodeBuilder( computeNode, this.renderer );
nodeBuilder.build();
nodeBuilderState = this._createNodeBuilderState( nodeBuilder );
computeData.nodeBuilderState = nodeBuilderState;
}
return nodeBuilderState;
}
_createNodeBuilderState( nodeBuilder ) {
return new NodeBuilderState(
nodeBuilder.vertexShader,
nodeBuilder.fragmentShader,
nodeBuilder.computeShader,
nodeBuilder.getAttributesArray(),
nodeBuilder.getBindings(),
nodeBuilder.updateNodes,
nodeBuilder.updateBeforeNodes,
nodeBuilder.updateAfterNodes,
nodeBuilder.instanceBindGroups,
nodeBuilder.transforms
);
}
getEnvironmentNode( scene ) {
return scene.environmentNode || this.get( scene ).environmentNode || null;
}
getBackgroundNode( scene ) {
return scene.backgroundNode || this.get( scene ).backgroundNode || null;
}
getFogNode( scene ) {
return scene.fogNode || this.get( scene ).fogNode || null;
}
getCacheKey( scene, lightsNode ) {
const chain = [ scene, lightsNode ];
const callId = this.renderer.info.calls;
let cacheKeyData = this.callHashCache.get( chain );
if ( cacheKeyData === undefined || cacheKeyData.callId !== callId ) {
const environmentNode = this.getEnvironmentNode( scene );
const fogNode = this.getFogNode( scene );
const cacheKey = [];
if ( lightsNode ) cacheKey.push( lightsNode.getCacheKey( true ) );
if ( environmentNode ) cacheKey.push( environmentNode.getCacheKey() );
if ( fogNode ) cacheKey.push( fogNode.getCacheKey() );
cacheKeyData = {
callId,
cacheKey: cacheKey.join( ',' )
};
this.callHashCache.set( chain, cacheKeyData );
}
return cacheKeyData.cacheKey;
}
updateScene( scene ) {
this.updateEnvironment( scene );
this.updateFog( scene );
this.updateBackground( scene );
}
get isToneMappingState() {
return this.renderer.getRenderTarget() ? false : true;
}
updateBackground( scene ) {
const sceneData = this.get( scene );
const background = scene.background;
if ( background ) {
if ( sceneData.background !== background ) {
let backgroundNode = null;
if ( background.isCubeTexture === true || ( background.mapping === EquirectangularReflectionMapping || background.mapping === EquirectangularRefractionMapping ) ) {
backgroundNode = pmremTexture( background, normalWorld );
} else if ( background.isTexture === true ) {
backgroundNode = texture( background, viewportBottomLeft ).setUpdateMatrix( true );
} else if ( background.isColor !== true ) {
console.error( 'WebGPUNodes: Unsupported background configuration.', background );
}
sceneData.backgroundNode = backgroundNode;
sceneData.background = background;
}
} else if ( sceneData.backgroundNode ) {
delete sceneData.backgroundNode;
delete sceneData.background;
}
}
updateFog( scene ) {
const sceneData = this.get( scene );
const fog = scene.fog;
if ( fog ) {
if ( sceneData.fog !== fog ) {
let fogNode = null;
if ( fog.isFogExp2 ) {
fogNode = densityFog( reference( 'color', 'color', fog ), reference( 'density', 'float', fog ) );
} else if ( fog.isFog ) {
fogNode = rangeFog( reference( 'color', 'color', fog ), reference( 'near', 'float', fog ), reference( 'far', 'float', fog ) );
} else {
console.error( 'WebGPUNodes: Unsupported fog configuration.', fog );
}
sceneData.fogNode = fogNode;
sceneData.fog = fog;
}
} else {
delete sceneData.fogNode;
delete sceneData.fog;
}
}
updateEnvironment( scene ) {
const sceneData = this.get( scene );
const environment = scene.environment;
if ( environment ) {
if ( sceneData.environment !== environment ) {
let environmentNode = null;
if ( environment.isCubeTexture === true ) {
environmentNode = cubeTexture( environment );
} else if ( environment.isTexture === true ) {
environmentNode = texture( environment );
} else {
console.error( 'Nodes: Unsupported environment configuration.', environment );
}
sceneData.environmentNode = environmentNode;
sceneData.environment = environment;
}
} else if ( sceneData.environmentNode ) {
delete sceneData.environmentNode;
delete sceneData.environment;
}
}
getNodeFrame( renderer = this.renderer, scene = null, object = null, camera = null, material = null ) {
const nodeFrame = this.nodeFrame;
nodeFrame.renderer = renderer;
nodeFrame.scene = scene;
nodeFrame.object = object;
nodeFrame.camera = camera;
nodeFrame.material = material;
return nodeFrame;
}
getNodeFrameForRender( renderObject ) {
return this.getNodeFrame( renderObject.renderer, renderObject.scene, renderObject.object, renderObject.camera, renderObject.material );
}
getOutputCacheKey() {
const renderer = this.renderer;
return renderer.toneMapping + ',' + renderer.currentColorSpace;
}
hasOutputChange( outputTarget ) {
const cacheKey = outputNodeMap.get( outputTarget );
return cacheKey !== this.getOutputCacheKey();
}
getOutputNode( outputTexture ) {
const renderer = this.renderer;
const cacheKey = this.getOutputCacheKey();
const output = texture( outputTexture, viewportTopLeft ).renderOutput( renderer.toneMapping, renderer.currentColorSpace );
outputNodeMap.set( outputTexture, cacheKey );
return output;
}
updateBefore( renderObject ) {
const nodeFrame = this.getNodeFrameForRender( renderObject );
const nodeBuilder = renderObject.getNodeBuilderState();
for ( const node of nodeBuilder.updateBeforeNodes ) {
nodeFrame.updateBeforeNode( node );
}
}
updateAfter( renderObject ) {
const nodeFrame = this.getNodeFrameForRender( renderObject );
const nodeBuilder = renderObject.getNodeBuilderState();
for ( const node of nodeBuilder.updateAfterNodes ) {
nodeFrame.updateAfterNode( node );
}
}
updateForCompute( computeNode ) {
const nodeFrame = this.getNodeFrame();
const nodeBuilder = this.getForCompute( computeNode );
for ( const node of nodeBuilder.updateNodes ) {
nodeFrame.updateNode( node );
}
}
updateForRender( renderObject ) {
const nodeFrame = this.getNodeFrameForRender( renderObject );
const nodeBuilder = renderObject.getNodeBuilderState();
for ( const node of nodeBuilder.updateNodes ) {
nodeFrame.updateNode( node );
}
}
dispose() {
super.dispose();
this.nodeFrame = new NodeFrame();
this.nodeBuilderCache = new Map();
}
}
class RenderBundle {
constructor( scene, camera ) {
this.scene = scene;
this.camera = camera;
}
clone() {
return Object.assign( new this.constructor(), this );
}
}
class RenderBundles {
constructor() {
this.lists = new ChainMap();
}
get( scene, camera ) {
const lists = this.lists;
const keys = [ scene, camera ];
let list = lists.get( keys );
if ( list === undefined ) {
list = new RenderBundle( scene, camera );
lists.set( keys, list );
}
return list;
}
dispose() {
this.lists = new ChainMap();
}
}
const _scene = /*@__PURE__*/ new Scene();
const _drawingBufferSize = /*@__PURE__*/ new Vector2();
const _screen = /*@__PURE__*/ new Vector4();
const _frustum = /*@__PURE__*/ new Frustum();
const _projScreenMatrix = /*@__PURE__*/ new Matrix4();
const _vector3 = /*@__PURE__*/ new Vector3();
class Renderer {
constructor( backend, parameters = {} ) {
this.isRenderer = true;
//
const {
logarithmicDepthBuffer = false,
alpha = true,
antialias = false,
samples = 0
} = parameters;
// public
this.domElement = backend.getDomElement();
this.backend = backend;
this.samples = samples || ( antialias === true ) ? 4 : 0;
this.autoClear = true;
this.autoClearColor = true;
this.autoClearDepth = true;
this.autoClearStencil = true;
this.alpha = alpha;
this.logarithmicDepthBuffer = logarithmicDepthBuffer;
this.outputColorSpace = SRGBColorSpace;
this.toneMapping = NoToneMapping;
this.toneMappingExposure = 1.0;
this.sortObjects = true;
this.depth = true;
this.stencil = false;
this.clippingPlanes = [];
this.info = new Info();
// internals
this._pixelRatio = 1;
this._width = this.domElement.width;
this._height = this.domElement.height;
this._viewport = new Vector4( 0, 0, this._width, this._height );
this._scissor = new Vector4( 0, 0, this._width, this._height );
this._scissorTest = false;
this._attributes = null;
this._geometries = null;
this._nodes = null;
this._animation = null;
this._bindings = null;
this._objects = null;
this._pipelines = null;
this._bundles = null;
this._renderLists = null;
this._renderContexts = null;
this._textures = null;
this._background = null;
this._quad = new QuadMesh( new NodeMaterial() );
this._currentRenderContext = null;
this._opaqueSort = null;
this._transparentSort = null;
this._frameBufferTarget = null;
const alphaClear = this.alpha === true ? 0 : 1;
this._clearColor = new Color4( 0, 0, 0, alphaClear );
this._clearDepth = 1;
this._clearStencil = 0;
this._renderTarget = null;
this._activeCubeFace = 0;
this._activeMipmapLevel = 0;
this._mrt = null;
this._renderObjectFunction = null;
this._currentRenderObjectFunction = null;
this._currentRenderBundle = null;
this._handleObjectFunction = this._renderObjectDirect;
this._initialized = false;
this._initPromise = null;
this._compilationPromises = null;
this.transparent = true;
this.opaque = true;
this.shadowMap = {
enabled: false,
type: PCFShadowMap$1
};
this.xr = {
enabled: false
};
this.debug = {
checkShaderErrors: true,
onShaderError: null
};
}
async init() {
if ( this._initialized ) {
throw new Error( 'Renderer: Backend has already been initialized.' );
}
if ( this._initPromise !== null ) {
return this._initPromise;
}
this._initPromise = new Promise( async ( resolve, reject ) => {
const backend = this.backend;
try {
await backend.init( this );
} catch ( error ) {
reject( error );
return;
}
this._nodes = new Nodes( this, backend );
this._animation = new Animation( this._nodes, this.info );
this._attributes = new Attributes( backend );
this._background = new Background( this, this._nodes );
this._geometries = new Geometries( this._attributes, this.info );
this._textures = new Textures( this, backend, this.info );
this._pipelines = new Pipelines( backend, this._nodes );
this._bindings = new Bindings( backend, this._nodes, this._textures, this._attributes, this._pipelines, this.info );
this._objects = new RenderObjects( this, this._nodes, this._geometries, this._pipelines, this._bindings, this.info );
this._renderLists = new RenderLists();
this._bundles = new RenderBundles();
this._renderContexts = new RenderContexts();
//
this._initialized = true;
resolve();
} );
return this._initPromise;
}
get coordinateSystem() {
return this.backend.coordinateSystem;
}
async compileAsync( scene, camera, targetScene = null ) {
if ( this._initialized === false ) await this.init();
// preserve render tree
const nodeFrame = this._nodes.nodeFrame;
const previousRenderId = nodeFrame.renderId;
const previousRenderContext = this._currentRenderContext;
const previousRenderObjectFunction = this._currentRenderObjectFunction;
const previousCompilationPromises = this._compilationPromises;
//
const sceneRef = ( scene.isScene === true ) ? scene : _scene;
if ( targetScene === null ) targetScene = scene;
const renderTarget = this._renderTarget;
const renderContext = this._renderContexts.get( targetScene, camera, renderTarget );
const activeMipmapLevel = this._activeMipmapLevel;
const compilationPromises = [];
this._currentRenderContext = renderContext;
this._currentRenderObjectFunction = this.renderObject;
this._handleObjectFunction = this._createObjectPipeline;
this._compilationPromises = compilationPromises;
nodeFrame.renderId ++;
//
nodeFrame.update();
//
renderContext.depth = this.depth;
renderContext.stencil = this.stencil;
if ( ! renderContext.clippingContext ) renderContext.clippingContext = new ClippingContext();
renderContext.clippingContext.updateGlobal( this, camera );
//
sceneRef.onBeforeRender( this, scene, camera, renderTarget );
//
const renderList = this._renderLists.get( scene, camera );
renderList.begin();
this._projectObject( scene, camera, 0, renderList );
// include lights from target scene
if ( targetScene !== scene ) {
targetScene.traverseVisible( function ( object ) {
if ( object.isLight && object.layers.test( camera.layers ) ) {
renderList.pushLight( object );
}
} );
}
renderList.finish();
//
if ( renderTarget !== null ) {
this._textures.updateRenderTarget( renderTarget, activeMipmapLevel );
const renderTargetData = this._textures.get( renderTarget );
renderContext.textures = renderTargetData.textures;
renderContext.depthTexture = renderTargetData.depthTexture;
} else {
renderContext.textures = null;
renderContext.depthTexture = null;
}
//
this._nodes.updateScene( sceneRef );
//
this._background.update( sceneRef, renderList, renderContext );
// process render lists
const opaqueObjects = renderList.opaque;
const transparentObjects = renderList.transparent;
const lightsNode = renderList.lightsNode;
if ( this.opaque === true && opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode );
if ( this.transparent === true && transparentObjects.length > 0 ) this._renderObjects( transparentObjects, camera, sceneRef, lightsNode );
// restore render tree
nodeFrame.renderId = previousRenderId;
this._currentRenderContext = previousRenderContext;
this._currentRenderObjectFunction = previousRenderObjectFunction;
this._compilationPromises = previousCompilationPromises;
this._handleObjectFunction = this._renderObjectDirect;
// wait for all promises setup by backends awaiting compilation/linking/pipeline creation to complete
await Promise.all( compilationPromises );
}
async renderAsync( scene, camera ) {
if ( this._initialized === false ) await this.init();
const renderContext = this._renderScene( scene, camera );
await this.backend.resolveTimestampAsync( renderContext, 'render' );
}
setMRT( mrt ) {
this._mrt = mrt;
return this;
}
getMRT() {
return this._mrt;
}
_renderBundle( bundle, sceneRef, lightsNode ) {
const { object, camera, renderList } = bundle;
const renderContext = this._currentRenderContext;
const renderContextData = this.backend.get( renderContext );
//
const renderBundle = this._bundles.get( object, camera );
const renderBundleData = this.backend.get( renderBundle );
if ( renderBundleData.renderContexts === undefined ) renderBundleData.renderContexts = new Set();
//
const renderBundleNeedsUpdate = renderBundleData.renderContexts.has( renderContext ) === false || object.needsUpdate === true;
renderBundleData.renderContexts.add( renderContext );
if ( renderBundleNeedsUpdate ) {
if ( renderContextData.renderObjects === undefined || object.needsUpdate === true ) {
const nodeFrame = this._nodes.nodeFrame;
renderContextData.renderObjects = [];
renderContextData.renderBundles = [];
renderContextData.scene = sceneRef;
renderContextData.camera = camera;
renderContextData.renderId = nodeFrame.renderId;
renderContextData.registerBundlesPhase = true;
}
this._currentRenderBundle = renderBundle;
const opaqueObjects = renderList.opaque;
if ( opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode );
this._currentRenderBundle = null;
//
object.needsUpdate = false;
} else {
const renderContext = this._currentRenderContext;
const renderContextData = this.backend.get( renderContext );
for ( let i = 0, l = renderContextData.renderObjects.length; i < l; i ++ ) {
const renderObject = renderContextData.renderObjects[ i ];
this._nodes.updateBefore( renderObject );
//
renderObject.object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, renderObject.object.matrixWorld );
renderObject.object.normalMatrix.getNormalMatrix( renderObject.object.modelViewMatrix );
this._nodes.updateForRender( renderObject );
this._bindings.updateForRender( renderObject );
this.backend.draw( renderObject, this.info );
this._nodes.updateAfter( renderObject );
}
}
}
render( scene, camera ) {
if ( this._initialized === false ) {
console.warn( 'THREE.Renderer: .render() called before the backend is initialized. Try using .renderAsync() instead.' );
return this.renderAsync( scene, camera );
}
this._renderScene( scene, camera );
}
_getFrameBufferTarget() {
const { currentColorSpace } = this;
const useToneMapping = this._renderTarget === null && ( this.toneMapping !== NoToneMapping );
const useColorSpace = this._renderTarget === null && ( currentColorSpace !== LinearSRGBColorSpace && currentColorSpace !== NoColorSpace );
if ( useToneMapping === false && useColorSpace === false ) return null;
const { width, height } = this.getDrawingBufferSize( _drawingBufferSize );
const { depth, stencil } = this;
let frameBufferTarget = this._frameBufferTarget;
if ( frameBufferTarget === null ) {
frameBufferTarget = new RenderTarget( width, height, {
depthBuffer: depth,
stencilBuffer: stencil,
type: HalfFloatType, // FloatType
format: RGBAFormat,
colorSpace: LinearSRGBColorSpace,
generateMipmaps: false,
minFilter: LinearFilter,
magFilter: LinearFilter,
samples: this.samples
} );
frameBufferTarget.isPostProcessingRenderTarget = true;
this._frameBufferTarget = frameBufferTarget;
}
frameBufferTarget.depthBuffer = depth;
frameBufferTarget.stencilBuffer = stencil;
frameBufferTarget.setSize( width, height );
frameBufferTarget.viewport.copy( this._viewport );
frameBufferTarget.scissor.copy( this._scissor );
frameBufferTarget.viewport.multiplyScalar( this._pixelRatio );
frameBufferTarget.scissor.multiplyScalar( this._pixelRatio );
frameBufferTarget.scissorTest = this._scissorTest;
return frameBufferTarget;
}
_renderScene( scene, camera, useFrameBufferTarget = true ) {
const frameBufferTarget = useFrameBufferTarget ? this._getFrameBufferTarget() : null;
// preserve render tree
const nodeFrame = this._nodes.nodeFrame;
const previousRenderId = nodeFrame.renderId;
const previousRenderContext = this._currentRenderContext;
const previousRenderObjectFunction = this._currentRenderObjectFunction;
//
const sceneRef = ( scene.isScene === true ) ? scene : _scene;
const outputRenderTarget = this._renderTarget;
const activeCubeFace = this._activeCubeFace;
const activeMipmapLevel = this._activeMipmapLevel;
//
let renderTarget;
if ( frameBufferTarget !== null ) {
renderTarget = frameBufferTarget;
this.setRenderTarget( renderTarget );
} else {
renderTarget = outputRenderTarget;
}
//
const renderContext = this._renderContexts.get( scene, camera, renderTarget );
this._currentRenderContext = renderContext;
this._currentRenderObjectFunction = this._renderObjectFunction || this.renderObject;
//
this.info.calls ++;
this.info.render.calls ++;
this.info.render.frameCalls ++;
nodeFrame.renderId = this.info.calls;
//
const coordinateSystem = this.coordinateSystem;
if ( camera.coordinateSystem !== coordinateSystem ) {
camera.coordinateSystem = coordinateSystem;
camera.updateProjectionMatrix();
}
//
if ( scene.matrixWorldAutoUpdate === true ) scene.updateMatrixWorld();
if ( camera.parent === null && camera.matrixWorldAutoUpdate === true ) camera.updateMatrixWorld();
//
let viewport = this._viewport;
let scissor = this._scissor;
let pixelRatio = this._pixelRatio;
if ( renderTarget !== null ) {
viewport = renderTarget.viewport;
scissor = renderTarget.scissor;
pixelRatio = 1;
}
this.getDrawingBufferSize( _drawingBufferSize );
_screen.set( 0, 0, _drawingBufferSize.width, _drawingBufferSize.height );
const minDepth = ( viewport.minDepth === undefined ) ? 0 : viewport.minDepth;
const maxDepth = ( viewport.maxDepth === undefined ) ? 1 : viewport.maxDepth;
renderContext.viewportValue.copy( viewport ).multiplyScalar( pixelRatio ).floor();
renderContext.viewportValue.width >>= activeMipmapLevel;
renderContext.viewportValue.height >>= activeMipmapLevel;
renderContext.viewportValue.minDepth = minDepth;
renderContext.viewportValue.maxDepth = maxDepth;
renderContext.viewport = renderContext.viewportValue.equals( _screen ) === false;
renderContext.scissorValue.copy( scissor ).multiplyScalar( pixelRatio ).floor();
renderContext.scissor = this._scissorTest && renderContext.scissorValue.equals( _screen ) === false;
renderContext.scissorValue.width >>= activeMipmapLevel;
renderContext.scissorValue.height >>= activeMipmapLevel;
if ( ! renderContext.clippingContext ) renderContext.clippingContext = new ClippingContext();
renderContext.clippingContext.updateGlobal( this, camera );
//
sceneRef.onBeforeRender( this, scene, camera, renderTarget );
//
_projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
_frustum.setFromProjectionMatrix( _projScreenMatrix, coordinateSystem );
const renderList = this._renderLists.get( scene, camera );
renderList.begin();
this._projectObject( scene, camera, 0, renderList );
renderList.finish();
if ( this.sortObjects === true ) {
renderList.sort( this._opaqueSort, this._transparentSort );
}
//
if ( renderTarget !== null ) {
this._textures.updateRenderTarget( renderTarget, activeMipmapLevel );
const renderTargetData = this._textures.get( renderTarget );
renderContext.textures = renderTargetData.textures;
renderContext.depthTexture = renderTargetData.depthTexture;
renderContext.width = renderTargetData.width;
renderContext.height = renderTargetData.height;
renderContext.renderTarget = renderTarget;
renderContext.depth = renderTarget.depthBuffer;
renderContext.stencil = renderTarget.stencilBuffer;
} else {
renderContext.textures = null;
renderContext.depthTexture = null;
renderContext.width = this.domElement.width;
renderContext.height = this.domElement.height;
renderContext.depth = this.depth;
renderContext.stencil = this.stencil;
}
renderContext.width >>= activeMipmapLevel;
renderContext.height >>= activeMipmapLevel;
renderContext.activeCubeFace = activeCubeFace;
renderContext.activeMipmapLevel = activeMipmapLevel;
renderContext.occlusionQueryCount = renderList.occlusionQueryCount;
//
this._nodes.updateScene( sceneRef );
//
this._background.update( sceneRef, renderList, renderContext );
//
this.backend.beginRender( renderContext );
// process render lists
const opaqueObjects = renderList.opaque;
const transparentObjects = renderList.transparent;
const bundles = renderList.bundles;
const lightsNode = renderList.lightsNode;
if ( bundles.length > 0 ) this._renderBundles( bundles, sceneRef, lightsNode );
if ( this.opaque === true && opaqueObjects.length > 0 ) this._renderObjects( opaqueObjects, camera, sceneRef, lightsNode );
if ( this.transparent === true && transparentObjects.length > 0 ) this._renderObjects( transparentObjects, camera, sceneRef, lightsNode );
// finish render pass
this.backend.finishRender( renderContext );
// restore render tree
nodeFrame.renderId = previousRenderId;
this._currentRenderContext = previousRenderContext;
this._currentRenderObjectFunction = previousRenderObjectFunction;
//
if ( frameBufferTarget !== null ) {
this.setRenderTarget( outputRenderTarget, activeCubeFace, activeMipmapLevel );
const quad = this._quad;
if ( this._nodes.hasOutputChange( renderTarget.texture ) ) {
quad.material.fragmentNode = this._nodes.getOutputNode( renderTarget.texture );
quad.material.needsUpdate = true;
}
this._renderScene( quad, quad.camera, false );
}
//
sceneRef.onAfterRender( this, scene, camera, renderTarget );
//
return renderContext;
}
getMaxAnisotropy() {
return this.backend.getMaxAnisotropy();
}
getActiveCubeFace() {
return this._activeCubeFace;
}
getActiveMipmapLevel() {
return this._activeMipmapLevel;
}
async setAnimationLoop( callback ) {
if ( this._initialized === false ) await this.init();
this._animation.setAnimationLoop( callback );
}
async getArrayBufferAsync( attribute ) {
return await this.backend.getArrayBufferAsync( attribute );
}
getContext() {
return this.backend.getContext();
}
getPixelRatio() {
return this._pixelRatio;
}
getDrawingBufferSize( target ) {
return target.set( this._width * this._pixelRatio, this._height * this._pixelRatio ).floor();
}
getSize( target ) {
return target.set( this._width, this._height );
}
setPixelRatio( value = 1 ) {
this._pixelRatio = value;
this.setSize( this._width, this._height, false );
}
setDrawingBufferSize( width, height, pixelRatio ) {
this._width = width;
this._height = height;
this._pixelRatio = pixelRatio;
this.domElement.width = Math.floor( width * pixelRatio );
this.domElement.height = Math.floor( height * pixelRatio );
this.setViewport( 0, 0, width, height );
if ( this._initialized ) this.backend.updateSize();
}
setSize( width, height, updateStyle = true ) {
this._width = width;
this._height = height;
this.domElement.width = Math.floor( width * this._pixelRatio );
this.domElement.height = Math.floor( height * this._pixelRatio );
if ( updateStyle === true ) {
this.domElement.style.width = width + 'px';
this.domElement.style.height = height + 'px';
}
this.setViewport( 0, 0, width, height );
if ( this._initialized ) this.backend.updateSize();
}
setOpaqueSort( method ) {
this._opaqueSort = method;
}
setTransparentSort( method ) {
this._transparentSort = method;
}
getScissor( target ) {
const scissor = this._scissor;
target.x = scissor.x;
target.y = scissor.y;
target.width = scissor.width;
target.height = scissor.height;
return target;
}
setScissor( x, y, width, height ) {
const scissor = this._scissor;
if ( x.isVector4 ) {
scissor.copy( x );
} else {
scissor.set( x, y, width, height );
}
}
getScissorTest() {
return this._scissorTest;
}
setScissorTest( boolean ) {
this._scissorTest = boolean;
this.backend.setScissorTest( boolean );
}
getViewport( target ) {
return target.copy( this._viewport );
}
setViewport( x, y, width, height, minDepth = 0, maxDepth = 1 ) {
const viewport = this._viewport;
if ( x.isVector4 ) {
viewport.copy( x );
} else {
viewport.set( x, y, width, height );
}
viewport.minDepth = minDepth;
viewport.maxDepth = maxDepth;
}
getClearColor( target ) {
return target.copy( this._clearColor );
}
setClearColor( color, alpha = 1 ) {
this._clearColor.set( color );
this._clearColor.a = alpha;
}
getClearAlpha() {
return this._clearColor.a;
}
setClearAlpha( alpha ) {
this._clearColor.a = alpha;
}
getClearDepth() {
return this._clearDepth;
}
setClearDepth( depth ) {
this._clearDepth = depth;
}
getClearStencil() {
return this._clearStencil;
}
setClearStencil( stencil ) {
this._clearStencil = stencil;
}
isOccluded( object ) {
const renderContext = this._currentRenderContext;
return renderContext && this.backend.isOccluded( renderContext, object );
}
clear( color = true, depth = true, stencil = true ) {
if ( this._initialized === false ) {
console.warn( 'THREE.Renderer: .clear() called before the backend is initialized. Try using .clearAsync() instead.' );
return this.clearAsync( color, depth, stencil );
}
const renderTarget = this._renderTarget || this._getFrameBufferTarget();
let renderTargetData = null;
if ( renderTarget !== null ) {
this._textures.updateRenderTarget( renderTarget );
renderTargetData = this._textures.get( renderTarget );
}
this.backend.clear( color, depth, stencil, renderTargetData );
if ( renderTarget !== null && this._renderTarget === null ) {
// If a color space transform or tone mapping is required,
// the clear operation clears the intermediate renderTarget texture, but does not update the screen canvas.
const quad = this._quad;
if ( this._nodes.hasOutputChange( renderTarget.texture ) ) {
quad.material.fragmentNode = this._nodes.getOutputNode( renderTarget.texture );
quad.material.needsUpdate = true;
}
this._renderScene( quad, quad.camera, false );
}
}
clearColor() {
return this.clear( true, false, false );
}
clearDepth() {
return this.clear( false, true, false );
}
clearStencil() {
return this.clear( false, false, true );
}
async clearAsync( color = true, depth = true, stencil = true ) {
if ( this._initialized === false ) await this.init();
this.clear( color, depth, stencil );
}
clearColorAsync() {
return this.clearAsync( true, false, false );
}
clearDepthAsync() {
return this.clearAsync( false, true, false );
}
clearStencilAsync() {
return this.clearAsync( false, false, true );
}
get currentColorSpace() {
const renderTarget = this._renderTarget;
if ( renderTarget !== null ) {
const texture = renderTarget.texture;
return ( Array.isArray( texture ) ? texture[ 0 ] : texture ).colorSpace;
}
return this.outputColorSpace;
}
dispose() {
this.info.dispose();
this._animation.dispose();
this._objects.dispose();
this._pipelines.dispose();
this._nodes.dispose();
this._bindings.dispose();
this._renderLists.dispose();
this._renderContexts.dispose();
this._textures.dispose();
this.setRenderTarget( null );
this.setAnimationLoop( null );
}
setRenderTarget( renderTarget, activeCubeFace = 0, activeMipmapLevel = 0 ) {
this._renderTarget = renderTarget;
this._activeCubeFace = activeCubeFace;
this._activeMipmapLevel = activeMipmapLevel;
}
getRenderTarget() {
return this._renderTarget;
}
setRenderObjectFunction( renderObjectFunction ) {
this._renderObjectFunction = renderObjectFunction;
}
getRenderObjectFunction() {
return this._renderObjectFunction;
}
async computeAsync( computeNodes ) {
if ( this._initialized === false ) await this.init();
const nodeFrame = this._nodes.nodeFrame;
const previousRenderId = nodeFrame.renderId;
//
this.info.calls ++;
this.info.compute.calls ++;
this.info.compute.frameCalls ++;
nodeFrame.renderId = this.info.calls;
//
const backend = this.backend;
const pipelines = this._pipelines;
const bindings = this._bindings;
const nodes = this._nodes;
const computeList = Array.isArray( computeNodes ) ? computeNodes : [ computeNodes ];
if ( computeList[ 0 ] === undefined || computeList[ 0 ].isComputeNode !== true ) {
throw new Error( 'THREE.Renderer: .compute() expects a ComputeNode.' );
}
backend.beginCompute( computeNodes );
for ( const computeNode of computeList ) {
// onInit
if ( pipelines.has( computeNode ) === false ) {
const dispose = () => {
computeNode.removeEventListener( 'dispose', dispose );
pipelines.delete( computeNode );
bindings.delete( computeNode );
nodes.delete( computeNode );
};
computeNode.addEventListener( 'dispose', dispose );
//
computeNode.onInit( { renderer: this } );
}
nodes.updateForCompute( computeNode );
bindings.updateForCompute( computeNode );
const computeBindings = bindings.getForCompute( computeNode );
const computePipeline = pipelines.getForCompute( computeNode, computeBindings );
backend.compute( computeNodes, computeNode, computeBindings, computePipeline );
}
backend.finishCompute( computeNodes );
await this.backend.resolveTimestampAsync( computeNodes, 'compute' );
//
nodeFrame.renderId = previousRenderId;
}
async hasFeatureAsync( name ) {
if ( this._initialized === false ) await this.init();
return this.backend.hasFeature( name );
}
hasFeature( name ) {
if ( this._initialized === false ) {
console.warn( 'THREE.Renderer: .hasFeature() called before the backend is initialized. Try using .hasFeatureAsync() instead.' );
return false;
}
return this.backend.hasFeature( name );
}
copyFramebufferToTexture( framebufferTexture ) {
const renderContext = this._currentRenderContext;
this._textures.updateTexture( framebufferTexture );
this.backend.copyFramebufferToTexture( framebufferTexture, renderContext );
}
copyTextureToTexture( srcTexture, dstTexture, srcRegion = null, dstPosition = null, level = 0 ) {
this._textures.updateTexture( srcTexture );
this._textures.updateTexture( dstTexture );
this.backend.copyTextureToTexture( srcTexture, dstTexture, srcRegion, dstPosition, level );
}
readRenderTargetPixelsAsync( renderTarget, x, y, width, height, index = 0 ) {
return this.backend.copyTextureToBuffer( renderTarget.textures[ index ], x, y, width, height );
}
_projectObject( object, camera, groupOrder, renderList ) {
if ( object.visible === false ) return;
const visible = object.layers.test( camera.layers );
if ( visible ) {
if ( object.isGroup ) {
groupOrder = object.renderOrder;
} else if ( object.isLOD ) {
if ( object.autoUpdate === true ) object.update( camera );
} else if ( object.isLight ) {
renderList.pushLight( object );
} else if ( object.isSprite ) {
if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) {
if ( this.sortObjects === true ) {
_vector3.setFromMatrixPosition( object.matrixWorld ).applyMatrix4( _projScreenMatrix );
}
const geometry = object.geometry;
const material = object.material;
if ( material.visible ) {
renderList.push( object, geometry, material, groupOrder, _vector3.z, null );
}
}
} else if ( object.isLineLoop ) {
console.error( 'THREE.Renderer: Objects of type THREE.LineLoop are not supported. Please use THREE.Line or THREE.LineSegments.' );
} else if ( object.isMesh || object.isLine || object.isPoints ) {
if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) {
const geometry = object.geometry;
const material = object.material;
if ( this.sortObjects === true ) {
if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();
_vector3
.copy( geometry.boundingSphere.center )
.applyMatrix4( object.matrixWorld )
.applyMatrix4( _projScreenMatrix );
}
if ( Array.isArray( material ) ) {
const groups = geometry.groups;
for ( let i = 0, l = groups.length; i < l; i ++ ) {
const group = groups[ i ];
const groupMaterial = material[ group.materialIndex ];
if ( groupMaterial && groupMaterial.visible ) {
renderList.push( object, geometry, groupMaterial, groupOrder, _vector3.z, group );
}
}
} else if ( material.visible ) {
renderList.push( object, geometry, material, groupOrder, _vector3.z, null );
}
}
}
}
if ( object.static === true ) {
const baseRenderList = renderList;
// replace render list
renderList = this._renderLists.get( object, camera );
renderList.begin();
baseRenderList.pushBundle( {
object,
camera,
renderList,
} );
renderList.finish();
}
const children = object.children;
for ( let i = 0, l = children.length; i < l; i ++ ) {
this._projectObject( children[ i ], camera, groupOrder, renderList );
}
}
_renderBundles( bundles, sceneRef, lightsNode ) {
for ( const bundle of bundles ) {
this._renderBundle( bundle, sceneRef, lightsNode );
}
}
_renderObjects( renderList, camera, scene, lightsNode ) {
// process renderable objects
for ( let i = 0, il = renderList.length; i < il; i ++ ) {
const renderItem = renderList[ i ];
// @TODO: Add support for multiple materials per object. This will require to extract
// the material from the renderItem object and pass it with its group data to renderObject().
const { object, geometry, material, group } = renderItem;
if ( camera.isArrayCamera ) {
const cameras = camera.cameras;
for ( let j = 0, jl = cameras.length; j < jl; j ++ ) {
const camera2 = cameras[ j ];
if ( object.layers.test( camera2.layers ) ) {
const vp = camera2.viewport;
const minDepth = ( vp.minDepth === undefined ) ? 0 : vp.minDepth;
const maxDepth = ( vp.maxDepth === undefined ) ? 1 : vp.maxDepth;
const viewportValue = this._currentRenderContext.viewportValue;
viewportValue.copy( vp ).multiplyScalar( this._pixelRatio ).floor();
viewportValue.minDepth = minDepth;
viewportValue.maxDepth = maxDepth;
this.backend.updateViewport( this._currentRenderContext );
this._currentRenderObjectFunction( object, scene, camera2, geometry, material, group, lightsNode );
}
}
} else {
this._currentRenderObjectFunction( object, scene, camera, geometry, material, group, lightsNode );
}
}
}
renderObject( object, scene, camera, geometry, material, group, lightsNode ) {
let overridePositionNode;
let overrideFragmentNode;
let overrideDepthNode;
//
object.onBeforeRender( this, scene, camera, geometry, material, group );
//
if ( scene.overrideMaterial !== null ) {
const overrideMaterial = scene.overrideMaterial;
if ( material.positionNode && material.positionNode.isNode ) {
overridePositionNode = overrideMaterial.positionNode;
overrideMaterial.positionNode = material.positionNode;
}
if ( overrideMaterial.isShadowNodeMaterial ) {
overrideMaterial.side = material.shadowSide === null ? material.side : material.shadowSide;
if ( material.depthNode && material.depthNode.isNode ) {
overrideDepthNode = overrideMaterial.depthNode;
overrideMaterial.depthNode = material.depthNode;
}
if ( material.shadowNode && material.shadowNode.isNode ) {
overrideFragmentNode = overrideMaterial.fragmentNode;
overrideMaterial.fragmentNode = material.shadowNode;
}
if ( this.localClippingEnabled ) {
if ( material.clipShadows ) {
if ( overrideMaterial.clippingPlanes !== material.clippingPlanes ) {
overrideMaterial.clippingPlanes = material.clippingPlanes;
overrideMaterial.needsUpdate = true;
}
if ( overrideMaterial.clipIntersection !== material.clipIntersection ) {
overrideMaterial.clipIntersection = material.clipIntersection;
}
} else if ( Array.isArray( overrideMaterial.clippingPlanes ) ) {
overrideMaterial.clippingPlanes = null;
overrideMaterial.needsUpdate = true;
}
}
}
material = overrideMaterial;
}
//
if ( material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false ) {
material.side = BackSide;
this._handleObjectFunction( object, material, scene, camera, lightsNode, group, 'backSide' ); // create backSide pass id
material.side = FrontSide;
this._handleObjectFunction( object, material, scene, camera, lightsNode, group ); // use default pass id
material.side = DoubleSide;
} else {
this._handleObjectFunction( object, material, scene, camera, lightsNode, group );
}
//
if ( overridePositionNode !== undefined ) {
scene.overrideMaterial.positionNode = overridePositionNode;
}
if ( overrideDepthNode !== undefined ) {
scene.overrideMaterial.depthNode = overrideDepthNode;
}
if ( overrideFragmentNode !== undefined ) {
scene.overrideMaterial.fragmentNode = overrideFragmentNode;
}
//
object.onAfterRender( this, scene, camera, geometry, material, group );
}
_renderObjectDirect( object, material, scene, camera, lightsNode, group, passId ) {
const renderObject = this._objects.get( object, material, scene, camera, lightsNode, this._currentRenderContext, passId );
renderObject.drawRange = group || object.geometry.drawRange;
//
this._nodes.updateBefore( renderObject );
//
object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld );
object.normalMatrix.getNormalMatrix( object.modelViewMatrix );
//
this._nodes.updateForRender( renderObject );
this._geometries.updateForRender( renderObject );
this._bindings.updateForRender( renderObject );
this._pipelines.updateForRender( renderObject );
//
if ( this._currentRenderBundle !== null && this._currentRenderBundle.needsUpdate === true ) {
const renderObjectData = this.backend.get( renderObject );
renderObjectData.bundleEncoder = undefined;
renderObjectData.lastPipelineGPU = undefined;
}
this.backend.draw( renderObject, this.info );
if ( this._currentRenderBundle !== null ) {
const renderContextData = this.backend.get( this._currentRenderContext );
renderContextData.renderObjects.push( renderObject );
}
this._nodes.updateAfter( renderObject );
}
_createObjectPipeline( object, material, scene, camera, lightsNode, passId ) {
const renderObject = this._objects.get( object, material, scene, camera, lightsNode, this._currentRenderContext, passId );
//
this._nodes.updateBefore( renderObject );
//
this._nodes.updateForRender( renderObject );
this._geometries.updateForRender( renderObject );
this._bindings.updateForRender( renderObject );
this._pipelines.getForRender( renderObject, this._compilationPromises );
this._nodes.updateAfter( renderObject );
}
get compute() {
return this.computeAsync;
}
get compile() {
return this.compileAsync;
}
}
class Binding {
constructor( name = '' ) {
this.name = name;
this.visibility = 0;
}
setVisibility( visibility ) {
this.visibility |= visibility;
}
clone() {
return Object.assign( new this.constructor(), this );
}
}
function getFloatLength( floatLength ) {
// ensure chunk size alignment (STD140 layout)
return floatLength + ( ( GPU_CHUNK_BYTES - ( floatLength % GPU_CHUNK_BYTES ) ) % GPU_CHUNK_BYTES );
}
class Buffer extends Binding {
constructor( name, buffer = null ) {
super( name );
this.isBuffer = true;
this.bytesPerElement = Float32Array.BYTES_PER_ELEMENT;
this._buffer = buffer;
}
get byteLength() {
return getFloatLength( this._buffer.byteLength );
}
get buffer() {
return this._buffer;
}
update() {
return true;
}
}
class UniformBuffer extends Buffer {
constructor( name, buffer = null ) {
super( name, buffer );
this.isUniformBuffer = true;
}
}
let _id$4 = 0;
class NodeUniformBuffer extends UniformBuffer {
constructor( nodeUniform, groupNode ) {
super( 'UniformBuffer_' + _id$4 ++, nodeUniform ? nodeUniform.value : null );
this.nodeUniform = nodeUniform;
this.groupNode = groupNode;
}
get buffer() {
return this.nodeUniform.value;
}
}
class UniformsGroup extends UniformBuffer {
constructor( name ) {
super( name );
this.isUniformsGroup = true;
this._values = null;
// the order of uniforms in this array must match the order of uniforms in the shader
this.uniforms = [];
}
addUniform( uniform ) {
this.uniforms.push( uniform );
return this;
}
removeUniform( uniform ) {
const index = this.uniforms.indexOf( uniform );
if ( index !== - 1 ) {
this.uniforms.splice( index, 1 );
}
return this;
}
get values() {
if ( this._values === null ) {
this._values = Array.from( this.buffer );
}
return this._values;
}
get buffer() {
let buffer = this._buffer;
if ( buffer === null ) {
const byteLength = this.byteLength;
buffer = new Float32Array( new ArrayBuffer( byteLength ) );
this._buffer = buffer;
}
return buffer;
}
get byteLength() {
let offset = 0; // global buffer offset in bytes
for ( let i = 0, l = this.uniforms.length; i < l; i ++ ) {
const uniform = this.uniforms[ i ];
const { boundary, itemSize } = uniform;
// offset within a single chunk in bytes
const chunkOffset = offset % GPU_CHUNK_BYTES;
const remainingSizeInChunk = GPU_CHUNK_BYTES - chunkOffset;
// conformance tests
if ( chunkOffset !== 0 && ( remainingSizeInChunk - boundary ) < 0 ) {
// check for chunk overflow
offset += ( GPU_CHUNK_BYTES - chunkOffset );
} else if ( chunkOffset % boundary !== 0 ) {
// check for correct alignment
offset += ( chunkOffset % boundary );
}
uniform.offset = ( offset / this.bytesPerElement );
offset += ( itemSize * this.bytesPerElement );
}
return Math.ceil( offset / GPU_CHUNK_BYTES ) * GPU_CHUNK_BYTES;
}
update() {
let updated = false;
for ( const uniform of this.uniforms ) {
if ( this.updateByType( uniform ) === true ) {
updated = true;
}
}
return updated;
}
updateByType( uniform ) {
if ( uniform.isNumberUniform ) return this.updateNumber( uniform );
if ( uniform.isVector2Uniform ) return this.updateVector2( uniform );
if ( uniform.isVector3Uniform ) return this.updateVector3( uniform );
if ( uniform.isVector4Uniform ) return this.updateVector4( uniform );
if ( uniform.isColorUniform ) return this.updateColor( uniform );
if ( uniform.isMatrix3Uniform ) return this.updateMatrix3( uniform );
if ( uniform.isMatrix4Uniform ) return this.updateMatrix4( uniform );
console.error( 'THREE.WebGPUUniformsGroup: Unsupported uniform type.', uniform );
}
updateNumber( uniform ) {
let updated = false;
const a = this.values;
const v = uniform.getValue();
const offset = uniform.offset;
if ( a[ offset ] !== v ) {
const b = this.buffer;
b[ offset ] = a[ offset ] = v;
updated = true;
}
return updated;
}
updateVector2( uniform ) {
let updated = false;
const a = this.values;
const v = uniform.getValue();
const offset = uniform.offset;
if ( a[ offset + 0 ] !== v.x || a[ offset + 1 ] !== v.y ) {
const b = this.buffer;
b[ offset + 0 ] = a[ offset + 0 ] = v.x;
b[ offset + 1 ] = a[ offset + 1 ] = v.y;
updated = true;
}
return updated;
}
updateVector3( uniform ) {
let updated = false;
const a = this.values;
const v = uniform.getValue();
const offset = uniform.offset;
if ( a[ offset + 0 ] !== v.x || a[ offset + 1 ] !== v.y || a[ offset + 2 ] !== v.z ) {
const b = this.buffer;
b[ offset + 0 ] = a[ offset + 0 ] = v.x;
b[ offset + 1 ] = a[ offset + 1 ] = v.y;
b[ offset + 2 ] = a[ offset + 2 ] = v.z;
updated = true;
}
return updated;
}
updateVector4( uniform ) {
let updated = false;
const a = this.values;
const v = uniform.getValue();
const offset = uniform.offset;
if ( a[ offset + 0 ] !== v.x || a[ offset + 1 ] !== v.y || a[ offset + 2 ] !== v.z || a[ offset + 4 ] !== v.w ) {
const b = this.buffer;
b[ offset + 0 ] = a[ offset + 0 ] = v.x;
b[ offset + 1 ] = a[ offset + 1 ] = v.y;
b[ offset + 2 ] = a[ offset + 2 ] = v.z;
b[ offset + 3 ] = a[ offset + 3 ] = v.w;
updated = true;
}
return updated;
}
updateColor( uniform ) {
let updated = false;
const a = this.values;
const c = uniform.getValue();
const offset = uniform.offset;
if ( a[ offset + 0 ] !== c.r || a[ offset + 1 ] !== c.g || a[ offset + 2 ] !== c.b ) {
const b = this.buffer;
b[ offset + 0 ] = a[ offset + 0 ] = c.r;
b[ offset + 1 ] = a[ offset + 1 ] = c.g;
b[ offset + 2 ] = a[ offset + 2 ] = c.b;
updated = true;
}
return updated;
}
updateMatrix3( uniform ) {
let updated = false;
const a = this.values;
const e = uniform.getValue().elements;
const offset = uniform.offset;
if ( a[ offset + 0 ] !== e[ 0 ] || a[ offset + 1 ] !== e[ 1 ] || a[ offset + 2 ] !== e[ 2 ] ||
a[ offset + 4 ] !== e[ 3 ] || a[ offset + 5 ] !== e[ 4 ] || a[ offset + 6 ] !== e[ 5 ] ||
a[ offset + 8 ] !== e[ 6 ] || a[ offset + 9 ] !== e[ 7 ] || a[ offset + 10 ] !== e[ 8 ] ) {
const b = this.buffer;
b[ offset + 0 ] = a[ offset + 0 ] = e[ 0 ];
b[ offset + 1 ] = a[ offset + 1 ] = e[ 1 ];
b[ offset + 2 ] = a[ offset + 2 ] = e[ 2 ];
b[ offset + 4 ] = a[ offset + 4 ] = e[ 3 ];
b[ offset + 5 ] = a[ offset + 5 ] = e[ 4 ];
b[ offset + 6 ] = a[ offset + 6 ] = e[ 5 ];
b[ offset + 8 ] = a[ offset + 8 ] = e[ 6 ];
b[ offset + 9 ] = a[ offset + 9 ] = e[ 7 ];
b[ offset + 10 ] = a[ offset + 10 ] = e[ 8 ];
updated = true;
}
return updated;
}
updateMatrix4( uniform ) {
let updated = false;
const a = this.values;
const e = uniform.getValue().elements;
const offset = uniform.offset;
if ( arraysEqual( a, e, offset ) === false ) {
const b = this.buffer;
b.set( e, offset );
setArray( a, e, offset );
updated = true;
}
return updated;
}
}
function setArray( a, b, offset ) {
for ( let i = 0, l = b.length; i < l; i ++ ) {
a[ offset + i ] = b[ i ];
}
}
function arraysEqual( a, b, offset ) {
for ( let i = 0, l = b.length; i < l; i ++ ) {
if ( a[ offset + i ] !== b[ i ] ) return false;
}
return true;
}
let _id$3 = 0;
class NodeUniformsGroup extends UniformsGroup {
constructor( name, groupNode ) {
super( name );
this.id = _id$3 ++;
this.groupNode = groupNode;
this.isNodeUniformsGroup = true;
}
getNodes() {
const nodes = [];
for ( const uniform of this.uniforms ) {
const node = uniform.nodeUniform.node;
if ( ! node ) throw new Error( 'NodeUniformsGroup: Uniform has no node.' );
nodes.push( node );
}
return nodes;
}
}
let _id$2 = 0;
class SampledTexture extends Binding {
constructor( name, texture ) {
super( name );
this.id = _id$2 ++;
this.texture = texture;
this.version = texture ? texture.version : 0;
this.store = false;
this.isSampledTexture = true;
}
get needsBindingsUpdate() {
const { texture, version } = this;
return texture.isVideoTexture ? true : version !== texture.version; // @TODO: version === 0 && texture.version > 0 ( add it just to External Textures like PNG,JPG )
}
update() {
const { texture, version } = this;
if ( version !== texture.version ) {
this.version = texture.version;
return true;
}
return false;
}
}
class NodeSampledTexture extends SampledTexture {
constructor( name, textureNode, groupNode, access = null ) {
super( name, textureNode ? textureNode.value : null );
this.textureNode = textureNode;
this.groupNode = groupNode;
this.access = access;
}
get needsBindingsUpdate() {
return this.textureNode.value !== this.texture || super.needsBindingsUpdate;
}
update() {
const { textureNode } = this;
if ( this.texture !== textureNode.value ) {
this.texture = textureNode.value;
return true;
}
return super.update();
}
}
class NodeSampledCubeTexture extends NodeSampledTexture {
constructor( name, textureNode, groupNode, access ) {
super( name, textureNode, groupNode, access );
this.isSampledCubeTexture = true;
}
}
class NodeSampledTexture3D extends NodeSampledTexture {
constructor( name, textureNode, groupNode, access ) {
super( name, textureNode, groupNode, access );
this.isSampledTexture3D = true;
}
}
const glslMethods = {
[ MathNode.ATAN2 ]: 'atan',
textureDimensions: 'textureSize',
equals: 'equal'
};
const precisionLib = {
low: 'lowp',
medium: 'mediump',
high: 'highp'
};
const supports$1 = {
swizzleAssign: true,
storageBuffer: false
};
const defaultPrecisions = `
precision highp float;
precision highp int;
precision highp sampler2D;
precision highp sampler3D;
precision highp samplerCube;
precision highp sampler2DArray;
precision highp usampler2D;
precision highp usampler3D;
precision highp usamplerCube;
precision highp usampler2DArray;
precision highp isampler2D;
precision highp isampler3D;
precision highp isamplerCube;
precision highp isampler2DArray;
precision lowp sampler2DShadow;
`;
class GLSLNodeBuilder extends NodeBuilder {
constructor( object, renderer ) {
super( object, renderer, new GLSLNodeParser() );
this.uniformGroups = {};
this.transforms = [];
this.instanceBindGroups = false;
}
getMethod( method ) {
return glslMethods[ method ] || method;
}
getOutputStructName() {
return '';
}
buildFunctionCode( shaderNode ) {
const layout = shaderNode.layout;
const flowData = this.flowShaderNode( shaderNode );
const parameters = [];
for ( const input of layout.inputs ) {
parameters.push( this.getType( input.type ) + ' ' + input.name );
}
//
const code = `${ this.getType( layout.type ) } ${ layout.name }( ${ parameters.join( ', ' ) } ) {
${ flowData.vars }
${ flowData.code }
return ${ flowData.result };
}`;
//
return code;
}
setupPBO( storageBufferNode ) {
const attribute = storageBufferNode.value;
if ( attribute.pbo === undefined ) {
const originalArray = attribute.array;
const numElements = attribute.count * attribute.itemSize;
const { itemSize } = attribute;
const isInteger = attribute.array.constructor.name.toLowerCase().includes( 'int' );
let format = isInteger ? RedIntegerFormat : RedFormat;
if ( itemSize === 2 ) {
format = isInteger ? RGIntegerFormat : RGFormat;
} else if ( itemSize === 3 ) {
format = isInteger ? RGBIntegerFormat : RGBFormat;
} else if ( itemSize === 4 ) {
format = isInteger ? RGBAIntegerFormat : RGBAFormat;
}
const typeMap = {
Float32Array: FloatType,
Uint8Array: UnsignedByteType,
Uint16Array: UnsignedShortType,
Uint32Array: UnsignedIntType,
Int8Array: ByteType,
Int16Array: ShortType,
Int32Array: IntType,
Uint8ClampedArray: UnsignedByteType,
};
const width = Math.pow( 2, Math.ceil( Math.log2( Math.sqrt( numElements / itemSize ) ) ) );
let height = Math.ceil( ( numElements / itemSize ) / width );
if ( width * height * itemSize < numElements ) height ++; // Ensure enough space
const newSize = width * height * itemSize;
const newArray = new originalArray.constructor( newSize );
newArray.set( originalArray, 0 );
attribute.array = newArray;
const pboTexture = new DataTexture( attribute.array, width, height, format, typeMap[ attribute.array.constructor.name ] || FloatType );
pboTexture.needsUpdate = true;
pboTexture.isPBOTexture = true;
const pbo = new TextureNode( pboTexture, null, null );
pbo.setPrecision( 'high' );
attribute.pboNode = pbo;
attribute.pbo = pbo.value;
this.getUniformFromNode( attribute.pboNode, 'texture', this.shaderStage, this.context.label );
}
}
getPropertyName( node, shaderStage = this.shaderStage ) {
if ( node.isNodeUniform && node.node.isTextureNode !== true && node.node.isBufferNode !== true ) {
return shaderStage.charAt( 0 ) + '_' + node.name;
}
return super.getPropertyName( node, shaderStage );
}
generatePBO( storageArrayElementNode ) {
const { node, indexNode } = storageArrayElementNode;
const attribute = node.value;
if ( this.renderer.backend.has( attribute ) ) {
const attributeData = this.renderer.backend.get( attribute );
attributeData.pbo = attribute.pbo;
}
const nodeUniform = this.getUniformFromNode( attribute.pboNode, 'texture', this.shaderStage, this.context.label );
const textureName = this.getPropertyName( nodeUniform );
indexNode.increaseUsage( this ); // force cache generate to be used as index in x,y
const indexSnippet = indexNode.build( this, 'uint' );
const elementNodeData = this.getDataFromNode( storageArrayElementNode );
let propertyName = elementNodeData.propertyName;
if ( propertyName === undefined ) {
// property element
const nodeVar = this.getVarFromNode( storageArrayElementNode );
propertyName = this.getPropertyName( nodeVar );
// property size
const bufferNodeData = this.getDataFromNode( node );
let propertySizeName = bufferNodeData.propertySizeName;
if ( propertySizeName === undefined ) {
propertySizeName = propertyName + 'Size';
this.getVarFromNode( node, propertySizeName, 'uint' );
this.addLineFlowCode( `${ propertySizeName } = uint( textureSize( ${ textureName }, 0 ).x )` );
bufferNodeData.propertySizeName = propertySizeName;
}
//
const { itemSize } = attribute;
const channel = '.' + vectorComponents.join( '' ).slice( 0, itemSize );
const uvSnippet = `ivec2(${indexSnippet} % ${ propertySizeName }, ${indexSnippet} / ${ propertySizeName })`;
const snippet = this.generateTextureLoad( null, textureName, uvSnippet, null, '0' );
//
let prefix = 'vec4';
if ( attribute.pbo.type === UnsignedIntType ) {
prefix = 'uvec4';
} else if ( attribute.pbo.type === IntType ) {
prefix = 'ivec4';
}
this.addLineFlowCode( `${ propertyName } = ${prefix}(${ snippet })${channel}` );
elementNodeData.propertyName = propertyName;
}
return propertyName;
}
generateTextureLoad( texture, textureProperty, uvIndexSnippet, depthSnippet, levelSnippet = '0' ) {
if ( depthSnippet ) {
return `texelFetch( ${ textureProperty }, ivec3( ${ uvIndexSnippet }, ${ depthSnippet } ), ${ levelSnippet } )`;
} else {
return `texelFetch( ${ textureProperty }, ${ uvIndexSnippet }, ${ levelSnippet } )`;
}
}
generateTexture( texture, textureProperty, uvSnippet, depthSnippet ) {
if ( texture.isDepthTexture ) {
return `texture( ${ textureProperty }, ${ uvSnippet } ).x`;
} else {
if ( depthSnippet ) uvSnippet = `vec3( ${ uvSnippet }, ${ depthSnippet } )`;
return `texture( ${ textureProperty }, ${ uvSnippet } )`;
}
}
generateTextureLevel( texture, textureProperty, uvSnippet, levelSnippet ) {
return `textureLod( ${ textureProperty }, ${ uvSnippet }, ${ levelSnippet } )`;
}
generateTextureBias( texture, textureProperty, uvSnippet, biasSnippet ) {
return `texture( ${ textureProperty }, ${ uvSnippet }, ${ biasSnippet } )`;
}
generateTextureGrad( texture, textureProperty, uvSnippet, gradSnippet ) {
return `textureGrad( ${ textureProperty }, ${ uvSnippet }, ${ gradSnippet[ 0 ] }, ${ gradSnippet[ 1 ] } )`;
}
generateTextureCompare( texture, textureProperty, uvSnippet, compareSnippet, depthSnippet, shaderStage = this.shaderStage ) {
if ( shaderStage === 'fragment' ) {
return `texture( ${ textureProperty }, vec3( ${ uvSnippet }, ${ compareSnippet } ) )`;
} else {
console.error( `WebGPURenderer: THREE.DepthTexture.compareFunction() does not support ${ shaderStage } shader.` );
}
}
getVars( shaderStage ) {
const snippets = [];
const vars = this.vars[ shaderStage ];
if ( vars !== undefined ) {
for ( const variable of vars ) {
snippets.push( `${ this.getVar( variable.type, variable.name ) };` );
}
}
return snippets.join( '\n\t' );
}
getUniforms( shaderStage ) {
const uniforms = this.uniforms[ shaderStage ];
const bindingSnippets = [];
const uniformGroups = {};
for ( const uniform of uniforms ) {
let snippet = null;
let group = false;
if ( uniform.type === 'texture' ) {
const texture = uniform.node.value;
let typePrefix = '';
if ( texture.isDataTexture === true ) {
if ( texture.type === UnsignedIntType ) {
typePrefix = 'u';
} else if ( texture.type === IntType ) {
typePrefix = 'i';
}
}
if ( texture.compareFunction ) {
snippet = `sampler2DShadow ${ uniform.name };`;
} else if ( texture.isDataArrayTexture === true ) {
snippet = `${typePrefix}sampler2DArray ${ uniform.name };`;
} else {
snippet = `${typePrefix}sampler2D ${ uniform.name };`;
}
} else if ( uniform.type === 'cubeTexture' ) {
snippet = `samplerCube ${ uniform.name };`;
} else if ( uniform.type === 'texture3D' ) {
snippet = `sampler3D ${ uniform.name };`;
} else if ( uniform.type === 'buffer' ) {
const bufferNode = uniform.node;
const bufferType = this.getType( bufferNode.bufferType );
const bufferCount = bufferNode.bufferCount;
const bufferCountSnippet = bufferCount > 0 ? bufferCount : '';
snippet = `${bufferNode.name} {\n\t${ bufferType } ${ uniform.name }[${ bufferCountSnippet }];\n};\n`;
} else {
const vectorType = this.getVectorType( uniform.type );
snippet = `${ vectorType } ${ this.getPropertyName( uniform, shaderStage ) };`;
group = true;
}
const precision = uniform.node.precision;
if ( precision !== null ) {
snippet = precisionLib[ precision ] + ' ' + snippet;
}
if ( group ) {
snippet = '\t' + snippet;
const groupName = uniform.groupNode.name;
const groupSnippets = uniformGroups[ groupName ] || ( uniformGroups[ groupName ] = [] );
groupSnippets.push( snippet );
} else {
snippet = 'uniform ' + snippet;
bindingSnippets.push( snippet );
}
}
let output = '';
for ( const name in uniformGroups ) {
const groupSnippets = uniformGroups[ name ];
output += this._getGLSLUniformStruct( shaderStage + '_' + name, groupSnippets.join( '\n' ) ) + '\n';
}
output += bindingSnippets.join( '\n' );
return output;
}
getTypeFromAttribute( attribute ) {
let nodeType = super.getTypeFromAttribute( attribute );
if ( /^[iu]/.test( nodeType ) && attribute.gpuType !== IntType ) {
let dataAttribute = attribute;
if ( attribute.isInterleavedBufferAttribute ) dataAttribute = attribute.data;
const array = dataAttribute.array;
if ( ( array instanceof Uint32Array || array instanceof Int32Array ) === false ) {
nodeType = nodeType.slice( 1 );
}
}
return nodeType;
}
getAttributes( shaderStage ) {
let snippet = '';
if ( shaderStage === 'vertex' || shaderStage === 'compute' ) {
const attributes = this.getAttributesArray();
let location = 0;
for ( const attribute of attributes ) {
snippet += `layout( location = ${ location ++ } ) in ${ attribute.type } ${ attribute.name };\n`;
}
}
return snippet;
}
getStructMembers( struct ) {
const snippets = [];
const members = struct.getMemberTypes();
for ( let i = 0; i < members.length; i ++ ) {
const member = members[ i ];
snippets.push( `layout( location = ${i} ) out ${ member} m${i};` );
}
return snippets.join( '\n' );
}
getStructs( shaderStage ) {
const snippets = [];
const structs = this.structs[ shaderStage ];
if ( structs.length === 0 ) {
return 'layout( location = 0 ) out vec4 fragColor;\n';
}
for ( let index = 0, length = structs.length; index < length; index ++ ) {
const struct = structs[ index ];
let snippet = '\n';
snippet += this.getStructMembers( struct );
snippet += '\n';
snippets.push( snippet );
}
return snippets.join( '\n\n' );
}
getVaryings( shaderStage ) {
let snippet = '';
const varyings = this.varyings;
if ( shaderStage === 'vertex' || shaderStage === 'compute' ) {
for ( const varying of varyings ) {
if ( shaderStage === 'compute' ) varying.needsInterpolation = true;
const type = varying.type;
const flat = type.includes( 'int' ) || type.includes( 'uv' ) || type.includes( 'iv' ) ? 'flat ' : '';
snippet += `${flat}${varying.needsInterpolation ? 'out' : '/*out*/'} ${type} ${varying.name};\n`;
}
} else if ( shaderStage === 'fragment' ) {
for ( const varying of varyings ) {
if ( varying.needsInterpolation ) {
const type = varying.type;
const flat = type.includes( 'int' ) || type.includes( 'uv' ) || type.includes( 'iv' ) ? 'flat ' : '';
snippet += `${flat}in ${type} ${varying.name};\n`;
}
}
}
return snippet;
}
getVertexIndex() {
return 'uint( gl_VertexID )';
}
getInstanceIndex() {
return 'uint( gl_InstanceID )';
}
getDrawIndex() {
const extensions = this.renderer.backend.extensions;
if ( extensions.has( 'WEBGL_multi_draw' ) ) {
return 'uint( gl_DrawID )';
}
return null;
}
getFrontFacing() {
return 'gl_FrontFacing';
}
getFragCoord() {
return 'gl_FragCoord';
}
getFragDepth() {
return 'gl_FragDepth';
}
getExtensions( shaderStage ) {
let extensions = '';
if ( shaderStage === 'vertex' ) {
const ext = this.renderer.backend.extensions;
const isBatchedMesh = this.object.isBatchedMesh;
if ( isBatchedMesh && ext.has( 'WEBGL_multi_draw' ) ) {
extensions += '#extension GL_ANGLE_multi_draw : require\n';
}
}
return extensions;
}
isAvailable( name ) {
let result = supports$1[ name ];
if ( result === undefined ) {
if ( name === 'float32Filterable' ) {
const extensions = this.renderer.backend.extensions;
if ( extensions.has( 'OES_texture_float_linear' ) ) {
extensions.get( 'OES_texture_float_linear' );
result = true;
} else {
result = false;
}
}
supports$1[ name ] = result;
}
return result;
}
isFlipY() {
return true;
}
registerTransform( varyingName, attributeNode ) {
this.transforms.push( { varyingName, attributeNode } );
}
getTransforms( /* shaderStage */ ) {
const transforms = this.transforms;
let snippet = '';
for ( let i = 0; i < transforms.length; i ++ ) {
const transform = transforms[ i ];
const attributeName = this.getPropertyName( transform.attributeNode );
snippet += `${ transform.varyingName } = ${ attributeName };\n\t`;
}
return snippet;
}
_getGLSLUniformStruct( name, vars ) {
return `
layout( std140 ) uniform ${name} {
${vars}
};`;
}
_getGLSLVertexCode( shaderData ) {
return `#version 300 es
// extensions
${shaderData.extensions}
// precision
${ defaultPrecisions }
// uniforms
${shaderData.uniforms}
// varyings
${shaderData.varyings}
// attributes
${shaderData.attributes}
// codes
${shaderData.codes}
void main() {
// vars
${shaderData.vars}
// transforms
${shaderData.transforms}
// flow
${shaderData.flow}
gl_PointSize = 1.0;
}
`;
}
_getGLSLFragmentCode( shaderData ) {
return `#version 300 es
${ this.getSignature() }
// precision
${ defaultPrecisions }
// uniforms
${shaderData.uniforms}
// varyings
${shaderData.varyings}
// codes
${shaderData.codes}
${shaderData.structs}
void main() {
// vars
${shaderData.vars}
// flow
${shaderData.flow}
}
`;
}
buildCode() {
const shadersData = this.material !== null ? { fragment: {}, vertex: {} } : { compute: {} };
for ( const shaderStage in shadersData ) {
let flow = '// code\n\n';
flow += this.flowCode[ shaderStage ];
const flowNodes = this.flowNodes[ shaderStage ];
const mainNode = flowNodes[ flowNodes.length - 1 ];
for ( const node of flowNodes ) {
const flowSlotData = this.getFlowData( node/*, shaderStage*/ );
const slotName = node.name;
if ( slotName ) {
if ( flow.length > 0 ) flow += '\n';
flow += `\t// flow -> ${ slotName }\n\t`;
}
flow += `${ flowSlotData.code }\n\t`;
if ( node === mainNode && shaderStage !== 'compute' ) {
flow += '// result\n\t';
if ( shaderStage === 'vertex' ) {
flow += 'gl_Position = ';
flow += `${ flowSlotData.result };`;
} else if ( shaderStage === 'fragment' ) {
if ( ! node.outputNode.isOutputStructNode ) {
flow += 'fragColor = ';
flow += `${ flowSlotData.result };`;
}
}
}
}
const stageData = shadersData[ shaderStage ];
stageData.extensions = this.getExtensions( shaderStage );
stageData.uniforms = this.getUniforms( shaderStage );
stageData.attributes = this.getAttributes( shaderStage );
stageData.varyings = this.getVaryings( shaderStage );
stageData.vars = this.getVars( shaderStage );
stageData.structs = this.getStructs( shaderStage );
stageData.codes = this.getCodes( shaderStage );
stageData.transforms = this.getTransforms( shaderStage );
stageData.flow = flow;
}
if ( this.material !== null ) {
this.vertexShader = this._getGLSLVertexCode( shadersData.vertex );
this.fragmentShader = this._getGLSLFragmentCode( shadersData.fragment );
} else {
this.computeShader = this._getGLSLVertexCode( shadersData.compute );
}
}
getUniformFromNode( node, type, shaderStage, name = null ) {
const uniformNode = super.getUniformFromNode( node, type, shaderStage, name );
const nodeData = this.getDataFromNode( node, shaderStage, this.globalCache );
let uniformGPU = nodeData.uniformGPU;
if ( uniformGPU === undefined ) {
const group = node.groupNode;
const groupName = group.name;
const bindings = this.getBindGroupArray( groupName, shaderStage );
if ( type === 'texture' ) {
uniformGPU = new NodeSampledTexture( uniformNode.name, uniformNode.node, group );
bindings.push( uniformGPU );
} else if ( type === 'cubeTexture' ) {
uniformGPU = new NodeSampledCubeTexture( uniformNode.name, uniformNode.node, group );
bindings.push( uniformGPU );
} else if ( type === 'texture3D' ) {
uniformGPU = new NodeSampledTexture3D( uniformNode.name, uniformNode.node, group );
bindings.push( uniformGPU );
} else if ( type === 'buffer' ) {
node.name = `NodeBuffer_${ node.id }`;
uniformNode.name = `buffer${ node.id }`;
const buffer = new NodeUniformBuffer( node, group );
buffer.name = node.name;
bindings.push( buffer );
uniformGPU = buffer;
} else {
const uniformsStage = this.uniformGroups[ shaderStage ] || ( this.uniformGroups[ shaderStage ] = {} );
let uniformsGroup = uniformsStage[ groupName ];
if ( uniformsGroup === undefined ) {
uniformsGroup = new NodeUniformsGroup( shaderStage + '_' + groupName, group );
//uniformsGroup.setVisibility( gpuShaderStageLib[ shaderStage ] );
uniformsStage[ groupName ] = uniformsGroup;
bindings.push( uniformsGroup );
}
uniformGPU = this.getNodeUniform( uniformNode, type );
uniformsGroup.addUniform( uniformGPU );
}
nodeData.uniformGPU = uniformGPU;
}
return uniformNode;
}
}
let vector2 = null;
let vector4 = null;
let color4 = null;
class Backend {
constructor( parameters = {} ) {
this.parameters = Object.assign( {}, parameters );
this.data = new WeakMap();
this.renderer = null;
this.domElement = null;
}
async init( renderer ) {
this.renderer = renderer;
}
// render context
begin( /*renderContext*/ ) { }
finish( /*renderContext*/ ) { }
// render object
draw( /*renderObject, info*/ ) { }
// program
createProgram( /*program*/ ) { }
destroyProgram( /*program*/ ) { }
// bindings
createBindings( /*renderObject*/ ) { }
updateBindings( /*renderObject*/ ) { }
// pipeline
createRenderPipeline( /*renderObject*/ ) { }
createComputePipeline( /*computeNode, pipeline*/ ) { }
destroyPipeline( /*pipeline*/ ) { }
// cache key
needsRenderUpdate( /*renderObject*/ ) { } // return Boolean ( fast test )
getRenderCacheKey( /*renderObject*/ ) { } // return String
// node builder
createNodeBuilder( /*renderObject*/ ) { } // return NodeBuilder (ADD IT)
// textures
createSampler( /*texture*/ ) { }
createDefaultTexture( /*texture*/ ) { }
createTexture( /*texture*/ ) { }
copyTextureToBuffer( /*texture, x, y, width, height*/ ) {}
// attributes
createAttribute( /*attribute*/ ) { }
createIndexAttribute( /*attribute*/ ) { }
updateAttribute( /*attribute*/ ) { }
destroyAttribute( /*attribute*/ ) { }
// canvas
getContext() { }
updateSize() { }
// utils
resolveTimestampAsync( /*renderContext, type*/ ) { }
hasFeatureAsync( /*name*/ ) { } // return Boolean
hasFeature( /*name*/ ) { } // return Boolean
getInstanceCount( renderObject ) {
const { object, geometry } = renderObject;
return geometry.isInstancedBufferGeometry ? geometry.instanceCount : ( object.count > 1 ? object.count : 1 );
}
getDrawingBufferSize() {
vector2 = vector2 || new Vector2();
return this.renderer.getDrawingBufferSize( vector2 );
}
getScissor() {
vector4 = vector4 || new Vector4();
return this.renderer.getScissor( vector4 );
}
setScissorTest( /*boolean*/ ) { }
getClearColor() {
const renderer = this.renderer;
color4 = color4 || new Color4();
renderer.getClearColor( color4 );
color4.getRGB( color4, this.renderer.currentColorSpace );
return color4;
}
getDomElement() {
let domElement = this.domElement;
if ( domElement === null ) {
domElement = ( this.parameters.canvas !== undefined ) ? this.parameters.canvas : createCanvasElement();
// OffscreenCanvas does not have setAttribute, see #22811
if ( 'setAttribute' in domElement ) domElement.setAttribute( 'data-engine', `three.js r${REVISION} webgpu` );
this.domElement = domElement;
}
return domElement;
}
// resource properties
set( object, value ) {
this.data.set( object, value );
}
get( object ) {
let map = this.data.get( object );
if ( map === undefined ) {
map = {};
this.data.set( object, map );
}
return map;
}
has( object ) {
return this.data.has( object );
}
delete( object ) {
this.data.delete( object );
}
}
let _id$1 = 0;
class DualAttributeData {
constructor( attributeData, dualBuffer ) {
this.buffers = [ attributeData.bufferGPU, dualBuffer ];
this.type = attributeData.type;
this.bufferType = attributeData.bufferType;
this.pbo = attributeData.pbo;
this.byteLength = attributeData.byteLength;
this.bytesPerElement = attributeData.BYTES_PER_ELEMENT;
this.version = attributeData.version;
this.isInteger = attributeData.isInteger;
this.activeBufferIndex = 0;
this.baseId = attributeData.id;
}
get id() {
return `${ this.baseId }|${ this.activeBufferIndex }`;
}
get bufferGPU() {
return this.buffers[ this.activeBufferIndex ];
}
get transformBuffer() {
return this.buffers[ this.activeBufferIndex ^ 1 ];
}
switchBuffers() {
this.activeBufferIndex ^= 1;
}
}
class WebGLAttributeUtils {
constructor( backend ) {
this.backend = backend;
}
createAttribute( attribute, bufferType ) {
const backend = this.backend;
const { gl } = backend;
const array = attribute.array;
const usage = attribute.usage || gl.STATIC_DRAW;
const bufferAttribute = attribute.isInterleavedBufferAttribute ? attribute.data : attribute;
const bufferData = backend.get( bufferAttribute );
let bufferGPU = bufferData.bufferGPU;
if ( bufferGPU === undefined ) {
bufferGPU = this._createBuffer( gl, bufferType, array, usage );
bufferData.bufferGPU = bufferGPU;
bufferData.bufferType = bufferType;
bufferData.version = bufferAttribute.version;
}
//attribute.onUploadCallback();
let type;
if ( array instanceof Float32Array ) {
type = gl.FLOAT;
} else if ( array instanceof Uint16Array ) {
if ( attribute.isFloat16BufferAttribute ) {
type = gl.HALF_FLOAT;
} else {
type = gl.UNSIGNED_SHORT;
}
} else if ( array instanceof Int16Array ) {
type = gl.SHORT;
} else if ( array instanceof Uint32Array ) {
type = gl.UNSIGNED_INT;
} else if ( array instanceof Int32Array ) {
type = gl.INT;
} else if ( array instanceof Int8Array ) {
type = gl.BYTE;
} else if ( array instanceof Uint8Array ) {
type = gl.UNSIGNED_BYTE;
} else if ( array instanceof Uint8ClampedArray ) {
type = gl.UNSIGNED_BYTE;
} else {
throw new Error( 'THREE.WebGLBackend: Unsupported buffer data format: ' + array );
}
let attributeData = {
bufferGPU,
bufferType,
type,
byteLength: array.byteLength,
bytesPerElement: array.BYTES_PER_ELEMENT,
version: attribute.version,
pbo: attribute.pbo,
isInteger: type === gl.INT || type === gl.UNSIGNED_INT || attribute.gpuType === IntType,
id: _id$1 ++
};
if ( attribute.isStorageBufferAttribute || attribute.isStorageInstancedBufferAttribute ) {
// create buffer for tranform feedback use
const bufferGPUDual = this._createBuffer( gl, bufferType, array, usage );
attributeData = new DualAttributeData( attributeData, bufferGPUDual );
}
backend.set( attribute, attributeData );
}
updateAttribute( attribute ) {
const backend = this.backend;
const { gl } = backend;
const array = attribute.array;
const bufferAttribute = attribute.isInterleavedBufferAttribute ? attribute.data : attribute;
const bufferData = backend.get( bufferAttribute );
const bufferType = bufferData.bufferType;
const updateRanges = attribute.isInterleavedBufferAttribute ? attribute.data.updateRanges : attribute.updateRanges;
gl.bindBuffer( bufferType, bufferData.bufferGPU );
if ( updateRanges.length === 0 ) {
// Not using update ranges
gl.bufferSubData( bufferType, 0, array );
} else {
for ( let i = 0, l = updateRanges.length; i < l; i ++ ) {
const range = updateRanges[ i ];
gl.bufferSubData( bufferType, range.start * array.BYTES_PER_ELEMENT,
array, range.start, range.count );
}
bufferAttribute.clearUpdateRanges();
}
gl.bindBuffer( bufferType, null );
bufferData.version = bufferAttribute.version;
}
destroyAttribute( attribute ) {
const backend = this.backend;
const { gl } = backend;
if ( attribute.isInterleavedBufferAttribute ) {
backend.delete( attribute.data );
}
const attributeData = backend.get( attribute );
gl.deleteBuffer( attributeData.bufferGPU );
backend.delete( attribute );
}
async getArrayBufferAsync( attribute ) {
const backend = this.backend;
const { gl } = backend;
const bufferAttribute = attribute.isInterleavedBufferAttribute ? attribute.data : attribute;
const { bufferGPU } = backend.get( bufferAttribute );
const array = attribute.array;
const byteLength = array.byteLength;
gl.bindBuffer( gl.COPY_READ_BUFFER, bufferGPU );
const writeBuffer = gl.createBuffer();
gl.bindBuffer( gl.COPY_WRITE_BUFFER, writeBuffer );
gl.bufferData( gl.COPY_WRITE_BUFFER, byteLength, gl.STREAM_READ );
gl.copyBufferSubData( gl.COPY_READ_BUFFER, gl.COPY_WRITE_BUFFER, 0, 0, byteLength );
await backend.utils._clientWaitAsync();
const dstBuffer = new attribute.array.constructor( array.length );
gl.getBufferSubData( gl.COPY_WRITE_BUFFER, 0, dstBuffer );
gl.deleteBuffer( writeBuffer );
return dstBuffer.buffer;
}
_createBuffer( gl, bufferType, array, usage ) {
const bufferGPU = gl.createBuffer();
gl.bindBuffer( bufferType, bufferGPU );
gl.bufferData( bufferType, array, usage );
gl.bindBuffer( bufferType, null );
return bufferGPU;
}
}
let initialized$1 = false, equationToGL, factorToGL;
class WebGLState {
constructor( backend ) {
this.backend = backend;
this.gl = this.backend.gl;
this.enabled = {};
this.currentFlipSided = null;
this.currentCullFace = null;
this.currentProgram = null;
this.currentBlendingEnabled = false;
this.currentBlending = null;
this.currentBlendSrc = null;
this.currentBlendDst = null;
this.currentBlendSrcAlpha = null;
this.currentBlendDstAlpha = null;
this.currentPremultipledAlpha = null;
this.currentPolygonOffsetFactor = null;
this.currentPolygonOffsetUnits = null;
this.currentColorMask = null;
this.currentDepthFunc = null;
this.currentDepthMask = null;
this.currentStencilFunc = null;
this.currentStencilRef = null;
this.currentStencilFuncMask = null;
this.currentStencilFail = null;
this.currentStencilZFail = null;
this.currentStencilZPass = null;
this.currentStencilMask = null;
this.currentLineWidth = null;
this.currentBoundFramebuffers = {};
this.currentDrawbuffers = new WeakMap();
this.maxTextures = this.gl.getParameter( this.gl.MAX_TEXTURE_IMAGE_UNITS );
this.currentTextureSlot = null;
this.currentBoundTextures = {};
if ( initialized$1 === false ) {
this._init( this.gl );
initialized$1 = true;
}
}
_init( gl ) {
// Store only WebGL constants here.
equationToGL = {
[ AddEquation ]: gl.FUNC_ADD,
[ SubtractEquation ]: gl.FUNC_SUBTRACT,
[ ReverseSubtractEquation ]: gl.FUNC_REVERSE_SUBTRACT
};
factorToGL = {
[ ZeroFactor ]: gl.ZERO,
[ OneFactor ]: gl.ONE,
[ SrcColorFactor ]: gl.SRC_COLOR,
[ SrcAlphaFactor ]: gl.SRC_ALPHA,
[ SrcAlphaSaturateFactor ]: gl.SRC_ALPHA_SATURATE,
[ DstColorFactor ]: gl.DST_COLOR,
[ DstAlphaFactor ]: gl.DST_ALPHA,
[ OneMinusSrcColorFactor ]: gl.ONE_MINUS_SRC_COLOR,
[ OneMinusSrcAlphaFactor ]: gl.ONE_MINUS_SRC_ALPHA,
[ OneMinusDstColorFactor ]: gl.ONE_MINUS_DST_COLOR,
[ OneMinusDstAlphaFactor ]: gl.ONE_MINUS_DST_ALPHA
};
}
enable( id ) {
const { enabled } = this;
if ( enabled[ id ] !== true ) {
this.gl.enable( id );
enabled[ id ] = true;
}
}
disable( id ) {
const { enabled } = this;
if ( enabled[ id ] !== false ) {
this.gl.disable( id );
enabled[ id ] = false;
}
}
setFlipSided( flipSided ) {
if ( this.currentFlipSided !== flipSided ) {
const { gl } = this;
if ( flipSided ) {
gl.frontFace( gl.CW );
} else {
gl.frontFace( gl.CCW );
}
this.currentFlipSided = flipSided;
}
}
setCullFace( cullFace ) {
const { gl } = this;
if ( cullFace !== CullFaceNone ) {
this.enable( gl.CULL_FACE );
if ( cullFace !== this.currentCullFace ) {
if ( cullFace === CullFaceBack ) {
gl.cullFace( gl.BACK );
} else if ( cullFace === CullFaceFront ) {
gl.cullFace( gl.FRONT );
} else {
gl.cullFace( gl.FRONT_AND_BACK );
}
}
} else {
this.disable( gl.CULL_FACE );
}
this.currentCullFace = cullFace;
}
setLineWidth( width ) {
const { currentLineWidth, gl } = this;
if ( width !== currentLineWidth ) {
gl.lineWidth( width );
this.currentLineWidth = width;
}
}
setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) {
const { gl } = this;
if ( blending === NoBlending ) {
if ( this.currentBlendingEnabled === true ) {
this.disable( gl.BLEND );
this.currentBlendingEnabled = false;
}
return;
}
if ( this.currentBlendingEnabled === false ) {
this.enable( gl.BLEND );
this.currentBlendingEnabled = true;
}
if ( blending !== CustomBlending ) {
if ( blending !== this.currentBlending || premultipliedAlpha !== this.currentPremultipledAlpha ) {
if ( this.currentBlendEquation !== AddEquation || this.currentBlendEquationAlpha !== AddEquation ) {
gl.blendEquation( gl.FUNC_ADD );
this.currentBlendEquation = AddEquation;
this.currentBlendEquationAlpha = AddEquation;
}
if ( premultipliedAlpha ) {
switch ( blending ) {
case NormalBlending:
gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA );
break;
case AdditiveBlending:
gl.blendFunc( gl.ONE, gl.ONE );
break;
case SubtractiveBlending:
gl.blendFuncSeparate( gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ZERO, gl.ONE );
break;
case MultiplyBlending:
gl.blendFuncSeparate( gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA );
break;
default:
console.error( 'THREE.WebGLState: Invalid blending: ', blending );
break;
}
} else {
switch ( blending ) {
case NormalBlending:
gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA );
break;
case AdditiveBlending:
gl.blendFunc( gl.SRC_ALPHA, gl.ONE );
break;
case SubtractiveBlending:
gl.blendFuncSeparate( gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ZERO, gl.ONE );
break;
case MultiplyBlending:
gl.blendFunc( gl.ZERO, gl.SRC_COLOR );
break;
default:
console.error( 'THREE.WebGLState: Invalid blending: ', blending );
break;
}
}
this.currentBlendSrc = null;
this.currentBlendDst = null;
this.currentBlendSrcAlpha = null;
this.currentBlendDstAlpha = null;
this.currentBlending = blending;
this.currentPremultipledAlpha = premultipliedAlpha;
}
return;
}
// custom blending
blendEquationAlpha = blendEquationAlpha || blendEquation;
blendSrcAlpha = blendSrcAlpha || blendSrc;
blendDstAlpha = blendDstAlpha || blendDst;
if ( blendEquation !== this.currentBlendEquation || blendEquationAlpha !== this.currentBlendEquationAlpha ) {
gl.blendEquationSeparate( equationToGL[ blendEquation ], equationToGL[ blendEquationAlpha ] );
this.currentBlendEquation = blendEquation;
this.currentBlendEquationAlpha = blendEquationAlpha;
}
if ( blendSrc !== this.currentBlendSrc || blendDst !== this.currentBlendDst || blendSrcAlpha !== this.currentBlendSrcAlpha || blendDstAlpha !== this.currentBlendDstAlpha ) {
gl.blendFuncSeparate( factorToGL[ blendSrc ], factorToGL[ blendDst ], factorToGL[ blendSrcAlpha ], factorToGL[ blendDstAlpha ] );
this.currentBlendSrc = blendSrc;
this.currentBlendDst = blendDst;
this.currentBlendSrcAlpha = blendSrcAlpha;
this.currentBlendDstAlpha = blendDstAlpha;
}
this.currentBlending = blending;
this.currentPremultipledAlpha = false;
}
setColorMask( colorMask ) {
if ( this.currentColorMask !== colorMask ) {
this.gl.colorMask( colorMask, colorMask, colorMask, colorMask );
this.currentColorMask = colorMask;
}
}
setDepthTest( depthTest ) {
const { gl } = this;
if ( depthTest ) {
this.enable( gl.DEPTH_TEST );
} else {
this.disable( gl.DEPTH_TEST );
}
}
setDepthMask( depthMask ) {
if ( this.currentDepthMask !== depthMask ) {
this.gl.depthMask( depthMask );
this.currentDepthMask = depthMask;
}
}
setDepthFunc( depthFunc ) {
if ( this.currentDepthFunc !== depthFunc ) {
const { gl } = this;
switch ( depthFunc ) {
case NeverDepth:
gl.depthFunc( gl.NEVER );
break;
case AlwaysDepth:
gl.depthFunc( gl.ALWAYS );
break;
case LessDepth:
gl.depthFunc( gl.LESS );
break;
case LessEqualDepth:
gl.depthFunc( gl.LEQUAL );
break;
case EqualDepth:
gl.depthFunc( gl.EQUAL );
break;
case GreaterEqualDepth:
gl.depthFunc( gl.GEQUAL );
break;
case GreaterDepth:
gl.depthFunc( gl.GREATER );
break;
case NotEqualDepth:
gl.depthFunc( gl.NOTEQUAL );
break;
default:
gl.depthFunc( gl.LEQUAL );
}
this.currentDepthFunc = depthFunc;
}
}
setStencilTest( stencilTest ) {
const { gl } = this;
if ( stencilTest ) {
this.enable( gl.STENCIL_TEST );
} else {
this.disable( gl.STENCIL_TEST );
}
}
setStencilMask( stencilMask ) {
if ( this.currentStencilMask !== stencilMask ) {
this.gl.stencilMask( stencilMask );
this.currentStencilMask = stencilMask;
}
}
setStencilFunc( stencilFunc, stencilRef, stencilMask ) {
if ( this.currentStencilFunc !== stencilFunc ||
this.currentStencilRef !== stencilRef ||
this.currentStencilFuncMask !== stencilMask ) {
this.gl.stencilFunc( stencilFunc, stencilRef, stencilMask );
this.currentStencilFunc = stencilFunc;
this.currentStencilRef = stencilRef;
this.currentStencilFuncMask = stencilMask;
}
}
setStencilOp( stencilFail, stencilZFail, stencilZPass ) {
if ( this.currentStencilFail !== stencilFail ||
this.currentStencilZFail !== stencilZFail ||
this.currentStencilZPass !== stencilZPass ) {
this.gl.stencilOp( stencilFail, stencilZFail, stencilZPass );
this.currentStencilFail = stencilFail;
this.currentStencilZFail = stencilZFail;
this.currentStencilZPass = stencilZPass;
}
}
setMaterial( material, frontFaceCW ) {
const { gl } = this;
material.side === DoubleSide
? this.disable( gl.CULL_FACE )
: this.enable( gl.CULL_FACE );
let flipSided = ( material.side === BackSide );
if ( frontFaceCW ) flipSided = ! flipSided;
this.setFlipSided( flipSided );
( material.blending === NormalBlending && material.transparent === false )
? this.setBlending( NoBlending )
: this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha );
this.setDepthFunc( material.depthFunc );
this.setDepthTest( material.depthTest );
this.setDepthMask( material.depthWrite );
this.setColorMask( material.colorWrite );
const stencilWrite = material.stencilWrite;
this.setStencilTest( stencilWrite );
if ( stencilWrite ) {
this.setStencilMask( material.stencilWriteMask );
this.setStencilFunc( material.stencilFunc, material.stencilRef, material.stencilFuncMask );
this.setStencilOp( material.stencilFail, material.stencilZFail, material.stencilZPass );
}
this.setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits );
material.alphaToCoverage === true
? this.enable( gl.SAMPLE_ALPHA_TO_COVERAGE )
: this.disable( gl.SAMPLE_ALPHA_TO_COVERAGE );
}
setPolygonOffset( polygonOffset, factor, units ) {
const { gl } = this;
if ( polygonOffset ) {
this.enable( gl.POLYGON_OFFSET_FILL );
if ( this.currentPolygonOffsetFactor !== factor || this.currentPolygonOffsetUnits !== units ) {
gl.polygonOffset( factor, units );
this.currentPolygonOffsetFactor = factor;
this.currentPolygonOffsetUnits = units;
}
} else {
this.disable( gl.POLYGON_OFFSET_FILL );
}
}
useProgram( program ) {
if ( this.currentProgram !== program ) {
this.gl.useProgram( program );
this.currentProgram = program;
return true;
}
return false;
}
// framebuffer
bindFramebuffer( target, framebuffer ) {
const { gl, currentBoundFramebuffers } = this;
if ( currentBoundFramebuffers[ target ] !== framebuffer ) {
gl.bindFramebuffer( target, framebuffer );
currentBoundFramebuffers[ target ] = framebuffer;
// gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER
if ( target === gl.DRAW_FRAMEBUFFER ) {
currentBoundFramebuffers[ gl.FRAMEBUFFER ] = framebuffer;
}
if ( target === gl.FRAMEBUFFER ) {
currentBoundFramebuffers[ gl.DRAW_FRAMEBUFFER ] = framebuffer;
}
return true;
}
return false;
}
drawBuffers( renderContext, framebuffer ) {
const { gl } = this;
let drawBuffers = [];
let needsUpdate = false;
if ( renderContext.textures !== null ) {
drawBuffers = this.currentDrawbuffers.get( framebuffer );
if ( drawBuffers === undefined ) {
drawBuffers = [];
this.currentDrawbuffers.set( framebuffer, drawBuffers );
}
const textures = renderContext.textures;
if ( drawBuffers.length !== textures.length || drawBuffers[ 0 ] !== gl.COLOR_ATTACHMENT0 ) {
for ( let i = 0, il = textures.length; i < il; i ++ ) {
drawBuffers[ i ] = gl.COLOR_ATTACHMENT0 + i;
}
drawBuffers.length = textures.length;
needsUpdate = true;
}
} else {
if ( drawBuffers[ 0 ] !== gl.BACK ) {
drawBuffers[ 0 ] = gl.BACK;
needsUpdate = true;
}
}
if ( needsUpdate ) {
gl.drawBuffers( drawBuffers );
}
}
// texture
activeTexture( webglSlot ) {
const { gl, currentTextureSlot, maxTextures } = this;
if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1;
if ( currentTextureSlot !== webglSlot ) {
gl.activeTexture( webglSlot );
this.currentTextureSlot = webglSlot;
}
}
bindTexture( webglType, webglTexture, webglSlot ) {
const { gl, currentTextureSlot, currentBoundTextures, maxTextures } = this;
if ( webglSlot === undefined ) {
if ( currentTextureSlot === null ) {
webglSlot = gl.TEXTURE0 + maxTextures - 1;
} else {
webglSlot = currentTextureSlot;
}
}
let boundTexture = currentBoundTextures[ webglSlot ];
if ( boundTexture === undefined ) {
boundTexture = { type: undefined, texture: undefined };
currentBoundTextures[ webglSlot ] = boundTexture;
}
if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) {
if ( currentTextureSlot !== webglSlot ) {
gl.activeTexture( webglSlot );
this.currentTextureSlot = webglSlot;
}
gl.bindTexture( webglType, webglTexture );
boundTexture.type = webglType;
boundTexture.texture = webglTexture;
}
}
unbindTexture() {
const { gl, currentTextureSlot, currentBoundTextures } = this;
const boundTexture = currentBoundTextures[ currentTextureSlot ];
if ( boundTexture !== undefined && boundTexture.type !== undefined ) {
gl.bindTexture( boundTexture.type, null );
boundTexture.type = undefined;
boundTexture.texture = undefined;
}
}
}
class WebGLUtils {
constructor( backend ) {
this.backend = backend;
this.gl = this.backend.gl;
this.extensions = backend.extensions;
}
convert( p, colorSpace = NoColorSpace ) {
const { gl, extensions } = this;
let extension;
if ( p === UnsignedByteType ) return gl.UNSIGNED_BYTE;
if ( p === UnsignedShort4444Type ) return gl.UNSIGNED_SHORT_4_4_4_4;
if ( p === UnsignedShort5551Type ) return gl.UNSIGNED_SHORT_5_5_5_1;
if ( p === UnsignedInt5999Type ) return gl.UNSIGNED_INT_5_9_9_9_REV;
if ( p === ByteType ) return gl.BYTE;
if ( p === ShortType ) return gl.SHORT;
if ( p === UnsignedShortType ) return gl.UNSIGNED_SHORT;
if ( p === IntType ) return gl.INT;
if ( p === UnsignedIntType ) return gl.UNSIGNED_INT;
if ( p === FloatType ) return gl.FLOAT;
if ( p === HalfFloatType ) {
return gl.HALF_FLOAT;
}
if ( p === AlphaFormat ) return gl.ALPHA;
if ( p === RGBFormat ) return gl.RGB;
if ( p === RGBAFormat ) return gl.RGBA;
if ( p === LuminanceFormat ) return gl.LUMINANCE;
if ( p === LuminanceAlphaFormat ) return gl.LUMINANCE_ALPHA;
if ( p === DepthFormat ) return gl.DEPTH_COMPONENT;
if ( p === DepthStencilFormat ) return gl.DEPTH_STENCIL;
// WebGL2 formats.
if ( p === RedFormat ) return gl.RED;
if ( p === RedIntegerFormat ) return gl.RED_INTEGER;
if ( p === RGFormat ) return gl.RG;
if ( p === RGIntegerFormat ) return gl.RG_INTEGER;
if ( p === RGBAIntegerFormat ) return gl.RGBA_INTEGER;
// S3TC
if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) {
if ( colorSpace === SRGBColorSpace ) {
extension = extensions.get( 'WEBGL_compressed_texture_s3tc_srgb' );
if ( extension !== null ) {
if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_SRGB_S3TC_DXT1_EXT;
if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT;
if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT;
if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT;
} else {
return null;
}
} else {
extension = extensions.get( 'WEBGL_compressed_texture_s3tc' );
if ( extension !== null ) {
if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;
if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;
if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;
if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;
} else {
return null;
}
}
}
// PVRTC
if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) {
extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' );
if ( extension !== null ) {
if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
} else {
return null;
}
}
// ETC
if ( p === RGB_ETC1_Format || p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format ) {
extension = extensions.get( 'WEBGL_compressed_texture_etc' );
if ( extension !== null ) {
if ( p === RGB_ETC1_Format || p === RGB_ETC2_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ETC2 : extension.COMPRESSED_RGB8_ETC2;
if ( p === RGBA_ETC2_EAC_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ETC2_EAC : extension.COMPRESSED_RGBA8_ETC2_EAC;
} else {
return null;
}
}
// ASTC
if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format ||
p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format ||
p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format ||
p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format ||
p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ) {
extension = extensions.get( 'WEBGL_compressed_texture_astc' );
if ( extension !== null ) {
if ( p === RGBA_ASTC_4x4_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR : extension.COMPRESSED_RGBA_ASTC_4x4_KHR;
if ( p === RGBA_ASTC_5x4_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR : extension.COMPRESSED_RGBA_ASTC_5x4_KHR;
if ( p === RGBA_ASTC_5x5_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR : extension.COMPRESSED_RGBA_ASTC_5x5_KHR;
if ( p === RGBA_ASTC_6x5_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR : extension.COMPRESSED_RGBA_ASTC_6x5_KHR;
if ( p === RGBA_ASTC_6x6_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR : extension.COMPRESSED_RGBA_ASTC_6x6_KHR;
if ( p === RGBA_ASTC_8x5_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR : extension.COMPRESSED_RGBA_ASTC_8x5_KHR;
if ( p === RGBA_ASTC_8x6_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR : extension.COMPRESSED_RGBA_ASTC_8x6_KHR;
if ( p === RGBA_ASTC_8x8_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR : extension.COMPRESSED_RGBA_ASTC_8x8_KHR;
if ( p === RGBA_ASTC_10x5_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR : extension.COMPRESSED_RGBA_ASTC_10x5_KHR;
if ( p === RGBA_ASTC_10x6_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR : extension.COMPRESSED_RGBA_ASTC_10x6_KHR;
if ( p === RGBA_ASTC_10x8_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR : extension.COMPRESSED_RGBA_ASTC_10x8_KHR;
if ( p === RGBA_ASTC_10x10_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR : extension.COMPRESSED_RGBA_ASTC_10x10_KHR;
if ( p === RGBA_ASTC_12x10_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR : extension.COMPRESSED_RGBA_ASTC_12x10_KHR;
if ( p === RGBA_ASTC_12x12_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR : extension.COMPRESSED_RGBA_ASTC_12x12_KHR;
} else {
return null;
}
}
// BPTC
if ( p === RGBA_BPTC_Format ) {
extension = extensions.get( 'EXT_texture_compression_bptc' );
if ( extension !== null ) {
if ( p === RGBA_BPTC_Format ) return ( colorSpace === SRGBColorSpace ) ? extension.COMPRESSED_SRGB_ALPHA_BPTC_UNORM_EXT : extension.COMPRESSED_RGBA_BPTC_UNORM_EXT;
} else {
return null;
}
}
// RGTC
if ( p === RED_RGTC1_Format || p === SIGNED_RED_RGTC1_Format || p === RED_GREEN_RGTC2_Format || p === SIGNED_RED_GREEN_RGTC2_Format ) {
extension = extensions.get( 'EXT_texture_compression_rgtc' );
if ( extension !== null ) {
if ( p === RGBA_BPTC_Format ) return extension.COMPRESSED_RED_RGTC1_EXT;
if ( p === SIGNED_RED_RGTC1_Format ) return extension.COMPRESSED_SIGNED_RED_RGTC1_EXT;
if ( p === RED_GREEN_RGTC2_Format ) return extension.COMPRESSED_RED_GREEN_RGTC2_EXT;
if ( p === SIGNED_RED_GREEN_RGTC2_Format ) return extension.COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT;
} else {
return null;
}
}
//
if ( p === UnsignedInt248Type ) {
return gl.UNSIGNED_INT_24_8;
}
// if "p" can't be resolved, assume the user defines a WebGL constant as a string (fallback/workaround for packed RGB formats)
return ( gl[ p ] !== undefined ) ? gl[ p ] : null;
}
_clientWaitAsync() {
const { gl } = this;
const sync = gl.fenceSync( gl.SYNC_GPU_COMMANDS_COMPLETE, 0 );
gl.flush();
return new Promise( ( resolve, reject ) => {
function test() {
const res = gl.clientWaitSync( sync, gl.SYNC_FLUSH_COMMANDS_BIT, 0 );
if ( res === gl.WAIT_FAILED ) {
gl.deleteSync( sync );
reject();
return;
}
if ( res === gl.TIMEOUT_EXPIRED ) {
requestAnimationFrame( test );
return;
}
gl.deleteSync( sync );
resolve();
}
test();
} );
}
}
let initialized = false, wrappingToGL, filterToGL, compareToGL;
class WebGLTextureUtils {
constructor( backend ) {
this.backend = backend;
this.gl = backend.gl;
this.extensions = backend.extensions;
this.defaultTextures = {};
if ( initialized === false ) {
this._init( this.gl );
initialized = true;
}
}
_init( gl ) {
// Store only WebGL constants here.
wrappingToGL = {
[ RepeatWrapping ]: gl.REPEAT,
[ ClampToEdgeWrapping ]: gl.CLAMP_TO_EDGE,
[ MirroredRepeatWrapping ]: gl.MIRRORED_REPEAT
};
filterToGL = {
[ NearestFilter ]: gl.NEAREST,
[ NearestMipmapNearestFilter ]: gl.NEAREST_MIPMAP_NEAREST,
[ NearestMipmapLinearFilter ]: gl.NEAREST_MIPMAP_LINEAR,
[ LinearFilter ]: gl.LINEAR,
[ LinearMipmapNearestFilter ]: gl.LINEAR_MIPMAP_NEAREST,
[ LinearMipmapLinearFilter ]: gl.LINEAR_MIPMAP_LINEAR
};
compareToGL = {
[ NeverCompare ]: gl.NEVER,
[ AlwaysCompare ]: gl.ALWAYS,
[ LessCompare ]: gl.LESS,
[ LessEqualCompare ]: gl.LEQUAL,
[ EqualCompare ]: gl.EQUAL,
[ GreaterEqualCompare ]: gl.GEQUAL,
[ GreaterCompare ]: gl.GREATER,
[ NotEqualCompare ]: gl.NOTEQUAL
};
}
filterFallback( f ) {
const { gl } = this;
if ( f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter ) {
return gl.NEAREST;
}
return gl.LINEAR;
}
getGLTextureType( texture ) {
const { gl } = this;
let glTextureType;
if ( texture.isCubeTexture === true ) {
glTextureType = gl.TEXTURE_CUBE_MAP;
} else if ( texture.isDataArrayTexture === true ) {
glTextureType = gl.TEXTURE_2D_ARRAY;
} else if ( texture.isData3DTexture === true ) {
glTextureType = gl.TEXTURE_3D;
} else {
glTextureType = gl.TEXTURE_2D;
}
return glTextureType;
}
getInternalFormat( internalFormatName, glFormat, glType, colorSpace, forceLinearTransfer = false ) {
const { gl, extensions } = this;
if ( internalFormatName !== null ) {
if ( gl[ internalFormatName ] !== undefined ) return gl[ internalFormatName ];
console.warn( 'THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'' );
}
let internalFormat = glFormat;
if ( glFormat === gl.RED ) {
if ( glType === gl.FLOAT ) internalFormat = gl.R32F;
if ( glType === gl.HALF_FLOAT ) internalFormat = gl.R16F;
if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.R8;
if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.R16;
if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.R32UI;
if ( glType === gl.BYTE ) internalFormat = gl.R8I;
if ( glType === gl.SHORT ) internalFormat = gl.R16I;
if ( glType === gl.INT ) internalFormat = gl.R32I;
}
if ( glFormat === gl.RED_INTEGER ) {
if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.R8UI;
if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.R16UI;
if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.R32UI;
if ( glType === gl.BYTE ) internalFormat = gl.R8I;
if ( glType === gl.SHORT ) internalFormat = gl.R16I;
if ( glType === gl.INT ) internalFormat = gl.R32I;
}
if ( glFormat === gl.RG ) {
if ( glType === gl.FLOAT ) internalFormat = gl.RG32F;
if ( glType === gl.HALF_FLOAT ) internalFormat = gl.RG16F;
if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RG8;
if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RG16;
if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RG32UI;
if ( glType === gl.BYTE ) internalFormat = gl.RG8I;
if ( glType === gl.SHORT ) internalFormat = gl.RG16I;
if ( glType === gl.INT ) internalFormat = gl.RG32I;
}
if ( glFormat === gl.RG_INTEGER ) {
if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RG8UI;
if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RG16UI;
if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RG32UI;
if ( glType === gl.BYTE ) internalFormat = gl.RG8I;
if ( glType === gl.SHORT ) internalFormat = gl.RG16I;
if ( glType === gl.INT ) internalFormat = gl.RG32I;
}
if ( glFormat === gl.RGB ) {
if ( glType === gl.FLOAT ) internalFormat = gl.RGB32F;
if ( glType === gl.HALF_FLOAT ) internalFormat = gl.RGB16F;
if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RGB8;
if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RGB16;
if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RGB32UI;
if ( glType === gl.BYTE ) internalFormat = gl.RGB8I;
if ( glType === gl.SHORT ) internalFormat = gl.RGB16I;
if ( glType === gl.INT ) internalFormat = gl.RGB32I;
if ( glType === gl.UNSIGNED_BYTE ) internalFormat = ( colorSpace === SRGBColorSpace && forceLinearTransfer === false ) ? gl.SRGB8 : gl.RGB8;
if ( glType === gl.UNSIGNED_SHORT_5_6_5 ) internalFormat = gl.RGB565;
if ( glType === gl.UNSIGNED_SHORT_5_5_5_1 ) internalFormat = gl.RGB5_A1;
if ( glType === gl.UNSIGNED_SHORT_4_4_4_4 ) internalFormat = gl.RGB4;
if ( glType === gl.UNSIGNED_INT_5_9_9_9_REV ) internalFormat = gl.RGB9_E5;
}
if ( glFormat === gl.RGB_INTEGER ) {
if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RGB8UI;
if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RGB16UI;
if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RGB32UI;
if ( glType === gl.BYTE ) internalFormat = gl.RGB8I;
if ( glType === gl.SHORT ) internalFormat = gl.RGB16I;
if ( glType === gl.INT ) internalFormat = gl.RGB32I;
}
if ( glFormat === gl.RGBA ) {
if ( glType === gl.FLOAT ) internalFormat = gl.RGBA32F;
if ( glType === gl.HALF_FLOAT ) internalFormat = gl.RGBA16F;
if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RGBA8;
if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RGBA16;
if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RGBA32UI;
if ( glType === gl.BYTE ) internalFormat = gl.RGBA8I;
if ( glType === gl.SHORT ) internalFormat = gl.RGBA16I;
if ( glType === gl.INT ) internalFormat = gl.RGBA32I;
if ( glType === gl.UNSIGNED_BYTE ) internalFormat = ( colorSpace === SRGBColorSpace && forceLinearTransfer === false ) ? gl.SRGB8_ALPHA8 : gl.RGBA8;
if ( glType === gl.UNSIGNED_SHORT_4_4_4_4 ) internalFormat = gl.RGBA4;
if ( glType === gl.UNSIGNED_SHORT_5_5_5_1 ) internalFormat = gl.RGB5_A1;
}
if ( glFormat === gl.RGBA_INTEGER ) {
if ( glType === gl.UNSIGNED_BYTE ) internalFormat = gl.RGBA8UI;
if ( glType === gl.UNSIGNED_SHORT ) internalFormat = gl.RGBA16UI;
if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.RGBA32UI;
if ( glType === gl.BYTE ) internalFormat = gl.RGBA8I;
if ( glType === gl.SHORT ) internalFormat = gl.RGBA16I;
if ( glType === gl.INT ) internalFormat = gl.RGBA32I;
}
if ( glFormat === gl.DEPTH_COMPONENT ) {
if ( glType === gl.UNSIGNED_INT ) internalFormat = gl.DEPTH24_STENCIL8;
if ( glType === gl.FLOAT ) internalFormat = gl.DEPTH_COMPONENT32F;
}
if ( glFormat === gl.DEPTH_STENCIL ) {
if ( glType === gl.UNSIGNED_INT_24_8 ) internalFormat = gl.DEPTH24_STENCIL8;
}
if ( internalFormat === gl.R16F || internalFormat === gl.R32F ||
internalFormat === gl.RG16F || internalFormat === gl.RG32F ||
internalFormat === gl.RGBA16F || internalFormat === gl.RGBA32F ) {
extensions.get( 'EXT_color_buffer_float' );
}
return internalFormat;
}
setTextureParameters( textureType, texture ) {
const { gl, extensions, backend } = this;
const { currentAnisotropy } = backend.get( texture );
gl.texParameteri( textureType, gl.TEXTURE_WRAP_S, wrappingToGL[ texture.wrapS ] );
gl.texParameteri( textureType, gl.TEXTURE_WRAP_T, wrappingToGL[ texture.wrapT ] );
if ( textureType === gl.TEXTURE_3D || textureType === gl.TEXTURE_2D_ARRAY ) {
gl.texParameteri( textureType, gl.TEXTURE_WRAP_R, wrappingToGL[ texture.wrapR ] );
}
gl.texParameteri( textureType, gl.TEXTURE_MAG_FILTER, filterToGL[ texture.magFilter ] );
// follow WebGPU backend mapping for texture filtering
const minFilter = ! texture.isVideoTexture && texture.minFilter === LinearFilter ? LinearMipmapLinearFilter : texture.minFilter;
gl.texParameteri( textureType, gl.TEXTURE_MIN_FILTER, filterToGL[ minFilter ] );
if ( texture.compareFunction ) {
gl.texParameteri( textureType, gl.TEXTURE_COMPARE_MODE, gl.COMPARE_REF_TO_TEXTURE );
gl.texParameteri( textureType, gl.TEXTURE_COMPARE_FUNC, compareToGL[ texture.compareFunction ] );
}
if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) {
if ( texture.magFilter === NearestFilter ) return;
if ( texture.minFilter !== NearestMipmapLinearFilter && texture.minFilter !== LinearMipmapLinearFilter ) return;
if ( texture.type === FloatType && extensions.has( 'OES_texture_float_linear' ) === false ) return; // verify extension for WebGL 1 and WebGL 2
if ( texture.anisotropy > 1 || currentAnisotropy !== texture.anisotropy ) {
const extension = extensions.get( 'EXT_texture_filter_anisotropic' );
gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, backend.getMaxAnisotropy() ) );
backend.get( texture ).currentAnisotropy = texture.anisotropy;
}
}
}
createDefaultTexture( texture ) {
const { gl, backend, defaultTextures } = this;
const glTextureType = this.getGLTextureType( texture );
let textureGPU = defaultTextures[ glTextureType ];
if ( textureGPU === undefined ) {
textureGPU = gl.createTexture();
backend.state.bindTexture( glTextureType, textureGPU );
gl.texParameteri( glTextureType, gl.TEXTURE_MIN_FILTER, gl.NEAREST );
gl.texParameteri( glTextureType, gl.TEXTURE_MAG_FILTER, gl.NEAREST );
// gl.texImage2D( glTextureType, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data );
defaultTextures[ glTextureType ] = textureGPU;
}
backend.set( texture, {
textureGPU,
glTextureType,
isDefault: true
} );
}
createTexture( texture, options ) {
const { gl, backend } = this;
const { levels, width, height, depth } = options;
const glFormat = backend.utils.convert( texture.format, texture.colorSpace );
const glType = backend.utils.convert( texture.type );
const glInternalFormat = this.getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace, texture.isVideoTexture );
const textureGPU = gl.createTexture();
const glTextureType = this.getGLTextureType( texture );
backend.state.bindTexture( glTextureType, textureGPU );
gl.pixelStorei( gl.UNPACK_FLIP_Y_WEBGL, texture.flipY );
gl.pixelStorei( gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha );
gl.pixelStorei( gl.UNPACK_ALIGNMENT, texture.unpackAlignment );
gl.pixelStorei( gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, gl.NONE );
this.setTextureParameters( glTextureType, texture );
if ( texture.isDataArrayTexture ) {
gl.texStorage3D( gl.TEXTURE_2D_ARRAY, levels, glInternalFormat, width, height, depth );
} else if ( texture.isData3DTexture ) {
gl.texStorage3D( gl.TEXTURE_3D, levels, glInternalFormat, width, height, depth );
} else if ( ! texture.isVideoTexture ) {
gl.texStorage2D( glTextureType, levels, glInternalFormat, width, height );
}
backend.set( texture, {
textureGPU,
glTextureType,
glFormat,
glType,
glInternalFormat
} );
}
copyBufferToTexture( buffer, texture ) {
const { gl, backend } = this;
const { textureGPU, glTextureType, glFormat, glType } = backend.get( texture );
const { width, height } = texture.source.data;
gl.bindBuffer( gl.PIXEL_UNPACK_BUFFER, buffer );
backend.state.bindTexture( glTextureType, textureGPU );
gl.pixelStorei( gl.UNPACK_FLIP_Y_WEBGL, false );
gl.pixelStorei( gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, false );
gl.texSubImage2D( glTextureType, 0, 0, 0, width, height, glFormat, glType, 0 );
gl.bindBuffer( gl.PIXEL_UNPACK_BUFFER, null );
backend.state.unbindTexture();
// debug
// const framebuffer = gl.createFramebuffer();
// gl.bindFramebuffer( gl.FRAMEBUFFER, framebuffer );
// gl.framebufferTexture2D( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, glTextureType, textureGPU, 0 );
// const readout = new Float32Array( width * height * 4 );
// const altFormat = gl.getParameter( gl.IMPLEMENTATION_COLOR_READ_FORMAT );
// const altType = gl.getParameter( gl.IMPLEMENTATION_COLOR_READ_TYPE );
// gl.readPixels( 0, 0, width, height, altFormat, altType, readout );
// gl.bindFramebuffer( gl.FRAMEBUFFER, null );
// console.log( readout );
}
updateTexture( texture, options ) {
const { gl } = this;
const { width, height } = options;
const { textureGPU, glTextureType, glFormat, glType, glInternalFormat } = this.backend.get( texture );
if ( texture.isRenderTargetTexture || ( textureGPU === undefined /* unsupported texture format */ ) )
return;
const getImage = ( source ) => {
if ( source.isDataTexture ) {
return source.image.data;
} else if ( source instanceof ImageBitmap || source instanceof OffscreenCanvas || source instanceof HTMLImageElement || source instanceof HTMLCanvasElement ) {
return source;
}
return source.data;
};
this.backend.state.bindTexture( glTextureType, textureGPU );
if ( texture.isCompressedTexture ) {
const mipmaps = texture.mipmaps;
for ( let i = 0; i < mipmaps.length; i ++ ) {
const mipmap = mipmaps[ i ];
if ( texture.isCompressedArrayTexture ) {
const image = options.image;
if ( texture.format !== gl.RGBA ) {
if ( glFormat !== null ) {
gl.compressedTexSubImage3D( gl.TEXTURE_2D_ARRAY, i, 0, 0, 0, mipmap.width, mipmap.height, image.depth, glFormat, mipmap.data, 0, 0 );
} else {
console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' );
}
} else {
gl.texSubImage3D( gl.TEXTURE_2D_ARRAY, i, 0, 0, 0, mipmap.width, mipmap.height, image.depth, glFormat, glType, mipmap.data );
}
} else {
if ( glFormat !== null ) {
gl.compressedTexSubImage2D( gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data );
} else {
console.warn( 'Unsupported compressed texture format' );
}
}
}
} else if ( texture.isCubeTexture ) {
const images = options.images;
for ( let i = 0; i < 6; i ++ ) {
const image = getImage( images[ i ] );
gl.texSubImage2D( gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, 0, 0, width, height, glFormat, glType, image );
}
} else if ( texture.isDataArrayTexture ) {
const image = options.image;
gl.texSubImage3D( gl.TEXTURE_2D_ARRAY, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data );
} else if ( texture.isData3DTexture ) {
const image = options.image;
gl.texSubImage3D( gl.TEXTURE_3D, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data );
} else if ( texture.isVideoTexture ) {
texture.update();
gl.texImage2D( glTextureType, 0, glInternalFormat, glFormat, glType, options.image );
} else {
const image = getImage( options.image );
gl.texSubImage2D( glTextureType, 0, 0, 0, width, height, glFormat, glType, image );
}
}
generateMipmaps( texture ) {
const { gl, backend } = this;
const { textureGPU, glTextureType } = backend.get( texture );
backend.state.bindTexture( glTextureType, textureGPU );
gl.generateMipmap( glTextureType );
}
deallocateRenderBuffers( renderTarget ) {
const { gl, backend } = this;
// remove framebuffer reference
if ( renderTarget ) {
const renderContextData = backend.get( renderTarget );
renderContextData.renderBufferStorageSetup = undefined;
if ( renderContextData.framebuffer ) {
gl.deleteFramebuffer( renderContextData.framebuffer );
renderContextData.framebuffer = undefined;
}
if ( renderContextData.depthRenderbuffer ) {
gl.deleteRenderbuffer( renderContextData.depthRenderbuffer );
renderContextData.depthRenderbuffer = undefined;
}
if ( renderContextData.stencilRenderbuffer ) {
gl.deleteRenderbuffer( renderContextData.stencilRenderbuffer );
renderContextData.stencilRenderbuffer = undefined;
}
if ( renderContextData.msaaFrameBuffer ) {
gl.deleteFramebuffer( renderContextData.msaaFrameBuffer );
renderContextData.msaaFrameBuffer = undefined;
}
if ( renderContextData.msaaRenderbuffers ) {
for ( let i = 0; i < renderContextData.msaaRenderbuffers.length; i ++ ) {
gl.deleteRenderbuffer( renderContextData.msaaRenderbuffers[ i ] );
}
renderContextData.msaaRenderbuffers = undefined;
}
}
}
destroyTexture( texture ) {
const { gl, backend } = this;
const { textureGPU, renderTarget } = backend.get( texture );
this.deallocateRenderBuffers( renderTarget );
gl.deleteTexture( textureGPU );
backend.delete( texture );
}
copyTextureToTexture( srcTexture, dstTexture, srcRegion = null, dstPosition = null, level = 0 ) {
const { gl, backend } = this;
const { state } = this.backend;
const { textureGPU: dstTextureGPU, glTextureType, glType, glFormat } = backend.get( dstTexture );
let width, height, minX, minY;
let dstX, dstY;
if ( srcRegion !== null ) {
width = srcRegion.max.x - srcRegion.min.x;
height = srcRegion.max.y - srcRegion.min.y;
minX = srcRegion.min.x;
minY = srcRegion.min.y;
} else {
width = srcTexture.image.width;
height = srcTexture.image.height;
minX = 0;
minY = 0;
}
if ( dstPosition !== null ) {
dstX = dstPosition.x;
dstY = dstPosition.y;
} else {
dstX = 0;
dstY = 0;
}
state.bindTexture( glTextureType, dstTextureGPU );
// As another texture upload may have changed pixelStorei
// parameters, make sure they are correct for the dstTexture
gl.pixelStorei( gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment );
gl.pixelStorei( gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY );
gl.pixelStorei( gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha );
gl.pixelStorei( gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment );
const currentUnpackRowLen = gl.getParameter( gl.UNPACK_ROW_LENGTH );
const currentUnpackImageHeight = gl.getParameter( gl.UNPACK_IMAGE_HEIGHT );
const currentUnpackSkipPixels = gl.getParameter( gl.UNPACK_SKIP_PIXELS );
const currentUnpackSkipRows = gl.getParameter( gl.UNPACK_SKIP_ROWS );
const currentUnpackSkipImages = gl.getParameter( gl.UNPACK_SKIP_IMAGES );
const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[ level ] : srcTexture.image;
gl.pixelStorei( gl.UNPACK_ROW_LENGTH, image.width );
gl.pixelStorei( gl.UNPACK_IMAGE_HEIGHT, image.height );
gl.pixelStorei( gl.UNPACK_SKIP_PIXELS, minX );
gl.pixelStorei( gl.UNPACK_SKIP_ROWS, minY );
if ( srcTexture.isDataTexture ) {
gl.texSubImage2D( gl.TEXTURE_2D, level, dstX, dstY, width, height, glFormat, glType, image.data );
} else {
if ( srcTexture.isCompressedTexture ) {
gl.compressedTexSubImage2D( gl.TEXTURE_2D, level, dstX, dstY, image.width, image.height, glFormat, image.data );
} else {
gl.texSubImage2D( gl.TEXTURE_2D, level, dstX, dstY, width, height, glFormat, glType, image );
}
}
gl.pixelStorei( gl.UNPACK_ROW_LENGTH, currentUnpackRowLen );
gl.pixelStorei( gl.UNPACK_IMAGE_HEIGHT, currentUnpackImageHeight );
gl.pixelStorei( gl.UNPACK_SKIP_PIXELS, currentUnpackSkipPixels );
gl.pixelStorei( gl.UNPACK_SKIP_ROWS, currentUnpackSkipRows );
gl.pixelStorei( gl.UNPACK_SKIP_IMAGES, currentUnpackSkipImages );
// Generate mipmaps only when copying level 0
if ( level === 0 && dstTexture.generateMipmaps ) gl.generateMipmap( gl.TEXTURE_2D );
state.unbindTexture();
}
copyFramebufferToTexture( texture, renderContext ) {
const { gl } = this;
const { state } = this.backend;
const { textureGPU } = this.backend.get( texture );
const width = texture.image.width;
const height = texture.image.height;
const requireDrawFrameBuffer = texture.isDepthTexture === true || ( renderContext.renderTarget && renderContext.renderTarget.samples > 0 );
if ( requireDrawFrameBuffer ) {
let mask;
let attachment;
if ( texture.isDepthTexture === true ) {
mask = gl.DEPTH_BUFFER_BIT;
attachment = gl.DEPTH_ATTACHMENT;
if ( renderContext.stencil ) {
mask |= gl.STENCIL_BUFFER_BIT;
}
} else {
mask = gl.COLOR_BUFFER_BIT;
attachment = gl.COLOR_ATTACHMENT0;
}
const fb = gl.createFramebuffer();
state.bindFramebuffer( gl.DRAW_FRAMEBUFFER, fb );
gl.framebufferTexture2D( gl.DRAW_FRAMEBUFFER, attachment, gl.TEXTURE_2D, textureGPU, 0 );
gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, mask, gl.NEAREST );
gl.deleteFramebuffer( fb );
} else {
state.bindTexture( gl.TEXTURE_2D, textureGPU );
gl.copyTexSubImage2D( gl.TEXTURE_2D, 0, 0, 0, 0, 0, width, height );
state.unbindTexture();
}
if ( texture.generateMipmaps ) this.generateMipmaps( texture );
this.backend._setFramebuffer( renderContext );
}
// Setup storage for internal depth/stencil buffers and bind to correct framebuffer
setupRenderBufferStorage( renderbuffer, renderContext ) {
const { gl } = this;
const renderTarget = renderContext.renderTarget;
const { samples, depthTexture, depthBuffer, stencilBuffer, width, height } = renderTarget;
gl.bindRenderbuffer( gl.RENDERBUFFER, renderbuffer );
if ( depthBuffer && ! stencilBuffer ) {
let glInternalFormat = gl.DEPTH_COMPONENT24;
if ( samples > 0 ) {
if ( depthTexture && depthTexture.isDepthTexture ) {
if ( depthTexture.type === gl.FLOAT ) {
glInternalFormat = gl.DEPTH_COMPONENT32F;
}
}
gl.renderbufferStorageMultisample( gl.RENDERBUFFER, samples, glInternalFormat, width, height );
} else {
gl.renderbufferStorage( gl.RENDERBUFFER, glInternalFormat, width, height );
}
gl.framebufferRenderbuffer( gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, renderbuffer );
} else if ( depthBuffer && stencilBuffer ) {
if ( samples > 0 ) {
gl.renderbufferStorageMultisample( gl.RENDERBUFFER, samples, gl.DEPTH24_STENCIL8, width, height );
} else {
gl.renderbufferStorage( gl.RENDERBUFFER, gl.DEPTH_STENCIL, width, height );
}
gl.framebufferRenderbuffer( gl.FRAMEBUFFER, gl.DEPTH_STENCIL_ATTACHMENT, gl.RENDERBUFFER, renderbuffer );
}
}
async copyTextureToBuffer( texture, x, y, width, height ) {
const { backend, gl } = this;
const { textureGPU, glFormat, glType } = this.backend.get( texture );
const fb = gl.createFramebuffer();
gl.bindFramebuffer( gl.READ_FRAMEBUFFER, fb );
gl.framebufferTexture2D( gl.READ_FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, textureGPU, 0 );
const typedArrayType = this._getTypedArrayType( glType );
const bytesPerTexel = this._getBytesPerTexel( glFormat );
const elementCount = width * height;
const byteLength = elementCount * bytesPerTexel;
const buffer = gl.createBuffer();
gl.bindBuffer( gl.PIXEL_PACK_BUFFER, buffer );
gl.bufferData( gl.PIXEL_PACK_BUFFER, byteLength, gl.STREAM_READ );
gl.readPixels( x, y, width, height, glFormat, glType, 0 );
gl.bindBuffer( gl.PIXEL_PACK_BUFFER, null );
await backend.utils._clientWaitAsync();
const dstBuffer = new typedArrayType( byteLength / typedArrayType.BYTES_PER_ELEMENT );
gl.bindBuffer( gl.PIXEL_PACK_BUFFER, buffer );
gl.getBufferSubData( gl.PIXEL_PACK_BUFFER, 0, dstBuffer );
gl.bindBuffer( gl.PIXEL_PACK_BUFFER, null );
gl.deleteFramebuffer( fb );
return dstBuffer;
}
_getTypedArrayType( glType ) {
const { gl } = this;
if ( glType === gl.UNSIGNED_BYTE ) return Uint8Array;
if ( glType === gl.UNSIGNED_SHORT_4_4_4_4 ) return Uint16Array;
if ( glType === gl.UNSIGNED_SHORT_5_5_5_1 ) return Uint16Array;
if ( glType === gl.UNSIGNED_SHORT_5_6_5 ) return Uint16Array;
if ( glType === gl.UNSIGNED_SHORT ) return Uint16Array;
if ( glType === gl.UNSIGNED_INT ) return Uint32Array;
if ( glType === gl.FLOAT ) return Float32Array;
throw new Error( `Unsupported WebGL type: ${glType}` );
}
_getBytesPerTexel( glFormat ) {
const { gl } = this;
if ( glFormat === gl.RGBA ) return 4;
if ( glFormat === gl.RGB ) return 3;
if ( glFormat === gl.ALPHA ) return 1;
}
}
class WebGLExtensions {
constructor( backend ) {
this.backend = backend;
this.gl = this.backend.gl;
this.availableExtensions = this.gl.getSupportedExtensions();
this.extensions = {};
}
get( name ) {
let extension = this.extensions[ name ];
if ( extension === undefined ) {
extension = this.gl.getExtension( name );
this.extensions[ name ] = extension;
}
return extension;
}
has( name ) {
return this.availableExtensions.includes( name );
}
}
class WebGLCapabilities {
constructor( backend ) {
this.backend = backend;
this.maxAnisotropy = null;
}
getMaxAnisotropy() {
if ( this.maxAnisotropy !== null ) return this.maxAnisotropy;
const gl = this.backend.gl;
const extensions = this.backend.extensions;
if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) {
const extension = extensions.get( 'EXT_texture_filter_anisotropic' );
this.maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT );
} else {
this.maxAnisotropy = 0;
}
return this.maxAnisotropy;
}
}
const GLFeatureName = {
'WEBGL_multi_draw': 'WEBGL_multi_draw',
'WEBGL_compressed_texture_astc': 'texture-compression-astc',
'WEBGL_compressed_texture_etc': 'texture-compression-etc2',
'WEBGL_compressed_texture_etc1': 'texture-compression-etc1',
'WEBGL_compressed_texture_pvrtc': 'texture-compression-pvrtc',
'WEBKIT_WEBGL_compressed_texture_pvrtc': 'texture-compression-pvrtc',
'WEBGL_compressed_texture_s3tc': 'texture-compression-bc',
'EXT_texture_compression_bptc': 'texture-compression-bptc',
'EXT_disjoint_timer_query_webgl2': 'timestamp-query',
};
class WebGLBufferRenderer {
constructor( backend ) {
this.gl = backend.gl;
this.extensions = backend.extensions;
this.info = backend.renderer.info;
this.mode = null;
this.index = 0;
this.type = null;
this.object = null;
}
render( start, count ) {
const { gl, mode, object, type, info, index } = this;
if ( index !== 0 ) {
gl.drawElements( mode, count, type, start );
} else {
gl.drawArrays( mode, start, count );
}
info.update( object, count, mode, 1 );
}
renderInstances( start, count, primcount ) {
const { gl, mode, type, index, object, info } = this;
if ( primcount === 0 ) return;
if ( index !== 0 ) {
gl.drawElementsInstanced( mode, count, type, start, primcount );
} else {
gl.drawArraysInstanced( mode, start, count, primcount );
}
info.update( object, count, mode, primcount );
}
renderMultiDraw( starts, counts, drawCount ) {
const { extensions, mode, object, info } = this;
if ( drawCount === 0 ) return;
const extension = extensions.get( 'WEBGL_multi_draw' );
if ( extension === null ) {
for ( let i = 0; i < drawCount; i ++ ) {
this.render( starts[ i ], counts[ i ] );
}
} else {
if ( this.index !== 0 ) {
extension.multiDrawElementsWEBGL( mode, counts, 0, this.type, starts, 0, drawCount );
} else {
extension.multiDrawArraysWEBGL( mode, starts, 0, counts, 0, drawCount );
}
let elementCount = 0;
for ( let i = 0; i < drawCount; i ++ ) {
elementCount += counts[ i ];
}
info.update( object, elementCount, mode, 1 );
}
}
renderMultiDrawInstances( starts, counts, drawCount, primcount ) {
const { extensions, mode, object, info } = this;
if ( drawCount === 0 ) return;
const extension = extensions.get( 'WEBGL_multi_draw' );
if ( extension === null ) {
for ( let i = 0; i < drawCount; i ++ ) {
this.renderInstances( starts[ i ], counts[ i ], primcount[ i ] );
}
} else {
if ( this.index !== 0 ) {
extension.multiDrawElementsInstancedWEBGL( mode, counts, 0, this.type, starts, 0, primcount, 0, drawCount );
} else {
extension.multiDrawArraysInstancedWEBGL( mode, starts, 0, counts, 0, primcount, 0, drawCount );
}
let elementCount = 0;
for ( let i = 0; i < drawCount; i ++ ) {
elementCount += counts[ i ];
}
for ( let i = 0; i < primcount.length; i ++ ) {
info.update( object, elementCount, mode, primcount[ i ] );
}
}
}
//
}
//
class WebGLBackend extends Backend {
constructor( parameters = {} ) {
super( parameters );
this.isWebGLBackend = true;
}
init( renderer ) {
super.init( renderer );
//
const parameters = this.parameters;
const glContext = ( parameters.context !== undefined ) ? parameters.context : renderer.domElement.getContext( 'webgl2' );
this.gl = glContext;
this.extensions = new WebGLExtensions( this );
this.capabilities = new WebGLCapabilities( this );
this.attributeUtils = new WebGLAttributeUtils( this );
this.textureUtils = new WebGLTextureUtils( this );
this.bufferRenderer = new WebGLBufferRenderer( this );
this.state = new WebGLState( this );
this.utils = new WebGLUtils( this );
this.vaoCache = {};
this.transformFeedbackCache = {};
this.discard = false;
this.trackTimestamp = ( parameters.trackTimestamp === true );
this.extensions.get( 'EXT_color_buffer_float' );
this.extensions.get( 'WEBGL_multi_draw' );
this.disjoint = this.extensions.get( 'EXT_disjoint_timer_query_webgl2' );
this.parallel = this.extensions.get( 'KHR_parallel_shader_compile' );
this._currentContext = null;
}
get coordinateSystem() {
return WebGLCoordinateSystem;
}
async getArrayBufferAsync( attribute ) {
return await this.attributeUtils.getArrayBufferAsync( attribute );
}
initTimestampQuery( renderContext ) {
if ( ! this.disjoint || ! this.trackTimestamp ) return;
const renderContextData = this.get( renderContext );
if ( this.queryRunning ) {
if ( ! renderContextData.queryQueue ) renderContextData.queryQueue = [];
renderContextData.queryQueue.push( renderContext );
return;
}
if ( renderContextData.activeQuery ) {
this.gl.endQuery( this.disjoint.TIME_ELAPSED_EXT );
renderContextData.activeQuery = null;
}
renderContextData.activeQuery = this.gl.createQuery();
if ( renderContextData.activeQuery !== null ) {
this.gl.beginQuery( this.disjoint.TIME_ELAPSED_EXT, renderContextData.activeQuery );
this.queryRunning = true;
}
}
// timestamp utils
prepareTimestampBuffer( renderContext ) {
if ( ! this.disjoint || ! this.trackTimestamp ) return;
const renderContextData = this.get( renderContext );
if ( renderContextData.activeQuery ) {
this.gl.endQuery( this.disjoint.TIME_ELAPSED_EXT );
if ( ! renderContextData.gpuQueries ) renderContextData.gpuQueries = [];
renderContextData.gpuQueries.push( { query: renderContextData.activeQuery } );
renderContextData.activeQuery = null;
this.queryRunning = false;
if ( renderContextData.queryQueue && renderContextData.queryQueue.length > 0 ) {
const nextRenderContext = renderContextData.queryQueue.shift();
this.initTimestampQuery( nextRenderContext );
}
}
}
async resolveTimestampAsync( renderContext, type = 'render' ) {
if ( ! this.disjoint || ! this.trackTimestamp ) return;
const renderContextData = this.get( renderContext );
if ( ! renderContextData.gpuQueries ) renderContextData.gpuQueries = [];
for ( let i = 0; i < renderContextData.gpuQueries.length; i ++ ) {
const queryInfo = renderContextData.gpuQueries[ i ];
const available = this.gl.getQueryParameter( queryInfo.query, this.gl.QUERY_RESULT_AVAILABLE );
const disjoint = this.gl.getParameter( this.disjoint.GPU_DISJOINT_EXT );
if ( available && ! disjoint ) {
const elapsed = this.gl.getQueryParameter( queryInfo.query, this.gl.QUERY_RESULT );
const duration = Number( elapsed ) / 1000000; // Convert nanoseconds to milliseconds
this.gl.deleteQuery( queryInfo.query );
renderContextData.gpuQueries.splice( i, 1 ); // Remove the processed query
i --;
this.renderer.info.updateTimestamp( type, duration );
}
}
}
getContext() {
return this.gl;
}
beginRender( renderContext ) {
const { gl } = this;
const renderContextData = this.get( renderContext );
//
//
this.initTimestampQuery( renderContext );
renderContextData.previousContext = this._currentContext;
this._currentContext = renderContext;
this._setFramebuffer( renderContext );
this.clear( renderContext.clearColor, renderContext.clearDepth, renderContext.clearStencil, renderContext, false );
//
if ( renderContext.viewport ) {
this.updateViewport( renderContext );
} else {
gl.viewport( 0, 0, gl.drawingBufferWidth, gl.drawingBufferHeight );
}
if ( renderContext.scissor ) {
const { x, y, width, height } = renderContext.scissorValue;
gl.scissor( x, y, width, height );
}
const occlusionQueryCount = renderContext.occlusionQueryCount;
if ( occlusionQueryCount > 0 ) {
// Get a reference to the array of objects with queries. The renderContextData property
// can be changed by another render pass before the async reading of all previous queries complete
renderContextData.currentOcclusionQueries = renderContextData.occlusionQueries;
renderContextData.currentOcclusionQueryObjects = renderContextData.occlusionQueryObjects;
renderContextData.lastOcclusionObject = null;
renderContextData.occlusionQueries = new Array( occlusionQueryCount );
renderContextData.occlusionQueryObjects = new Array( occlusionQueryCount );
renderContextData.occlusionQueryIndex = 0;
}
}
finishRender( renderContext ) {
const { gl, state } = this;
const renderContextData = this.get( renderContext );
const previousContext = renderContextData.previousContext;
const textures = renderContext.textures;
if ( textures !== null ) {
for ( let i = 0; i < textures.length; i ++ ) {
const texture = textures[ i ];
if ( texture.generateMipmaps ) {
this.generateMipmaps( texture );
}
}
}
this._currentContext = previousContext;
if ( renderContext.textures !== null && renderContext.renderTarget ) {
const renderTargetContextData = this.get( renderContext.renderTarget );
const { samples } = renderContext.renderTarget;
const fb = renderTargetContextData.framebuffer;
const mask = gl.COLOR_BUFFER_BIT;
if ( samples > 0 ) {
const msaaFrameBuffer = renderTargetContextData.msaaFrameBuffer;
const textures = renderContext.textures;
state.bindFramebuffer( gl.READ_FRAMEBUFFER, msaaFrameBuffer );
state.bindFramebuffer( gl.DRAW_FRAMEBUFFER, fb );
for ( let i = 0; i < textures.length; i ++ ) {
// TODO Add support for MRT
gl.blitFramebuffer( 0, 0, renderContext.width, renderContext.height, 0, 0, renderContext.width, renderContext.height, mask, gl.NEAREST );
gl.invalidateFramebuffer( gl.READ_FRAMEBUFFER, renderTargetContextData.invalidationArray );
}
}
}
if ( previousContext !== null ) {
this._setFramebuffer( previousContext );
if ( previousContext.viewport ) {
this.updateViewport( previousContext );
} else {
const gl = this.gl;
gl.viewport( 0, 0, gl.drawingBufferWidth, gl.drawingBufferHeight );
}
}
const occlusionQueryCount = renderContext.occlusionQueryCount;
if ( occlusionQueryCount > 0 ) {
const renderContextData = this.get( renderContext );
if ( occlusionQueryCount > renderContextData.occlusionQueryIndex ) {
const { gl } = this;
gl.endQuery( gl.ANY_SAMPLES_PASSED );
}
this.resolveOccludedAsync( renderContext );
}
this.prepareTimestampBuffer( renderContext );
}
resolveOccludedAsync( renderContext ) {
const renderContextData = this.get( renderContext );
// handle occlusion query results
const { currentOcclusionQueries, currentOcclusionQueryObjects } = renderContextData;
if ( currentOcclusionQueries && currentOcclusionQueryObjects ) {
const occluded = new WeakSet();
const { gl } = this;
renderContextData.currentOcclusionQueryObjects = null;
renderContextData.currentOcclusionQueries = null;
const check = () => {
let completed = 0;
// check all queries and requeue as appropriate
for ( let i = 0; i < currentOcclusionQueries.length; i ++ ) {
const query = currentOcclusionQueries[ i ];
if ( query === null ) continue;
if ( gl.getQueryParameter( query, gl.QUERY_RESULT_AVAILABLE ) ) {
if ( gl.getQueryParameter( query, gl.QUERY_RESULT ) > 0 ) occluded.add( currentOcclusionQueryObjects[ i ] );
currentOcclusionQueries[ i ] = null;
gl.deleteQuery( query );
completed ++;
}
}
if ( completed < currentOcclusionQueries.length ) {
requestAnimationFrame( check );
} else {
renderContextData.occluded = occluded;
}
};
check();
}
}
isOccluded( renderContext, object ) {
const renderContextData = this.get( renderContext );
return renderContextData.occluded && renderContextData.occluded.has( object );
}
updateViewport( renderContext ) {
const gl = this.gl;
const { x, y, width, height } = renderContext.viewportValue;
gl.viewport( x, y, width, height );
}
setScissorTest( boolean ) {
const gl = this.gl;
if ( boolean ) {
gl.enable( gl.SCISSOR_TEST );
} else {
gl.disable( gl.SCISSOR_TEST );
}
}
clear( color, depth, stencil, descriptor = null, setFrameBuffer = true ) {
const { gl } = this;
if ( descriptor === null ) {
descriptor = {
textures: null,
clearColorValue: this.getClearColor()
};
}
//
let clear = 0;
if ( color ) clear |= gl.COLOR_BUFFER_BIT;
if ( depth ) clear |= gl.DEPTH_BUFFER_BIT;
if ( stencil ) clear |= gl.STENCIL_BUFFER_BIT;
if ( clear !== 0 ) {
const clearColor = descriptor.clearColorValue || this.getClearColor();
if ( depth ) this.state.setDepthMask( true );
if ( descriptor.textures === null ) {
gl.clearColor( clearColor.r, clearColor.g, clearColor.b, clearColor.a );
gl.clear( clear );
} else {
if ( setFrameBuffer ) this._setFramebuffer( descriptor );
if ( color ) {
for ( let i = 0; i < descriptor.textures.length; i ++ ) {
gl.clearBufferfv( gl.COLOR, i, [ clearColor.r, clearColor.g, clearColor.b, clearColor.a ] );
}
}
if ( depth && stencil ) {
gl.clearBufferfi( gl.DEPTH_STENCIL, 0, 1, 0 );
} else if ( depth ) {
gl.clearBufferfv( gl.DEPTH, 0, [ 1.0 ] );
} else if ( stencil ) {
gl.clearBufferiv( gl.STENCIL, 0, [ 0 ] );
}
}
}
}
beginCompute( computeGroup ) {
const gl = this.gl;
gl.bindFramebuffer( gl.FRAMEBUFFER, null );
this.initTimestampQuery( computeGroup );
}
compute( computeGroup, computeNode, bindings, pipeline ) {
const gl = this.gl;
if ( ! this.discard ) {
// required here to handle async behaviour of render.compute()
gl.enable( gl.RASTERIZER_DISCARD );
this.discard = true;
}
const { programGPU, transformBuffers, attributes } = this.get( pipeline );
const vaoKey = this._getVaoKey( null, attributes );
const vaoGPU = this.vaoCache[ vaoKey ];
if ( vaoGPU === undefined ) {
this._createVao( null, attributes );
} else {
gl.bindVertexArray( vaoGPU );
}
gl.useProgram( programGPU );
this._bindUniforms( bindings );
const transformFeedbackGPU = this._getTransformFeedback( transformBuffers );
gl.bindTransformFeedback( gl.TRANSFORM_FEEDBACK, transformFeedbackGPU );
gl.beginTransformFeedback( gl.POINTS );
if ( attributes[ 0 ].isStorageInstancedBufferAttribute ) {
gl.drawArraysInstanced( gl.POINTS, 0, 1, computeNode.count );
} else {
gl.drawArrays( gl.POINTS, 0, computeNode.count );
}
gl.endTransformFeedback();
gl.bindTransformFeedback( gl.TRANSFORM_FEEDBACK, null );
// switch active buffers
for ( let i = 0; i < transformBuffers.length; i ++ ) {
const dualAttributeData = transformBuffers[ i ];
if ( dualAttributeData.pbo ) {
this.textureUtils.copyBufferToTexture( dualAttributeData.transformBuffer, dualAttributeData.pbo );
}
dualAttributeData.switchBuffers();
}
}
finishCompute( computeGroup ) {
const gl = this.gl;
this.discard = false;
gl.disable( gl.RASTERIZER_DISCARD );
this.prepareTimestampBuffer( computeGroup );
}
draw( renderObject/*, info*/ ) {
const { object, pipeline, material, context } = renderObject;
const { programGPU } = this.get( pipeline );
const { gl, state } = this;
const contextData = this.get( context );
//
this._bindUniforms( renderObject.getBindings() );
const frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 );
state.setMaterial( material, frontFaceCW );
gl.useProgram( programGPU );
//
let vaoGPU = renderObject.staticVao;
if ( vaoGPU === undefined ) {
const vaoKey = this._getVaoKey( renderObject.getIndex(), renderObject.getAttributes() );
vaoGPU = this.vaoCache[ vaoKey ];
if ( vaoGPU === undefined ) {
let staticVao;
( { vaoGPU, staticVao } = this._createVao( renderObject.getIndex(), renderObject.getAttributes() ) );
if ( staticVao ) renderObject.staticVao = vaoGPU;
}
}
gl.bindVertexArray( vaoGPU );
//
const index = renderObject.getIndex();
const geometry = renderObject.geometry;
const drawRange = renderObject.drawRange;
const firstVertex = drawRange.start;
//
const lastObject = contextData.lastOcclusionObject;
if ( lastObject !== object && lastObject !== undefined ) {
if ( lastObject !== null && lastObject.occlusionTest === true ) {
gl.endQuery( gl.ANY_SAMPLES_PASSED );
contextData.occlusionQueryIndex ++;
}
if ( object.occlusionTest === true ) {
const query = gl.createQuery();
gl.beginQuery( gl.ANY_SAMPLES_PASSED, query );
contextData.occlusionQueries[ contextData.occlusionQueryIndex ] = query;
contextData.occlusionQueryObjects[ contextData.occlusionQueryIndex ] = object;
}
contextData.lastOcclusionObject = object;
}
//
const renderer = this.bufferRenderer;
if ( object.isPoints ) renderer.mode = gl.POINTS;
else if ( object.isLineSegments ) renderer.mode = gl.LINES;
else if ( object.isLine ) renderer.mode = gl.LINE_STRIP;
else if ( object.isLineLoop ) renderer.mode = gl.LINE_LOOP;
else {
if ( material.wireframe === true ) {
state.setLineWidth( material.wireframeLinewidth * this.renderer.getPixelRatio() );
renderer.mode = gl.LINES;
} else {
renderer.mode = gl.TRIANGLES;
}
}
//
let count;
renderer.object = object;
if ( index !== null ) {
const indexData = this.get( index );
const indexCount = ( drawRange.count !== Infinity ) ? drawRange.count : index.count;
renderer.index = index.count;
renderer.type = indexData.type;
count = indexCount;
} else {
renderer.index = 0;
const vertexCount = ( drawRange.count !== Infinity ) ? drawRange.count : geometry.attributes.position.count;
count = vertexCount;
}
const instanceCount = this.getInstanceCount( renderObject );
if ( object.isBatchedMesh ) {
if ( object._multiDrawInstances !== null ) {
renderer.renderMultiDrawInstances( object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount, object._multiDrawInstances );
} else if ( ! this.hasFeature( 'WEBGL_multi_draw' ) ) {
warnOnce( 'THREE.WebGLRenderer: WEBGL_multi_draw not supported.' );
} else {
renderer.renderMultiDraw( object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount );
}
} else if ( instanceCount > 1 ) {
renderer.renderInstances( firstVertex, count, instanceCount );
} else {
renderer.render( firstVertex, count );
}
//
gl.bindVertexArray( null );
}
needsRenderUpdate( /*renderObject*/ ) {
return false;
}
getRenderCacheKey( renderObject ) {
return renderObject.id;
}
// textures
createDefaultTexture( texture ) {
this.textureUtils.createDefaultTexture( texture );
}
createTexture( texture, options ) {
this.textureUtils.createTexture( texture, options );
}
updateTexture( texture, options ) {
this.textureUtils.updateTexture( texture, options );
}
generateMipmaps( texture ) {
this.textureUtils.generateMipmaps( texture );
}
destroyTexture( texture ) {
this.textureUtils.destroyTexture( texture );
}
copyTextureToBuffer( texture, x, y, width, height ) {
return this.textureUtils.copyTextureToBuffer( texture, x, y, width, height );
}
createSampler( /*texture*/ ) {
//console.warn( 'Abstract class.' );
}
destroySampler() {}
// node builder
createNodeBuilder( object, renderer ) {
return new GLSLNodeBuilder( object, renderer );
}
// program
createProgram( program ) {
const gl = this.gl;
const { stage, code } = program;
const shader = stage === 'fragment' ? gl.createShader( gl.FRAGMENT_SHADER ) : gl.createShader( gl.VERTEX_SHADER );
gl.shaderSource( shader, code );
gl.compileShader( shader );
this.set( program, {
shaderGPU: shader
} );
}
destroyProgram( /*program*/ ) {
console.warn( 'Abstract class.' );
}
createRenderPipeline( renderObject, promises ) {
const gl = this.gl;
const pipeline = renderObject.pipeline;
// Program
const { fragmentProgram, vertexProgram } = pipeline;
const programGPU = gl.createProgram();
const fragmentShader = this.get( fragmentProgram ).shaderGPU;
const vertexShader = this.get( vertexProgram ).shaderGPU;
gl.attachShader( programGPU, fragmentShader );
gl.attachShader( programGPU, vertexShader );
gl.linkProgram( programGPU );
this.set( pipeline, {
programGPU,
fragmentShader,
vertexShader
} );
if ( promises !== null && this.parallel ) {
const p = new Promise( ( resolve /*, reject*/ ) => {
const parallel = this.parallel;
const checkStatus = () => {
if ( gl.getProgramParameter( programGPU, parallel.COMPLETION_STATUS_KHR ) ) {
this._completeCompile( renderObject, pipeline );
resolve();
} else {
requestAnimationFrame( checkStatus );
}
};
checkStatus();
} );
promises.push( p );
return;
}
this._completeCompile( renderObject, pipeline );
}
_handleSource( string, errorLine ) {
const lines = string.split( '\n' );
const lines2 = [];
const from = Math.max( errorLine - 6, 0 );
const to = Math.min( errorLine + 6, lines.length );
for ( let i = from; i < to; i ++ ) {
const line = i + 1;
lines2.push( `${line === errorLine ? '>' : ' '} ${line}: ${lines[ i ]}` );
}
return lines2.join( '\n' );
}
_getShaderErrors( gl, shader, type ) {
const status = gl.getShaderParameter( shader, gl.COMPILE_STATUS );
const errors = gl.getShaderInfoLog( shader ).trim();
if ( status && errors === '' ) return '';
const errorMatches = /ERROR: 0:(\d+)/.exec( errors );
if ( errorMatches ) {
const errorLine = parseInt( errorMatches[ 1 ] );
return type.toUpperCase() + '\n\n' + errors + '\n\n' + this._handleSource( gl.getShaderSource( shader ), errorLine );
} else {
return errors;
}
}
_logProgramError( programGPU, glFragmentShader, glVertexShader ) {
if ( this.renderer.debug.checkShaderErrors ) {
const gl = this.gl;
const programLog = gl.getProgramInfoLog( programGPU ).trim();
if ( gl.getProgramParameter( programGPU, gl.LINK_STATUS ) === false ) {
if ( typeof this.renderer.debug.onShaderError === 'function' ) {
this.renderer.debug.onShaderError( gl, programGPU, glVertexShader, glFragmentShader );
} else {
// default error reporting
const vertexErrors = this._getShaderErrors( gl, glVertexShader, 'vertex' );
const fragmentErrors = this._getShaderErrors( gl, glFragmentShader, 'fragment' );
console.error(
'THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' +
'VALIDATE_STATUS ' + gl.getProgramParameter( programGPU, gl.VALIDATE_STATUS ) + '\n\n' +
'Program Info Log: ' + programLog + '\n' +
vertexErrors + '\n' +
fragmentErrors
);
}
} else if ( programLog !== '' ) {
console.warn( 'THREE.WebGLProgram: Program Info Log:', programLog );
}
}
}
_completeCompile( renderObject, pipeline ) {
const gl = this.gl;
const pipelineData = this.get( pipeline );
const { programGPU, fragmentShader, vertexShader } = pipelineData;
if ( gl.getProgramParameter( programGPU, gl.LINK_STATUS ) === false ) {
this._logProgramError( programGPU, fragmentShader, vertexShader );
}
gl.useProgram( programGPU );
// Bindings
const bindings = renderObject.getBindings();
this._setupBindings( bindings, programGPU );
//
this.set( pipeline, {
programGPU
} );
}
createComputePipeline( computePipeline, bindings ) {
const gl = this.gl;
// Program
const fragmentProgram = {
stage: 'fragment',
code: '#version 300 es\nprecision highp float;\nvoid main() {}'
};
this.createProgram( fragmentProgram );
const { computeProgram } = computePipeline;
const programGPU = gl.createProgram();
const fragmentShader = this.get( fragmentProgram ).shaderGPU;
const vertexShader = this.get( computeProgram ).shaderGPU;
const transforms = computeProgram.transforms;
const transformVaryingNames = [];
const transformAttributeNodes = [];
for ( let i = 0; i < transforms.length; i ++ ) {
const transform = transforms[ i ];
transformVaryingNames.push( transform.varyingName );
transformAttributeNodes.push( transform.attributeNode );
}
gl.attachShader( programGPU, fragmentShader );
gl.attachShader( programGPU, vertexShader );
gl.transformFeedbackVaryings(
programGPU,
transformVaryingNames,
gl.SEPARATE_ATTRIBS
);
gl.linkProgram( programGPU );
if ( gl.getProgramParameter( programGPU, gl.LINK_STATUS ) === false ) {
this._logProgramError( programGPU, fragmentShader, vertexShader );
}
gl.useProgram( programGPU );
// Bindings
this.createBindings( null, bindings );
this._setupBindings( bindings, programGPU );
const attributeNodes = computeProgram.attributes;
const attributes = [];
const transformBuffers = [];
for ( let i = 0; i < attributeNodes.length; i ++ ) {
const attribute = attributeNodes[ i ].node.attribute;
attributes.push( attribute );
if ( ! this.has( attribute ) ) this.attributeUtils.createAttribute( attribute, gl.ARRAY_BUFFER );
}
for ( let i = 0; i < transformAttributeNodes.length; i ++ ) {
const attribute = transformAttributeNodes[ i ].attribute;
if ( ! this.has( attribute ) ) this.attributeUtils.createAttribute( attribute, gl.ARRAY_BUFFER );
const attributeData = this.get( attribute );
transformBuffers.push( attributeData );
}
//
this.set( computePipeline, {
programGPU,
transformBuffers,
attributes
} );
}
createBindings( bindGroup, bindings ) {
this.updateBindings( bindGroup, bindings );
}
updateBindings( bindGroup, bindings ) {
const { gl } = this;
let groupIndex = 0;
let textureIndex = 0;
for ( const bindGroup of bindings ) {
for ( const binding of bindGroup.bindings ) {
if ( binding.isUniformsGroup || binding.isUniformBuffer ) {
const bufferGPU = gl.createBuffer();
const data = binding.buffer;
gl.bindBuffer( gl.UNIFORM_BUFFER, bufferGPU );
gl.bufferData( gl.UNIFORM_BUFFER, data, gl.DYNAMIC_DRAW );
gl.bindBufferBase( gl.UNIFORM_BUFFER, groupIndex, bufferGPU );
this.set( binding, {
index: groupIndex ++,
bufferGPU
} );
} else if ( binding.isSampledTexture ) {
const { textureGPU, glTextureType } = this.get( binding.texture );
this.set( binding, {
index: textureIndex ++,
textureGPU,
glTextureType
} );
}
}
}
}
updateBinding( binding ) {
const gl = this.gl;
if ( binding.isUniformsGroup || binding.isUniformBuffer ) {
const bindingData = this.get( binding );
const bufferGPU = bindingData.bufferGPU;
const data = binding.buffer;
gl.bindBuffer( gl.UNIFORM_BUFFER, bufferGPU );
gl.bufferData( gl.UNIFORM_BUFFER, data, gl.DYNAMIC_DRAW );
}
}
// attributes
createIndexAttribute( attribute ) {
const gl = this.gl;
this.attributeUtils.createAttribute( attribute, gl.ELEMENT_ARRAY_BUFFER );
}
createAttribute( attribute ) {
if ( this.has( attribute ) ) return;
const gl = this.gl;
this.attributeUtils.createAttribute( attribute, gl.ARRAY_BUFFER );
}
createStorageAttribute( attribute ) {
if ( this.has( attribute ) ) return;
const gl = this.gl;
this.attributeUtils.createAttribute( attribute, gl.ARRAY_BUFFER );
}
updateAttribute( attribute ) {
this.attributeUtils.updateAttribute( attribute );
}
destroyAttribute( attribute ) {
this.attributeUtils.destroyAttribute( attribute );
}
updateSize() {
//console.warn( 'Abstract class.' );
}
hasFeature( name ) {
const keysMatching = Object.keys( GLFeatureName ).filter( key => GLFeatureName[ key ] === name );
const extensions = this.extensions;
for ( let i = 0; i < keysMatching.length; i ++ ) {
if ( extensions.has( keysMatching[ i ] ) ) return true;
}
return false;
}
getMaxAnisotropy() {
return this.capabilities.getMaxAnisotropy();
}
copyTextureToTexture( position, srcTexture, dstTexture, level ) {
this.textureUtils.copyTextureToTexture( position, srcTexture, dstTexture, level );
}
copyFramebufferToTexture( texture, renderContext ) {
this.textureUtils.copyFramebufferToTexture( texture, renderContext );
}
_setFramebuffer( renderContext ) {
const { gl, state } = this;
let currentFrameBuffer = null;
if ( renderContext.textures !== null ) {
const renderTarget = renderContext.renderTarget;
const renderTargetContextData = this.get( renderTarget );
const { samples, depthBuffer, stencilBuffer } = renderTarget;
const cubeFace = this.renderer._activeCubeFace;
const isCube = renderTarget.isWebGLCubeRenderTarget === true;
let msaaFb = renderTargetContextData.msaaFrameBuffer;
let depthRenderbuffer = renderTargetContextData.depthRenderbuffer;
let fb;
if ( isCube ) {
if ( renderTargetContextData.cubeFramebuffers === undefined ) {
renderTargetContextData.cubeFramebuffers = [];
}
fb = renderTargetContextData.cubeFramebuffers[ cubeFace ];
} else {
fb = renderTargetContextData.framebuffer;
}
if ( fb === undefined ) {
fb = gl.createFramebuffer();
state.bindFramebuffer( gl.FRAMEBUFFER, fb );
const textures = renderContext.textures;
if ( isCube ) {
renderTargetContextData.cubeFramebuffers[ cubeFace ] = fb;
const { textureGPU } = this.get( textures[ 0 ] );
gl.framebufferTexture2D( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_CUBE_MAP_POSITIVE_X + cubeFace, textureGPU, 0 );
} else {
for ( let i = 0; i < textures.length; i ++ ) {
const texture = textures[ i ];
const textureData = this.get( texture );
textureData.renderTarget = renderContext.renderTarget;
const attachment = gl.COLOR_ATTACHMENT0 + i;
gl.framebufferTexture2D( gl.FRAMEBUFFER, attachment, gl.TEXTURE_2D, textureData.textureGPU, 0 );
}
renderTargetContextData.framebuffer = fb;
state.drawBuffers( renderContext, fb );
}
if ( renderContext.depthTexture !== null ) {
const textureData = this.get( renderContext.depthTexture );
const depthStyle = stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT;
gl.framebufferTexture2D( gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, textureData.textureGPU, 0 );
}
}
if ( samples > 0 ) {
if ( msaaFb === undefined ) {
const invalidationArray = [];
msaaFb = gl.createFramebuffer();
state.bindFramebuffer( gl.FRAMEBUFFER, msaaFb );
const msaaRenderbuffers = [];
const textures = renderContext.textures;
for ( let i = 0; i < textures.length; i ++ ) {
msaaRenderbuffers[ i ] = gl.createRenderbuffer();
gl.bindRenderbuffer( gl.RENDERBUFFER, msaaRenderbuffers[ i ] );
invalidationArray.push( gl.COLOR_ATTACHMENT0 + i );
if ( depthBuffer ) {
const depthStyle = stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT;
invalidationArray.push( depthStyle );
}
const texture = renderContext.textures[ i ];
const textureData = this.get( texture );
gl.renderbufferStorageMultisample( gl.RENDERBUFFER, samples, textureData.glInternalFormat, renderContext.width, renderContext.height );
gl.framebufferRenderbuffer( gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0 + i, gl.RENDERBUFFER, msaaRenderbuffers[ i ] );
}
renderTargetContextData.msaaFrameBuffer = msaaFb;
renderTargetContextData.msaaRenderbuffers = msaaRenderbuffers;
if ( depthRenderbuffer === undefined ) {
depthRenderbuffer = gl.createRenderbuffer();
this.textureUtils.setupRenderBufferStorage( depthRenderbuffer, renderContext );
renderTargetContextData.depthRenderbuffer = depthRenderbuffer;
const depthStyle = stencilBuffer ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT;
invalidationArray.push( depthStyle );
}
renderTargetContextData.invalidationArray = invalidationArray;
}
currentFrameBuffer = renderTargetContextData.msaaFrameBuffer;
} else {
currentFrameBuffer = fb;
}
}
state.bindFramebuffer( gl.FRAMEBUFFER, currentFrameBuffer );
}
_getVaoKey( index, attributes ) {
let key = [];
if ( index !== null ) {
const indexData = this.get( index );
key += ':' + indexData.id;
}
for ( let i = 0; i < attributes.length; i ++ ) {
const attributeData = this.get( attributes[ i ] );
key += ':' + attributeData.id;
}
return key;
}
_createVao( index, attributes ) {
const { gl } = this;
const vaoGPU = gl.createVertexArray();
let key = '';
let staticVao = true;
gl.bindVertexArray( vaoGPU );
if ( index !== null ) {
const indexData = this.get( index );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, indexData.bufferGPU );
key += ':' + indexData.id;
}
for ( let i = 0; i < attributes.length; i ++ ) {
const attribute = attributes[ i ];
const attributeData = this.get( attribute );
key += ':' + attributeData.id;
gl.bindBuffer( gl.ARRAY_BUFFER, attributeData.bufferGPU );
gl.enableVertexAttribArray( i );
if ( attribute.isStorageBufferAttribute || attribute.isStorageInstancedBufferAttribute ) staticVao = false;
let stride, offset;
if ( attribute.isInterleavedBufferAttribute === true ) {
stride = attribute.data.stride * attributeData.bytesPerElement;
offset = attribute.offset * attributeData.bytesPerElement;
} else {
stride = 0;
offset = 0;
}
if ( attributeData.isInteger ) {
gl.vertexAttribIPointer( i, attribute.itemSize, attributeData.type, stride, offset );
} else {
gl.vertexAttribPointer( i, attribute.itemSize, attributeData.type, attribute.normalized, stride, offset );
}
if ( attribute.isInstancedBufferAttribute && ! attribute.isInterleavedBufferAttribute ) {
gl.vertexAttribDivisor( i, attribute.meshPerAttribute );
} else if ( attribute.isInterleavedBufferAttribute && attribute.data.isInstancedInterleavedBuffer ) {
gl.vertexAttribDivisor( i, attribute.data.meshPerAttribute );
}
}
gl.bindBuffer( gl.ARRAY_BUFFER, null );
this.vaoCache[ key ] = vaoGPU;
return { vaoGPU, staticVao };
}
_getTransformFeedback( transformBuffers ) {
let key = '';
for ( let i = 0; i < transformBuffers.length; i ++ ) {
key += ':' + transformBuffers[ i ].id;
}
let transformFeedbackGPU = this.transformFeedbackCache[ key ];
if ( transformFeedbackGPU !== undefined ) {
return transformFeedbackGPU;
}
const gl = this.gl;
transformFeedbackGPU = gl.createTransformFeedback();
gl.bindTransformFeedback( gl.TRANSFORM_FEEDBACK, transformFeedbackGPU );
for ( let i = 0; i < transformBuffers.length; i ++ ) {
const attributeData = transformBuffers[ i ];
gl.bindBufferBase( gl.TRANSFORM_FEEDBACK_BUFFER, i, attributeData.transformBuffer );
}
gl.bindTransformFeedback( gl.TRANSFORM_FEEDBACK, null );
this.transformFeedbackCache[ key ] = transformFeedbackGPU;
return transformFeedbackGPU;
}
_setupBindings( bindings, programGPU ) {
const gl = this.gl;
for ( const bindGroup of bindings ) {
for ( const binding of bindGroup.bindings ) {
const bindingData = this.get( binding );
const index = bindingData.index;
if ( binding.isUniformsGroup || binding.isUniformBuffer ) {
const location = gl.getUniformBlockIndex( programGPU, binding.name );
gl.uniformBlockBinding( programGPU, location, index );
} else if ( binding.isSampledTexture ) {
const location = gl.getUniformLocation( programGPU, binding.name );
gl.uniform1i( location, index );
}
}
}
}
_bindUniforms( bindings ) {
const { gl, state } = this;
for ( const bindGroup of bindings ) {
for ( const binding of bindGroup.bindings ) {
const bindingData = this.get( binding );
const index = bindingData.index;
if ( binding.isUniformsGroup || binding.isUniformBuffer ) {
gl.bindBufferBase( gl.UNIFORM_BUFFER, index, bindingData.bufferGPU );
} else if ( binding.isSampledTexture ) {
state.bindTexture( bindingData.glTextureType, bindingData.textureGPU, gl.TEXTURE0 + index );
}
}
}
}
}
class Sampler extends Binding {
constructor( name, texture ) {
super( name );
this.texture = texture;
this.version = texture ? texture.version : 0;
this.isSampler = true;
}
}
class NodeSampler extends Sampler {
constructor( name, textureNode, groupNode ) {
super( name, textureNode ? textureNode.value : null );
this.textureNode = textureNode;
this.groupNode = groupNode;
}
update() {
this.texture = this.textureNode.value;
}
}
class StorageBuffer extends Buffer {
constructor( name, attribute ) {
super( name, attribute ? attribute.array : null );
this.attribute = attribute;
this.isStorageBuffer = true;
}
}
let _id = 0;
class NodeStorageBuffer extends StorageBuffer {
constructor( nodeUniform, groupNode ) {
super( 'StorageBuffer_' + _id ++, nodeUniform ? nodeUniform.value : null );
this.nodeUniform = nodeUniform;
this.access = nodeUniform ? nodeUniform.access : GPUBufferBindingType.Storage;
this.groupNode = groupNode;
}
get buffer() {
return this.nodeUniform.value;
}
}
class WebGPUTexturePassUtils {
constructor( device ) {
this.device = device;
const mipmapVertexSource = `
struct VarysStruct {
@builtin( position ) Position: vec4<f32>,
@location( 0 ) vTex : vec2<f32>
};
@vertex
fn main( @builtin( vertex_index ) vertexIndex : u32 ) -> VarysStruct {
var Varys : VarysStruct;
var pos = array< vec2<f32>, 4 >(
vec2<f32>( -1.0, 1.0 ),
vec2<f32>( 1.0, 1.0 ),
vec2<f32>( -1.0, -1.0 ),
vec2<f32>( 1.0, -1.0 )
);
var tex = array< vec2<f32>, 4 >(
vec2<f32>( 0.0, 0.0 ),
vec2<f32>( 1.0, 0.0 ),
vec2<f32>( 0.0, 1.0 ),
vec2<f32>( 1.0, 1.0 )
);
Varys.vTex = tex[ vertexIndex ];
Varys.Position = vec4<f32>( pos[ vertexIndex ], 0.0, 1.0 );
return Varys;
}
`;
const mipmapFragmentSource = `
@group( 0 ) @binding( 0 )
var imgSampler : sampler;
@group( 0 ) @binding( 1 )
var img : texture_2d<f32>;
@fragment
fn main( @location( 0 ) vTex : vec2<f32> ) -> @location( 0 ) vec4<f32> {
return textureSample( img, imgSampler, vTex );
}
`;
const flipYFragmentSource = `
@group( 0 ) @binding( 0 )
var imgSampler : sampler;
@group( 0 ) @binding( 1 )
var img : texture_2d<f32>;
@fragment
fn main( @location( 0 ) vTex : vec2<f32> ) -> @location( 0 ) vec4<f32> {
return textureSample( img, imgSampler, vec2( vTex.x, 1.0 - vTex.y ) );
}
`;
this.mipmapSampler = device.createSampler( { minFilter: GPUFilterMode.Linear } );
this.flipYSampler = device.createSampler( { minFilter: GPUFilterMode.Nearest } ); //@TODO?: Consider using textureLoad()
// We'll need a new pipeline for every texture format used.
this.transferPipelines = {};
this.flipYPipelines = {};
this.mipmapVertexShaderModule = device.createShaderModule( {
label: 'mipmapVertex',
code: mipmapVertexSource
} );
this.mipmapFragmentShaderModule = device.createShaderModule( {
label: 'mipmapFragment',
code: mipmapFragmentSource
} );
this.flipYFragmentShaderModule = device.createShaderModule( {
label: 'flipYFragment',
code: flipYFragmentSource
} );
}
getTransferPipeline( format ) {
let pipeline = this.transferPipelines[ format ];
if ( pipeline === undefined ) {
pipeline = this.device.createRenderPipeline( {
vertex: {
module: this.mipmapVertexShaderModule,
entryPoint: 'main'
},
fragment: {
module: this.mipmapFragmentShaderModule,
entryPoint: 'main',
targets: [ { format } ]
},
primitive: {
topology: GPUPrimitiveTopology.TriangleStrip,
stripIndexFormat: GPUIndexFormat.Uint32
},
layout: 'auto'
} );
this.transferPipelines[ format ] = pipeline;
}
return pipeline;
}
getFlipYPipeline( format ) {
let pipeline = this.flipYPipelines[ format ];
if ( pipeline === undefined ) {
pipeline = this.device.createRenderPipeline( {
vertex: {
module: this.mipmapVertexShaderModule,
entryPoint: 'main'
},
fragment: {
module: this.flipYFragmentShaderModule,
entryPoint: 'main',
targets: [ { format } ]
},
primitive: {
topology: GPUPrimitiveTopology.TriangleStrip,
stripIndexFormat: GPUIndexFormat.Uint32
},
layout: 'auto'
} );
this.flipYPipelines[ format ] = pipeline;
}
return pipeline;
}
flipY( textureGPU, textureGPUDescriptor, baseArrayLayer = 0 ) {
const format = textureGPUDescriptor.format;
const { width, height } = textureGPUDescriptor.size;
const transferPipeline = this.getTransferPipeline( format );
const flipYPipeline = this.getFlipYPipeline( format );
const tempTexture = this.device.createTexture( {
size: { width, height, depthOrArrayLayers: 1 },
format,
usage: GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.TEXTURE_BINDING
} );
const srcView = textureGPU.createView( {
baseMipLevel: 0,
mipLevelCount: 1,
dimension: GPUTextureViewDimension.TwoD,
baseArrayLayer
} );
const dstView = tempTexture.createView( {
baseMipLevel: 0,
mipLevelCount: 1,
dimension: GPUTextureViewDimension.TwoD,
baseArrayLayer: 0
} );
const commandEncoder = this.device.createCommandEncoder( {} );
const pass = ( pipeline, sourceView, destinationView ) => {
const bindGroupLayout = pipeline.getBindGroupLayout( 0 ); // @TODO: Consider making this static.
const bindGroup = this.device.createBindGroup( {
layout: bindGroupLayout,
entries: [ {
binding: 0,
resource: this.flipYSampler
}, {
binding: 1,
resource: sourceView
} ]
} );
const passEncoder = commandEncoder.beginRenderPass( {
colorAttachments: [ {
view: destinationView,
loadOp: GPULoadOp.Clear,
storeOp: GPUStoreOp.Store,
clearValue: [ 0, 0, 0, 0 ]
} ]
} );
passEncoder.setPipeline( pipeline );
passEncoder.setBindGroup( 0, bindGroup );
passEncoder.draw( 4, 1, 0, 0 );
passEncoder.end();
};
pass( transferPipeline, srcView, dstView );
pass( flipYPipeline, dstView, srcView );
this.device.queue.submit( [ commandEncoder.finish() ] );
tempTexture.destroy();
}
generateMipmaps( textureGPU, textureGPUDescriptor, baseArrayLayer = 0 ) {
const pipeline = this.getTransferPipeline( textureGPUDescriptor.format );
const commandEncoder = this.device.createCommandEncoder( {} );
const bindGroupLayout = pipeline.getBindGroupLayout( 0 ); // @TODO: Consider making this static.
let srcView = textureGPU.createView( {
baseMipLevel: 0,
mipLevelCount: 1,
dimension: GPUTextureViewDimension.TwoD,
baseArrayLayer
} );
for ( let i = 1; i < textureGPUDescriptor.mipLevelCount; i ++ ) {
const bindGroup = this.device.createBindGroup( {
layout: bindGroupLayout,
entries: [ {
binding: 0,
resource: this.mipmapSampler
}, {
binding: 1,
resource: srcView
} ]
} );
const dstView = textureGPU.createView( {
baseMipLevel: i,
mipLevelCount: 1,
dimension: GPUTextureViewDimension.TwoD,
baseArrayLayer
} );
const passEncoder = commandEncoder.beginRenderPass( {
colorAttachments: [ {
view: dstView,
loadOp: GPULoadOp.Clear,
storeOp: GPUStoreOp.Store,
clearValue: [ 0, 0, 0, 0 ]
} ]
} );
passEncoder.setPipeline( pipeline );
passEncoder.setBindGroup( 0, bindGroup );
passEncoder.draw( 4, 1, 0, 0 );
passEncoder.end();
srcView = dstView;
}
this.device.queue.submit( [ commandEncoder.finish() ] );
}
}
const _compareToWebGPU = {
[ NeverCompare ]: 'never',
[ LessCompare ]: 'less',
[ EqualCompare ]: 'equal',
[ LessEqualCompare ]: 'less-equal',
[ GreaterCompare ]: 'greater',
[ GreaterEqualCompare ]: 'greater-equal',
[ AlwaysCompare ]: 'always',
[ NotEqualCompare ]: 'not-equal'
};
const _flipMap = [ 0, 1, 3, 2, 4, 5 ];
class WebGPUTextureUtils {
constructor( backend ) {
this.backend = backend;
this._passUtils = null;
this.defaultTexture = {};
this.defaultCubeTexture = {};
this.defaultVideoFrame = null;
this.colorBuffer = null;
this.depthTexture = new DepthTexture();
this.depthTexture.name = 'depthBuffer';
}
createSampler( texture ) {
const backend = this.backend;
const device = backend.device;
const textureGPU = backend.get( texture );
const samplerDescriptorGPU = {
addressModeU: this._convertAddressMode( texture.wrapS ),
addressModeV: this._convertAddressMode( texture.wrapT ),
addressModeW: this._convertAddressMode( texture.wrapR ),
magFilter: this._convertFilterMode( texture.magFilter ),
minFilter: this._convertFilterMode( texture.minFilter ),
mipmapFilter: this._convertFilterMode( texture.minFilter ),
maxAnisotropy: texture.anisotropy
};
if ( texture.isDepthTexture && texture.compareFunction !== null ) {
samplerDescriptorGPU.compare = _compareToWebGPU[ texture.compareFunction ];
}
textureGPU.sampler = device.createSampler( samplerDescriptorGPU );
}
createDefaultTexture( texture ) {
let textureGPU;
const format = getFormat( texture );
if ( texture.isCubeTexture ) {
textureGPU = this._getDefaultCubeTextureGPU( format );
} else if ( texture.isVideoTexture ) {
this.backend.get( texture ).externalTexture = this._getDefaultVideoFrame();
} else {
textureGPU = this._getDefaultTextureGPU( format );
}
this.backend.get( texture ).texture = textureGPU;
}
createTexture( texture, options = {} ) {
const backend = this.backend;
const textureData = backend.get( texture );
if ( textureData.initialized ) {
throw new Error( 'WebGPUTextureUtils: Texture already initialized.' );
}
if ( options.needsMipmaps === undefined ) options.needsMipmaps = false;
if ( options.levels === undefined ) options.levels = 1;
if ( options.depth === undefined ) options.depth = 1;
const { width, height, depth, levels } = options;
const dimension = this._getDimension( texture );
const format = texture.internalFormat || options.format || getFormat( texture, backend.device );
let sampleCount = options.sampleCount !== undefined ? options.sampleCount : 1;
sampleCount = backend.utils.getSampleCount( sampleCount );
const primarySampleCount = texture.isRenderTargetTexture && ! texture.isMultisampleRenderTargetTexture ? 1 : sampleCount;
let usage = GPUTextureUsage.TEXTURE_BINDING | GPUTextureUsage.COPY_DST | GPUTextureUsage.COPY_SRC;
if ( texture.isStorageTexture === true ) {
usage |= GPUTextureUsage.STORAGE_BINDING;
}
if ( texture.isCompressedTexture !== true ) {
usage |= GPUTextureUsage.RENDER_ATTACHMENT;
}
const textureDescriptorGPU = {
label: texture.name,
size: {
width: width,
height: height,
depthOrArrayLayers: depth,
},
mipLevelCount: levels,
sampleCount: primarySampleCount,
dimension: dimension,
format: format,
usage: usage
};
// texture creation
if ( texture.isVideoTexture ) {
const video = texture.source.data;
const videoFrame = new VideoFrame( video );
textureDescriptorGPU.size.width = videoFrame.displayWidth;
textureDescriptorGPU.size.height = videoFrame.displayHeight;
videoFrame.close();
textureData.externalTexture = video;
} else {
if ( format === undefined ) {
console.warn( 'WebGPURenderer: Texture format not supported.' );
return this.createDefaultTexture( texture );
}
textureData.texture = backend.device.createTexture( textureDescriptorGPU );
}
if ( texture.isRenderTargetTexture && sampleCount > 1 && ! texture.isMultisampleRenderTargetTexture ) {
const msaaTextureDescriptorGPU = Object.assign( {}, textureDescriptorGPU );
msaaTextureDescriptorGPU.label = msaaTextureDescriptorGPU.label + '-msaa';
msaaTextureDescriptorGPU.sampleCount = sampleCount;
textureData.msaaTexture = backend.device.createTexture( msaaTextureDescriptorGPU );
}
textureData.initialized = true;
textureData.textureDescriptorGPU = textureDescriptorGPU;
}
destroyTexture( texture ) {
const backend = this.backend;
const textureData = backend.get( texture );
textureData.texture.destroy();
if ( textureData.msaaTexture !== undefined ) textureData.msaaTexture.destroy();
backend.delete( texture );
}
destroySampler( texture ) {
const backend = this.backend;
const textureData = backend.get( texture );
delete textureData.sampler;
}
generateMipmaps( texture ) {
const textureData = this.backend.get( texture );
if ( texture.isCubeTexture ) {
for ( let i = 0; i < 6; i ++ ) {
this._generateMipmaps( textureData.texture, textureData.textureDescriptorGPU, i );
}
} else {
this._generateMipmaps( textureData.texture, textureData.textureDescriptorGPU );
}
}
getColorBuffer() {
if ( this.colorBuffer ) this.colorBuffer.destroy();
const backend = this.backend;
const { width, height } = backend.getDrawingBufferSize();
this.colorBuffer = backend.device.createTexture( {
label: 'colorBuffer',
size: {
width: width,
height: height,
depthOrArrayLayers: 1
},
sampleCount: backend.utils.getSampleCount( backend.renderer.samples ),
format: GPUTextureFormat.BGRA8Unorm,
usage: GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.COPY_SRC
} );
return this.colorBuffer;
}
getDepthBuffer( depth = true, stencil = false ) {
const backend = this.backend;
const { width, height } = backend.getDrawingBufferSize();
const depthTexture = this.depthTexture;
const depthTextureGPU = backend.get( depthTexture ).texture;
let format, type;
if ( stencil ) {
format = DepthStencilFormat;
type = UnsignedInt248Type;
} else if ( depth ) {
format = DepthFormat;
type = UnsignedIntType;
}
if ( depthTextureGPU !== undefined ) {
if ( depthTexture.image.width === width && depthTexture.image.height === height && depthTexture.format === format && depthTexture.type === type ) {
return depthTextureGPU;
}
this.destroyTexture( depthTexture );
}
depthTexture.name = 'depthBuffer';
depthTexture.format = format;
depthTexture.type = type;
depthTexture.image.width = width;
depthTexture.image.height = height;
this.createTexture( depthTexture, { sampleCount: backend.utils.getSampleCount( backend.renderer.samples ), width, height } );
return backend.get( depthTexture ).texture;
}
updateTexture( texture, options ) {
const textureData = this.backend.get( texture );
const { textureDescriptorGPU } = textureData;
if ( texture.isRenderTargetTexture || ( textureDescriptorGPU === undefined /* unsupported texture format */ ) )
return;
// transfer texture data
if ( texture.isDataTexture ) {
this._copyBufferToTexture( options.image, textureData.texture, textureDescriptorGPU, 0, texture.flipY );
} else if ( texture.isDataArrayTexture || texture.isData3DTexture ) {
for ( let i = 0; i < options.image.depth; i ++ ) {
this._copyBufferToTexture( options.image, textureData.texture, textureDescriptorGPU, i, texture.flipY, i );
}
} else if ( texture.isCompressedTexture ) {
this._copyCompressedBufferToTexture( texture.mipmaps, textureData.texture, textureDescriptorGPU );
} else if ( texture.isCubeTexture ) {
this._copyCubeMapToTexture( options.images, textureData.texture, textureDescriptorGPU, texture.flipY );
} else if ( texture.isVideoTexture ) {
const video = texture.source.data;
textureData.externalTexture = video;
} else {
this._copyImageToTexture( options.image, textureData.texture, textureDescriptorGPU, 0, texture.flipY );
}
//
textureData.version = texture.version;
if ( texture.onUpdate ) texture.onUpdate( texture );
}
async copyTextureToBuffer( texture, x, y, width, height ) {
const device = this.backend.device;
const textureData = this.backend.get( texture );
const textureGPU = textureData.texture;
const format = textureData.textureDescriptorGPU.format;
const bytesPerTexel = this._getBytesPerTexel( format );
let bytesPerRow = width * bytesPerTexel;
bytesPerRow = Math.ceil( bytesPerRow / 256 ) * 256; // Align to 256 bytes
const readBuffer = device.createBuffer(
{
size: width * height * bytesPerTexel,
usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ
}
);
const encoder = device.createCommandEncoder();
encoder.copyTextureToBuffer(
{
texture: textureGPU,
origin: { x, y },
},
{
buffer: readBuffer,
bytesPerRow: bytesPerRow
},
{
width: width,
height: height
}
);
const typedArrayType = this._getTypedArrayType( format );
device.queue.submit( [ encoder.finish() ] );
await readBuffer.mapAsync( GPUMapMode.READ );
const buffer = readBuffer.getMappedRange();
return new typedArrayType( buffer );
}
_isEnvironmentTexture( texture ) {
const mapping = texture.mapping;
return ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ) || ( mapping === CubeReflectionMapping || mapping === CubeRefractionMapping );
}
_getDefaultTextureGPU( format ) {
let defaultTexture = this.defaultTexture[ format ];
if ( defaultTexture === undefined ) {
const texture = new Texture();
texture.minFilter = NearestFilter;
texture.magFilter = NearestFilter;
this.createTexture( texture, { width: 1, height: 1, format } );
this.defaultTexture[ format ] = defaultTexture = texture;
}
return this.backend.get( defaultTexture ).texture;
}
_getDefaultCubeTextureGPU( format ) {
let defaultCubeTexture = this.defaultTexture[ format ];
if ( defaultCubeTexture === undefined ) {
const texture = new CubeTexture();
texture.minFilter = NearestFilter;
texture.magFilter = NearestFilter;
this.createTexture( texture, { width: 1, height: 1, depth: 6 } );
this.defaultCubeTexture[ format ] = defaultCubeTexture = texture;
}
return this.backend.get( defaultCubeTexture ).texture;
}
_getDefaultVideoFrame() {
let defaultVideoFrame = this.defaultVideoFrame;
if ( defaultVideoFrame === null ) {
const init = {
timestamp: 0,
codedWidth: 1,
codedHeight: 1,
format: 'RGBA',
};
this.defaultVideoFrame = defaultVideoFrame = new VideoFrame( new Uint8Array( [ 0, 0, 0, 0xff ] ), init );
}
return defaultVideoFrame;
}
_copyCubeMapToTexture( images, textureGPU, textureDescriptorGPU, flipY ) {
for ( let i = 0; i < 6; i ++ ) {
const image = images[ i ];
const flipIndex = flipY === true ? _flipMap[ i ] : i;
if ( image.isDataTexture ) {
this._copyBufferToTexture( image.image, textureGPU, textureDescriptorGPU, flipIndex, flipY );
} else {
this._copyImageToTexture( image, textureGPU, textureDescriptorGPU, flipIndex, flipY );
}
}
}
_copyImageToTexture( image, textureGPU, textureDescriptorGPU, originDepth, flipY ) {
const device = this.backend.device;
device.queue.copyExternalImageToTexture(
{
source: image
}, {
texture: textureGPU,
mipLevel: 0,
origin: { x: 0, y: 0, z: originDepth }
}, {
width: image.width,
height: image.height,
depthOrArrayLayers: 1
}
);
if ( flipY === true ) {
this._flipY( textureGPU, textureDescriptorGPU, originDepth );
}
}
_getPassUtils() {
let passUtils = this._passUtils;
if ( passUtils === null ) {
this._passUtils = passUtils = new WebGPUTexturePassUtils( this.backend.device );
}
return passUtils;
}
_generateMipmaps( textureGPU, textureDescriptorGPU, baseArrayLayer = 0 ) {
this._getPassUtils().generateMipmaps( textureGPU, textureDescriptorGPU, baseArrayLayer );
}
_flipY( textureGPU, textureDescriptorGPU, originDepth = 0 ) {
this._getPassUtils().flipY( textureGPU, textureDescriptorGPU, originDepth );
}
_copyBufferToTexture( image, textureGPU, textureDescriptorGPU, originDepth, flipY, depth = 0 ) {
// @TODO: Consider to use GPUCommandEncoder.copyBufferToTexture()
// @TODO: Consider to support valid buffer layouts with other formats like RGB
const device = this.backend.device;
const data = image.data;
const bytesPerTexel = this._getBytesPerTexel( textureDescriptorGPU.format );
const bytesPerRow = image.width * bytesPerTexel;
device.queue.writeTexture(
{
texture: textureGPU,
mipLevel: 0,
origin: { x: 0, y: 0, z: originDepth }
},
data,
{
offset: image.width * image.height * bytesPerTexel * depth,
bytesPerRow
},
{
width: image.width,
height: image.height,
depthOrArrayLayers: 1
} );
if ( flipY === true ) {
this._flipY( textureGPU, textureDescriptorGPU, originDepth );
}
}
_copyCompressedBufferToTexture( mipmaps, textureGPU, textureDescriptorGPU ) {
// @TODO: Consider to use GPUCommandEncoder.copyBufferToTexture()
const device = this.backend.device;
const blockData = this._getBlockData( textureDescriptorGPU.format );
for ( let i = 0; i < mipmaps.length; i ++ ) {
const mipmap = mipmaps[ i ];
const width = mipmap.width;
const height = mipmap.height;
const bytesPerRow = Math.ceil( width / blockData.width ) * blockData.byteLength;
device.queue.writeTexture(
{
texture: textureGPU,
mipLevel: i
},
mipmap.data,
{
offset: 0,
bytesPerRow
},
{
width: Math.ceil( width / blockData.width ) * blockData.width,
height: Math.ceil( height / blockData.width ) * blockData.width,
depthOrArrayLayers: 1
}
);
}
}
_getBlockData( format ) {
// this method is only relevant for compressed texture formats
if ( format === GPUTextureFormat.BC1RGBAUnorm || format === GPUTextureFormat.BC1RGBAUnormSRGB ) return { byteLength: 8, width: 4, height: 4 }; // DXT1
if ( format === GPUTextureFormat.BC2RGBAUnorm || format === GPUTextureFormat.BC2RGBAUnormSRGB ) return { byteLength: 16, width: 4, height: 4 }; // DXT3
if ( format === GPUTextureFormat.BC3RGBAUnorm || format === GPUTextureFormat.BC3RGBAUnormSRGB ) return { byteLength: 16, width: 4, height: 4 }; // DXT5
if ( format === GPUTextureFormat.BC4RUnorm || format === GPUTextureFormat.BC4RSNorm ) return { byteLength: 8, width: 4, height: 4 }; // RGTC1
if ( format === GPUTextureFormat.BC5RGUnorm || format === GPUTextureFormat.BC5RGSnorm ) return { byteLength: 16, width: 4, height: 4 }; // RGTC2
if ( format === GPUTextureFormat.BC6HRGBUFloat || format === GPUTextureFormat.BC6HRGBFloat ) return { byteLength: 16, width: 4, height: 4 }; // BPTC (float)
if ( format === GPUTextureFormat.BC7RGBAUnorm || format === GPUTextureFormat.BC7RGBAUnormSRGB ) return { byteLength: 16, width: 4, height: 4 }; // BPTC (unorm)
if ( format === GPUTextureFormat.ETC2RGB8Unorm || format === GPUTextureFormat.ETC2RGB8UnormSRGB ) return { byteLength: 8, width: 4, height: 4 };
if ( format === GPUTextureFormat.ETC2RGB8A1Unorm || format === GPUTextureFormat.ETC2RGB8A1UnormSRGB ) return { byteLength: 8, width: 4, height: 4 };
if ( format === GPUTextureFormat.ETC2RGBA8Unorm || format === GPUTextureFormat.ETC2RGBA8UnormSRGB ) return { byteLength: 16, width: 4, height: 4 };
if ( format === GPUTextureFormat.EACR11Unorm ) return { byteLength: 8, width: 4, height: 4 };
if ( format === GPUTextureFormat.EACR11Snorm ) return { byteLength: 8, width: 4, height: 4 };
if ( format === GPUTextureFormat.EACRG11Unorm ) return { byteLength: 16, width: 4, height: 4 };
if ( format === GPUTextureFormat.EACRG11Snorm ) return { byteLength: 16, width: 4, height: 4 };
if ( format === GPUTextureFormat.ASTC4x4Unorm || format === GPUTextureFormat.ASTC4x4UnormSRGB ) return { byteLength: 16, width: 4, height: 4 };
if ( format === GPUTextureFormat.ASTC5x4Unorm || format === GPUTextureFormat.ASTC5x4UnormSRGB ) return { byteLength: 16, width: 5, height: 4 };
if ( format === GPUTextureFormat.ASTC5x5Unorm || format === GPUTextureFormat.ASTC5x5UnormSRGB ) return { byteLength: 16, width: 5, height: 5 };
if ( format === GPUTextureFormat.ASTC6x5Unorm || format === GPUTextureFormat.ASTC6x5UnormSRGB ) return { byteLength: 16, width: 6, height: 5 };
if ( format === GPUTextureFormat.ASTC6x6Unorm || format === GPUTextureFormat.ASTC6x6UnormSRGB ) return { byteLength: 16, width: 6, height: 6 };
if ( format === GPUTextureFormat.ASTC8x5Unorm || format === GPUTextureFormat.ASTC8x5UnormSRGB ) return { byteLength: 16, width: 8, height: 5 };
if ( format === GPUTextureFormat.ASTC8x6Unorm || format === GPUTextureFormat.ASTC8x6UnormSRGB ) return { byteLength: 16, width: 8, height: 6 };
if ( format === GPUTextureFormat.ASTC8x8Unorm || format === GPUTextureFormat.ASTC8x8UnormSRGB ) return { byteLength: 16, width: 8, height: 8 };
if ( format === GPUTextureFormat.ASTC10x5Unorm || format === GPUTextureFormat.ASTC10x5UnormSRGB ) return { byteLength: 16, width: 10, height: 5 };
if ( format === GPUTextureFormat.ASTC10x6Unorm || format === GPUTextureFormat.ASTC10x6UnormSRGB ) return { byteLength: 16, width: 10, height: 6 };
if ( format === GPUTextureFormat.ASTC10x8Unorm || format === GPUTextureFormat.ASTC10x8UnormSRGB ) return { byteLength: 16, width: 10, height: 8 };
if ( format === GPUTextureFormat.ASTC10x10Unorm || format === GPUTextureFormat.ASTC10x10UnormSRGB ) return { byteLength: 16, width: 10, height: 10 };
if ( format === GPUTextureFormat.ASTC12x10Unorm || format === GPUTextureFormat.ASTC12x10UnormSRGB ) return { byteLength: 16, width: 12, height: 10 };
if ( format === GPUTextureFormat.ASTC12x12Unorm || format === GPUTextureFormat.ASTC12x12UnormSRGB ) return { byteLength: 16, width: 12, height: 12 };
}
_convertAddressMode( value ) {
let addressMode = GPUAddressMode.ClampToEdge;
if ( value === RepeatWrapping ) {
addressMode = GPUAddressMode.Repeat;
} else if ( value === MirroredRepeatWrapping ) {
addressMode = GPUAddressMode.MirrorRepeat;
}
return addressMode;
}
_convertFilterMode( value ) {
let filterMode = GPUFilterMode.Linear;
if ( value === NearestFilter || value === NearestMipmapNearestFilter || value === NearestMipmapLinearFilter ) {
filterMode = GPUFilterMode.Nearest;
}
return filterMode;
}
_getBytesPerTexel( format ) {
// 8-bit formats
if ( format === GPUTextureFormat.R8Unorm ||
format === GPUTextureFormat.R8Snorm ||
format === GPUTextureFormat.R8Uint ||
format === GPUTextureFormat.R8Sint ) return 1;
// 16-bit formats
if ( format === GPUTextureFormat.R16Uint ||
format === GPUTextureFormat.R16Sint ||
format === GPUTextureFormat.R16Float ||
format === GPUTextureFormat.RG8Unorm ||
format === GPUTextureFormat.RG8Snorm ||
format === GPUTextureFormat.RG8Uint ||
format === GPUTextureFormat.RG8Sint ) return 2;
// 32-bit formats
if ( format === GPUTextureFormat.R32Uint ||
format === GPUTextureFormat.R32Sint ||
format === GPUTextureFormat.R32Float ||
format === GPUTextureFormat.RG16Uint ||
format === GPUTextureFormat.RG16Sint ||
format === GPUTextureFormat.RG16Float ||
format === GPUTextureFormat.RGBA8Unorm ||
format === GPUTextureFormat.RGBA8UnormSRGB ||
format === GPUTextureFormat.RGBA8Snorm ||
format === GPUTextureFormat.RGBA8Uint ||
format === GPUTextureFormat.RGBA8Sint ||
format === GPUTextureFormat.BGRA8Unorm ||
format === GPUTextureFormat.BGRA8UnormSRGB ||
// Packed 32-bit formats
format === GPUTextureFormat.RGB9E5UFloat ||
format === GPUTextureFormat.RGB10A2Unorm ||
format === GPUTextureFormat.RG11B10UFloat ||
format === GPUTextureFormat.Depth32Float ||
format === GPUTextureFormat.Depth24Plus ||
format === GPUTextureFormat.Depth24PlusStencil8 ||
format === GPUTextureFormat.Depth32FloatStencil8 ) return 4;
// 64-bit formats
if ( format === GPUTextureFormat.RG32Uint ||
format === GPUTextureFormat.RG32Sint ||
format === GPUTextureFormat.RG32Float ||
format === GPUTextureFormat.RGBA16Uint ||
format === GPUTextureFormat.RGBA16Sint ||
format === GPUTextureFormat.RGBA16Float ) return 8;
// 128-bit formats
if ( format === GPUTextureFormat.RGBA32Uint ||
format === GPUTextureFormat.RGBA32Sint ||
format === GPUTextureFormat.RGBA32Float ) return 16;
}
_getTypedArrayType( format ) {
if ( format === GPUTextureFormat.R8Uint ) return Uint8Array;
if ( format === GPUTextureFormat.R8Sint ) return Int8Array;
if ( format === GPUTextureFormat.R8Unorm ) return Uint8Array;
if ( format === GPUTextureFormat.R8Snorm ) return Int8Array;
if ( format === GPUTextureFormat.RG8Uint ) return Uint8Array;
if ( format === GPUTextureFormat.RG8Sint ) return Int8Array;
if ( format === GPUTextureFormat.RG8Unorm ) return Uint8Array;
if ( format === GPUTextureFormat.RG8Snorm ) return Int8Array;
if ( format === GPUTextureFormat.RGBA8Uint ) return Uint8Array;
if ( format === GPUTextureFormat.RGBA8Sint ) return Int8Array;
if ( format === GPUTextureFormat.RGBA8Unorm ) return Uint8Array;
if ( format === GPUTextureFormat.RGBA8Snorm ) return Int8Array;
if ( format === GPUTextureFormat.R16Uint ) return Uint16Array;
if ( format === GPUTextureFormat.R16Sint ) return Int16Array;
if ( format === GPUTextureFormat.RG16Uint ) return Uint16Array;
if ( format === GPUTextureFormat.RG16Sint ) return Int16Array;
if ( format === GPUTextureFormat.RGBA16Uint ) return Uint16Array;
if ( format === GPUTextureFormat.RGBA16Sint ) return Int16Array;
if ( format === GPUTextureFormat.R16Float ) return Float32Array;
if ( format === GPUTextureFormat.RG16Float ) return Float32Array;
if ( format === GPUTextureFormat.RGBA16Float ) return Float32Array;
if ( format === GPUTextureFormat.R32Uint ) return Uint32Array;
if ( format === GPUTextureFormat.R32Sint ) return Int32Array;
if ( format === GPUTextureFormat.R32Float ) return Float32Array;
if ( format === GPUTextureFormat.RG32Uint ) return Uint32Array;
if ( format === GPUTextureFormat.RG32Sint ) return Int32Array;
if ( format === GPUTextureFormat.RG32Float ) return Float32Array;
if ( format === GPUTextureFormat.RGBA32Uint ) return Uint32Array;
if ( format === GPUTextureFormat.RGBA32Sint ) return Int32Array;
if ( format === GPUTextureFormat.RGBA32Float ) return Float32Array;
if ( format === GPUTextureFormat.BGRA8Unorm ) return Uint8Array;
if ( format === GPUTextureFormat.BGRA8UnormSRGB ) return Uint8Array;
if ( format === GPUTextureFormat.RGB10A2Unorm ) return Uint32Array;
if ( format === GPUTextureFormat.RGB9E5UFloat ) return Uint32Array;
if ( format === GPUTextureFormat.RG11B10UFloat ) return Uint32Array;
if ( format === GPUTextureFormat.Depth32Float ) return Float32Array;
if ( format === GPUTextureFormat.Depth24Plus ) return Uint32Array;
if ( format === GPUTextureFormat.Depth24PlusStencil8 ) return Uint32Array;
if ( format === GPUTextureFormat.Depth32FloatStencil8 ) return Float32Array;
}
_getDimension( texture ) {
let dimension;
if ( texture.isData3DTexture ) {
dimension = GPUTextureDimension.ThreeD;
} else {
dimension = GPUTextureDimension.TwoD;
}
return dimension;
}
}
function getFormat( texture, device = null ) {
const format = texture.format;
const type = texture.type;
const colorSpace = texture.colorSpace;
let formatGPU;
if ( texture.isFramebufferTexture === true && texture.type === UnsignedByteType ) {
formatGPU = GPUTextureFormat.BGRA8Unorm;
} else if ( texture.isCompressedTexture === true ) {
switch ( format ) {
case RGBA_S3TC_DXT1_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.BC1RGBAUnormSRGB : GPUTextureFormat.BC1RGBAUnorm;
break;
case RGBA_S3TC_DXT3_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.BC2RGBAUnormSRGB : GPUTextureFormat.BC2RGBAUnorm;
break;
case RGBA_S3TC_DXT5_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.BC3RGBAUnormSRGB : GPUTextureFormat.BC3RGBAUnorm;
break;
case RGB_ETC2_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ETC2RGB8UnormSRGB : GPUTextureFormat.ETC2RGB8Unorm;
break;
case RGBA_ETC2_EAC_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ETC2RGBA8UnormSRGB : GPUTextureFormat.ETC2RGBA8Unorm;
break;
case RGBA_ASTC_4x4_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ASTC4x4UnormSRGB : GPUTextureFormat.ASTC4x4Unorm;
break;
case RGBA_ASTC_5x4_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ASTC5x4UnormSRGB : GPUTextureFormat.ASTC5x4Unorm;
break;
case RGBA_ASTC_5x5_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ASTC5x5UnormSRGB : GPUTextureFormat.ASTC5x5Unorm;
break;
case RGBA_ASTC_6x5_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ASTC6x5UnormSRGB : GPUTextureFormat.ASTC6x5Unorm;
break;
case RGBA_ASTC_6x6_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ASTC6x6UnormSRGB : GPUTextureFormat.ASTC6x6Unorm;
break;
case RGBA_ASTC_8x5_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ASTC8x5UnormSRGB : GPUTextureFormat.ASTC8x5Unorm;
break;
case RGBA_ASTC_8x6_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ASTC8x6UnormSRGB : GPUTextureFormat.ASTC8x6Unorm;
break;
case RGBA_ASTC_8x8_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ASTC8x8UnormSRGB : GPUTextureFormat.ASTC8x8Unorm;
break;
case RGBA_ASTC_10x5_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ASTC10x5UnormSRGB : GPUTextureFormat.ASTC10x5Unorm;
break;
case RGBA_ASTC_10x6_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ASTC10x6UnormSRGB : GPUTextureFormat.ASTC10x6Unorm;
break;
case RGBA_ASTC_10x8_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ASTC10x8UnormSRGB : GPUTextureFormat.ASTC10x8Unorm;
break;
case RGBA_ASTC_10x10_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ASTC10x10UnormSRGB : GPUTextureFormat.ASTC10x10Unorm;
break;
case RGBA_ASTC_12x10_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ASTC12x10UnormSRGB : GPUTextureFormat.ASTC12x10Unorm;
break;
case RGBA_ASTC_12x12_Format:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.ASTC12x12UnormSRGB : GPUTextureFormat.ASTC12x12Unorm;
break;
default:
console.error( 'WebGPURenderer: Unsupported texture format.', format );
}
} else {
switch ( format ) {
case RGBAFormat:
switch ( type ) {
case ByteType:
formatGPU = GPUTextureFormat.RGBA8Snorm;
break;
case ShortType:
formatGPU = GPUTextureFormat.RGBA16Sint;
break;
case UnsignedShortType:
formatGPU = GPUTextureFormat.RGBA16Uint;
break;
case UnsignedIntType:
formatGPU = GPUTextureFormat.RGBA32Uint;
break;
case IntType:
formatGPU = GPUTextureFormat.RGBA32Sint;
break;
case UnsignedByteType:
formatGPU = ( colorSpace === SRGBColorSpace ) ? GPUTextureFormat.RGBA8UnormSRGB : GPUTextureFormat.RGBA8Unorm;
break;
case HalfFloatType:
formatGPU = GPUTextureFormat.RGBA16Float;
break;
case FloatType:
formatGPU = GPUTextureFormat.RGBA32Float;
break;
default:
console.error( 'WebGPURenderer: Unsupported texture type with RGBAFormat.', type );
}
break;
case RGBFormat:
switch ( type ) {
case UnsignedInt5999Type:
formatGPU = GPUTextureFormat.RGB9E5UFloat;
break;
default:
console.error( 'WebGPURenderer: Unsupported texture type with RGBFormat.', type );
}
break;
case RedFormat:
switch ( type ) {
case ByteType:
formatGPU = GPUTextureFormat.R8Snorm;
break;
case ShortType:
formatGPU = GPUTextureFormat.R16Sint;
break;
case UnsignedShortType:
formatGPU = GPUTextureFormat.R16Uint;
break;
case UnsignedIntType:
formatGPU = GPUTextureFormat.R32Uint;
break;
case IntType:
formatGPU = GPUTextureFormat.R32Sint;
break;
case UnsignedByteType:
formatGPU = GPUTextureFormat.R8Unorm;
break;
case HalfFloatType:
formatGPU = GPUTextureFormat.R16Float;
break;
case FloatType:
formatGPU = GPUTextureFormat.R32Float;
break;
default:
console.error( 'WebGPURenderer: Unsupported texture type with RedFormat.', type );
}
break;
case RGFormat:
switch ( type ) {
case ByteType:
formatGPU = GPUTextureFormat.RG8Snorm;
break;
case ShortType:
formatGPU = GPUTextureFormat.RG16Sint;
break;
case UnsignedShortType:
formatGPU = GPUTextureFormat.RG16Uint;
break;
case UnsignedIntType:
formatGPU = GPUTextureFormat.RG32Uint;
break;
case IntType:
formatGPU = GPUTextureFormat.RG32Sint;
break;
case UnsignedByteType:
formatGPU = GPUTextureFormat.RG8Unorm;
break;
case HalfFloatType:
formatGPU = GPUTextureFormat.RG16Float;
break;
case FloatType:
formatGPU = GPUTextureFormat.RG32Float;
break;
default:
console.error( 'WebGPURenderer: Unsupported texture type with RGFormat.', type );
}
break;
case DepthFormat:
switch ( type ) {
case UnsignedShortType:
formatGPU = GPUTextureFormat.Depth16Unorm;
break;
case UnsignedIntType:
formatGPU = GPUTextureFormat.Depth24Plus;
break;
case FloatType:
formatGPU = GPUTextureFormat.Depth32Float;
break;
default:
console.error( 'WebGPURenderer: Unsupported texture type with DepthFormat.', type );
}
break;
case DepthStencilFormat:
switch ( type ) {
case UnsignedInt248Type:
formatGPU = GPUTextureFormat.Depth24PlusStencil8;
break;
case FloatType:
if ( device && device.features.has( GPUFeatureName.Depth32FloatStencil8 ) === false ) {
console.error( 'WebGPURenderer: Depth textures with DepthStencilFormat + FloatType can only be used with the "depth32float-stencil8" GPU feature.' );
}
formatGPU = GPUTextureFormat.Depth32FloatStencil8;
break;
default:
console.error( 'WebGPURenderer: Unsupported texture type with DepthStencilFormat.', type );
}
break;
case RedIntegerFormat:
switch ( type ) {
case IntType:
formatGPU = GPUTextureFormat.R32Sint;
break;
case UnsignedIntType:
formatGPU = GPUTextureFormat.R32Uint;
break;
default:
console.error( 'WebGPURenderer: Unsupported texture type with RedIntegerFormat.', type );
}
break;
case RGIntegerFormat:
switch ( type ) {
case IntType:
formatGPU = GPUTextureFormat.RG32Sint;
break;
case UnsignedIntType:
formatGPU = GPUTextureFormat.RG32Uint;
break;
default:
console.error( 'WebGPURenderer: Unsupported texture type with RGIntegerFormat.', type );
}
break;
case RGBAIntegerFormat:
switch ( type ) {
case IntType:
formatGPU = GPUTextureFormat.RGBA32Sint;
break;
case UnsignedIntType:
formatGPU = GPUTextureFormat.RGBA32Uint;
break;
default:
console.error( 'WebGPURenderer: Unsupported texture type with RGBAIntegerFormat.', type );
}
break;
default:
console.error( 'WebGPURenderer: Unsupported texture format.', format );
}
}
return formatGPU;
}
const declarationRegexp = /^[fn]*\s*([a-z_0-9]+)?\s*\(([\s\S]*?)\)\s*[\-\>]*\s*([a-z_0-9]+(?:<[\s\S]+?>)?)/i;
const propertiesRegexp = /([a-z_0-9]+)\s*:\s*([a-z_0-9]+(?:<[\s\S]+?>)?)/ig;
const wgslTypeLib$1 = {
'f32': 'float',
'i32': 'int',
'u32': 'uint',
'bool': 'bool',
'vec2<f32>': 'vec2',
'vec2<i32>': 'ivec2',
'vec2<u32>': 'uvec2',
'vec2<bool>': 'bvec2',
'vec2f': 'vec2',
'vec2i': 'ivec2',
'vec2u': 'uvec2',
'vec2b': 'bvec2',
'vec3<f32>': 'vec3',
'vec3<i32>': 'ivec3',
'vec3<u32>': 'uvec3',
'vec3<bool>': 'bvec3',
'vec3f': 'vec3',
'vec3i': 'ivec3',
'vec3u': 'uvec3',
'vec3b': 'bvec3',
'vec4<f32>': 'vec4',
'vec4<i32>': 'ivec4',
'vec4<u32>': 'uvec4',
'vec4<bool>': 'bvec4',
'vec4f': 'vec4',
'vec4i': 'ivec4',
'vec4u': 'uvec4',
'vec4b': 'bvec4',
'mat2x2<f32>': 'mat2',
'mat2x2f': 'mat2',
'mat3x3<f32>': 'mat3',
'mat3x3f': 'mat3',
'mat4x4<f32>': 'mat4',
'mat4x4f': 'mat4',
'sampler': 'sampler',
'texture_1d': 'texture',
'texture_2d': 'texture',
'texture_2d_array': 'texture',
'texture_multisampled_2d': 'cubeTexture',
'texture_depth_2d': 'depthTexture',
'texture_3d': 'texture3D',
'texture_cube': 'cubeTexture',
'texture_cube_array': 'cubeTexture',
'texture_storage_1d': 'storageTexture',
'texture_storage_2d': 'storageTexture',
'texture_storage_2d_array': 'storageTexture',
'texture_storage_3d': 'storageTexture'
};
const parse = ( source ) => {
source = source.trim();
const declaration = source.match( declarationRegexp );
if ( declaration !== null && declaration.length === 4 ) {
const inputsCode = declaration[ 2 ];
const propsMatches = [];
let match = null;
while ( ( match = propertiesRegexp.exec( inputsCode ) ) !== null ) {
propsMatches.push( { name: match[ 1 ], type: match[ 2 ] } );
}
// Process matches to correctly pair names and types
const inputs = [];
for ( let i = 0; i < propsMatches.length; i ++ ) {
const { name, type } = propsMatches[ i ];
let resolvedType = type;
if ( resolvedType.startsWith( 'texture' ) ) {
resolvedType = type.split( '<' )[ 0 ];
}
resolvedType = wgslTypeLib$1[ resolvedType ] || resolvedType;
inputs.push( new NodeFunctionInput( resolvedType, name ) );
}
const blockCode = source.substring( declaration[ 0 ].length );
const outputType = declaration[ 3 ] || 'void';
const name = declaration[ 1 ] !== undefined ? declaration[ 1 ] : '';
const type = wgslTypeLib$1[ outputType ] || outputType;
return {
type,
inputs,
name,
inputsCode,
blockCode,
outputType
};
} else {
throw new Error( 'FunctionNode: Function is not a WGSL code.' );
}
};
class WGSLNodeFunction extends NodeFunction {
constructor( source ) {
const { type, inputs, name, inputsCode, blockCode, outputType } = parse( source );
super( type, inputs, name );
this.inputsCode = inputsCode;
this.blockCode = blockCode;
this.outputType = outputType;
}
getCode( name = this.name ) {
const outputType = this.outputType !== 'void' ? '-> ' + this.outputType : '';
return `fn ${ name } ( ${ this.inputsCode.trim() } ) ${ outputType }` + this.blockCode;
}
}
class WGSLNodeParser extends NodeParser {
parseFunction( source ) {
return new WGSLNodeFunction( source );
}
}
// GPUShaderStage is not defined in browsers not supporting WebGPU
const GPUShaderStage = self.GPUShaderStage;
const gpuShaderStageLib = {
'vertex': GPUShaderStage ? GPUShaderStage.VERTEX : 1,
'fragment': GPUShaderStage ? GPUShaderStage.FRAGMENT : 2,
'compute': GPUShaderStage ? GPUShaderStage.COMPUTE : 4
};
const supports = {
instance: true,
swizzleAssign: false,
storageBuffer: true
};
const wgslFnOpLib = {
'^^': 'threejs_xor'
};
const wgslTypeLib = {
float: 'f32',
int: 'i32',
uint: 'u32',
bool: 'bool',
color: 'vec3<f32>',
vec2: 'vec2<f32>',
ivec2: 'vec2<i32>',
uvec2: 'vec2<u32>',
bvec2: 'vec2<bool>',
vec3: 'vec3<f32>',
ivec3: 'vec3<i32>',
uvec3: 'vec3<u32>',
bvec3: 'vec3<bool>',
vec4: 'vec4<f32>',
ivec4: 'vec4<i32>',
uvec4: 'vec4<u32>',
bvec4: 'vec4<bool>',
mat2: 'mat2x2<f32>',
imat2: 'mat2x2<i32>',
umat2: 'mat2x2<u32>',
bmat2: 'mat2x2<bool>',
mat3: 'mat3x3<f32>',
imat3: 'mat3x3<i32>',
umat3: 'mat3x3<u32>',
bmat3: 'mat3x3<bool>',
mat4: 'mat4x4<f32>',
imat4: 'mat4x4<i32>',
umat4: 'mat4x4<u32>',
bmat4: 'mat4x4<bool>'
};
const wgslMethods = {
dFdx: 'dpdx',
dFdy: '- dpdy',
mod_float: 'threejs_mod_float',
mod_vec2: 'threejs_mod_vec2',
mod_vec3: 'threejs_mod_vec3',
mod_vec4: 'threejs_mod_vec4',
equals_bool: 'threejs_equals_bool',
equals_bvec2: 'threejs_equals_bvec2',
equals_bvec3: 'threejs_equals_bvec3',
equals_bvec4: 'threejs_equals_bvec4',
lessThanEqual: 'threejs_lessThanEqual',
greaterThan: 'threejs_greaterThan',
inversesqrt: 'inverseSqrt',
bitcast: 'bitcast<f32>'
};
const wgslPolyfill = {
threejs_xor: new CodeNode( `
fn threejs_xor( a : bool, b : bool ) -> bool {
return ( a || b ) && !( a && b );
}
` ),
lessThanEqual: new CodeNode( `
fn threejs_lessThanEqual( a : vec3<f32>, b : vec3<f32> ) -> vec3<bool> {
return vec3<bool>( a.x <= b.x, a.y <= b.y, a.z <= b.z );
}
` ),
greaterThan: new CodeNode( `
fn threejs_greaterThan( a : vec3<f32>, b : vec3<f32> ) -> vec3<bool> {
return vec3<bool>( a.x > b.x, a.y > b.y, a.z > b.z );
}
` ),
mod_float: new CodeNode( 'fn threejs_mod_float( x : f32, y : f32 ) -> f32 { return x - y * floor( x / y ); }' ),
mod_vec2: new CodeNode( 'fn threejs_mod_vec2( x : vec2f, y : vec2f ) -> vec2f { return x - y * floor( x / y ); }' ),
mod_vec3: new CodeNode( 'fn threejs_mod_vec3( x : vec3f, y : vec3f ) -> vec3f { return x - y * floor( x / y ); }' ),
mod_vec4: new CodeNode( 'fn threejs_mod_vec4( x : vec4f, y : vec4f ) -> vec4f { return x - y * floor( x / y ); }' ),
equals_bool: new CodeNode( 'fn threejs_equals_bool( a : bool, b : bool ) -> bool { return a == b; }' ),
equals_bvec2: new CodeNode( 'fn threejs_equals_bvec2( a : vec2f, b : vec2f ) -> vec2<bool> { return vec2<bool>( a.x == b.x, a.y == b.y ); }' ),
equals_bvec3: new CodeNode( 'fn threejs_equals_bvec3( a : vec3f, b : vec3f ) -> vec3<bool> { return vec3<bool>( a.x == b.x, a.y == b.y, a.z == b.z ); }' ),
equals_bvec4: new CodeNode( 'fn threejs_equals_bvec4( a : vec4f, b : vec4f ) -> vec4<bool> { return vec4<bool>( a.x == b.x, a.y == b.y, a.z == b.z, a.w == b.w ); }' ),
repeatWrapping: new CodeNode( `
fn threejs_repeatWrapping( uv : vec2<f32>, dimension : vec2<u32> ) -> vec2<u32> {
let uvScaled = vec2<u32>( uv * vec2<f32>( dimension ) );
return ( ( uvScaled % dimension ) + dimension ) % dimension;
}
` ),
biquadraticTexture: new CodeNode( `
fn threejs_biquadraticTexture( map : texture_2d<f32>, coord : vec2f, level : i32 ) -> vec4f {
let res = vec2f( textureDimensions( map, level ) );
let uvScaled = coord * res;
let uvWrapping = ( ( uvScaled % res ) + res ) % res;
// https://www.shadertoy.com/view/WtyXRy
let uv = uvWrapping - 0.5;
let iuv = floor( uv );
let f = fract( uv );
let rg1 = textureLoad( map, vec2i( iuv + vec2( 0.5, 0.5 ) ), level );
let rg2 = textureLoad( map, vec2i( iuv + vec2( 1.5, 0.5 ) ), level );
let rg3 = textureLoad( map, vec2i( iuv + vec2( 0.5, 1.5 ) ), level );
let rg4 = textureLoad( map, vec2i( iuv + vec2( 1.5, 1.5 ) ), level );
return mix( mix( rg1, rg2, f.x ), mix( rg3, rg4, f.x ), f.y );
}
` )
};
class WGSLNodeBuilder extends NodeBuilder {
constructor( object, renderer ) {
super( object, renderer, new WGSLNodeParser() );
this.uniformGroups = {};
this.builtins = {};
this.directives = {};
}
needsColorSpaceToLinear( texture ) {
return texture.isVideoTexture === true && texture.colorSpace !== NoColorSpace;
}
_generateTextureSample( texture, textureProperty, uvSnippet, depthSnippet, shaderStage = this.shaderStage ) {
if ( shaderStage === 'fragment' ) {
if ( depthSnippet ) {
return `textureSample( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ depthSnippet } )`;
} else {
return `textureSample( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet } )`;
}
} else if ( this.isFilteredTexture( texture ) ) {
return this.generateFilteredTexture( texture, textureProperty, uvSnippet );
} else {
return this.generateTextureLod( texture, textureProperty, uvSnippet, '0' );
}
}
_generateVideoSample( textureProperty, uvSnippet, shaderStage = this.shaderStage ) {
if ( shaderStage === 'fragment' ) {
return `textureSampleBaseClampToEdge( ${ textureProperty }, ${ textureProperty }_sampler, vec2<f32>( ${ uvSnippet }.x, 1.0 - ${ uvSnippet }.y ) )`;
} else {
console.error( `WebGPURenderer: THREE.VideoTexture does not support ${ shaderStage } shader.` );
}
}
_generateTextureSampleLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet, shaderStage = this.shaderStage ) {
if ( shaderStage === 'fragment' && this.isUnfilterable( texture ) === false ) {
return `textureSampleLevel( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ levelSnippet } )`;
} else if ( this.isFilteredTexture( texture ) ) {
return this.generateFilteredTexture( texture, textureProperty, uvSnippet, levelSnippet );
} else {
return this.generateTextureLod( texture, textureProperty, uvSnippet, levelSnippet );
}
}
generateFilteredTexture( texture, textureProperty, uvSnippet, levelSnippet = '0' ) {
this._include( 'biquadraticTexture' );
return `threejs_biquadraticTexture( ${ textureProperty }, ${ uvSnippet }, i32( ${ levelSnippet } ) )`;
}
generateTextureLod( texture, textureProperty, uvSnippet, levelSnippet = '0' ) {
this._include( 'repeatWrapping' );
const dimension = texture.isMultisampleRenderTargetTexture === true ? `textureDimensions( ${ textureProperty } )` : `textureDimensions( ${ textureProperty }, 0 )`;
return `textureLoad( ${ textureProperty }, threejs_repeatWrapping( ${ uvSnippet }, ${ dimension } ), i32( ${ levelSnippet } ) )`;
}
generateTextureLoad( texture, textureProperty, uvIndexSnippet, depthSnippet, levelSnippet = '0u' ) {
if ( depthSnippet ) {
return `textureLoad( ${ textureProperty }, ${ uvIndexSnippet }, ${ depthSnippet }, ${ levelSnippet } )`;
} else {
return `textureLoad( ${ textureProperty }, ${ uvIndexSnippet }, ${ levelSnippet } )`;
}
}
generateTextureStore( texture, textureProperty, uvIndexSnippet, valueSnippet ) {
return `textureStore( ${ textureProperty }, ${ uvIndexSnippet }, ${ valueSnippet } )`;
}
isUnfilterable( texture ) {
return this.getComponentTypeFromTexture( texture ) !== 'float' || ( texture.isDataTexture === true && texture.type === FloatType ) || texture.isMultisampleRenderTargetTexture === true;
}
generateTexture( texture, textureProperty, uvSnippet, depthSnippet, shaderStage = this.shaderStage ) {
let snippet = null;
if ( texture.isVideoTexture === true ) {
snippet = this._generateVideoSample( textureProperty, uvSnippet, shaderStage );
} else if ( this.isUnfilterable( texture ) ) {
snippet = this.generateTextureLod( texture, textureProperty, uvSnippet, '0', depthSnippet, shaderStage );
} else {
snippet = this._generateTextureSample( texture, textureProperty, uvSnippet, depthSnippet, shaderStage );
}
return snippet;
}
generateTextureGrad( texture, textureProperty, uvSnippet, gradSnippet, depthSnippet, shaderStage = this.shaderStage ) {
if ( shaderStage === 'fragment' ) {
// TODO handle i32 or u32 --> uvSnippet, array_index: A, ddx, ddy
return `textureSampleGrad( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ gradSnippet[ 0 ] }, ${ gradSnippet[ 1 ] } )`;
} else {
console.error( `WebGPURenderer: THREE.TextureNode.gradient() does not support ${ shaderStage } shader.` );
}
}
generateTextureCompare( texture, textureProperty, uvSnippet, compareSnippet, depthSnippet, shaderStage = this.shaderStage ) {
if ( shaderStage === 'fragment' ) {
return `textureSampleCompare( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ compareSnippet } )`;
} else {
console.error( `WebGPURenderer: THREE.DepthTexture.compareFunction() does not support ${ shaderStage } shader.` );
}
}
generateTextureLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet, shaderStage = this.shaderStage ) {
let snippet = null;
if ( texture.isVideoTexture === true ) {
snippet = this._generateVideoSample( textureProperty, uvSnippet, shaderStage );
} else {
snippet = this._generateTextureSampleLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet, shaderStage );
}
return snippet;
}
generateTextureBias( texture, textureProperty, uvSnippet, biasSnippet, depthSnippet, shaderStage = this.shaderStage ) {
if ( shaderStage === 'fragment' ) {
return `textureSampleBias( ${ textureProperty }, ${ textureProperty }_sampler, ${ uvSnippet }, ${ biasSnippet } )`;
} else {
console.error( `WebGPURenderer: THREE.TextureNode.biasNode does not support ${ shaderStage } shader.` );
}
}
getPropertyName( node, shaderStage = this.shaderStage ) {
if ( node.isNodeVarying === true && node.needsInterpolation === true ) {
if ( shaderStage === 'vertex' ) {
return `varyings.${ node.name }`;
}
} else if ( node.isNodeUniform === true ) {
const name = node.name;
const type = node.type;
if ( type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'texture3D' ) {
return name;
} else if ( type === 'buffer' || type === 'storageBuffer' ) {
return `NodeBuffer_${ node.id }.${name}`;
} else {
return node.groupNode.name + '.' + name;
}
}
return super.getPropertyName( node );
}
getOutputStructName() {
return 'output';
}
_getUniformGroupCount( shaderStage ) {
return Object.keys( this.uniforms[ shaderStage ] ).length;
}
getFunctionOperator( op ) {
const fnOp = wgslFnOpLib[ op ];
if ( fnOp !== undefined ) {
this._include( fnOp );
return fnOp;
}
return null;
}
getStorageAccess( node ) {
if ( node.isStorageTextureNode ) {
switch ( node.access ) {
case GPUStorageTextureAccess.ReadOnly:
return 'read';
case GPUStorageTextureAccess.WriteOnly:
return 'write';
default:
return 'read_write';
}
} else {
switch ( node.access ) {
case GPUBufferBindingType.Storage:
return 'read_write';
case GPUBufferBindingType.ReadOnlyStorage:
return 'read';
default:
return 'write';
}
}
}
getUniformFromNode( node, type, shaderStage, name = null ) {
const uniformNode = super.getUniformFromNode( node, type, shaderStage, name );
const nodeData = this.getDataFromNode( node, shaderStage, this.globalCache );
if ( nodeData.uniformGPU === undefined ) {
let uniformGPU;
const group = node.groupNode;
const groupName = group.name;
const bindings = this.getBindGroupArray( groupName, shaderStage );
if ( type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'texture3D' ) {
let texture = null;
if ( type === 'texture' || type === 'storageTexture' ) {
texture = new NodeSampledTexture( uniformNode.name, uniformNode.node, group, node.access ? node.access : null );
} else if ( type === 'cubeTexture' ) {
texture = new NodeSampledCubeTexture( uniformNode.name, uniformNode.node, group, node.access ? node.access : null );
} else if ( type === 'texture3D' ) {
texture = new NodeSampledTexture3D( uniformNode.name, uniformNode.node, group, node.access ? node.access : null );
}
texture.store = node.isStorageTextureNode === true;
texture.setVisibility( gpuShaderStageLib[ shaderStage ] );
if ( shaderStage === 'fragment' && this.isUnfilterable( node.value ) === false && texture.store === false ) {
const sampler = new NodeSampler( `${uniformNode.name}_sampler`, uniformNode.node, group );
sampler.setVisibility( gpuShaderStageLib[ shaderStage ] );
bindings.push( sampler, texture );
uniformGPU = [ sampler, texture ];
} else {
bindings.push( texture );
uniformGPU = [ texture ];
}
} else if ( type === 'buffer' || type === 'storageBuffer' ) {
const bufferClass = type === 'storageBuffer' ? NodeStorageBuffer : NodeUniformBuffer;
const buffer = new bufferClass( node, group );
buffer.setVisibility( gpuShaderStageLib[ shaderStage ] );
bindings.push( buffer );
uniformGPU = buffer;
} else {
const uniformsStage = this.uniformGroups[ shaderStage ] || ( this.uniformGroups[ shaderStage ] = {} );
let uniformsGroup = uniformsStage[ groupName ];
if ( uniformsGroup === undefined ) {
uniformsGroup = new NodeUniformsGroup( groupName, group );
uniformsGroup.setVisibility( gpuShaderStageLib[ shaderStage ] );
uniformsStage[ groupName ] = uniformsGroup;
bindings.push( uniformsGroup );
}
uniformGPU = this.getNodeUniform( uniformNode, type );
uniformsGroup.addUniform( uniformGPU );
}
nodeData.uniformGPU = uniformGPU;
}
return uniformNode;
}
getBuiltin( name, property, type, shaderStage = this.shaderStage ) {
const map = this.builtins[ shaderStage ] || ( this.builtins[ shaderStage ] = new Map() );
if ( map.has( name ) === false ) {
map.set( name, {
name,
property,
type
} );
}
return property;
}
getVertexIndex() {
if ( this.shaderStage === 'vertex' ) {
return this.getBuiltin( 'vertex_index', 'vertexIndex', 'u32', 'attribute' );
}
return 'vertexIndex';
}
buildFunctionCode( shaderNode ) {
const layout = shaderNode.layout;
const flowData = this.flowShaderNode( shaderNode );
const parameters = [];
for ( const input of layout.inputs ) {
parameters.push( input.name + ' : ' + this.getType( input.type ) );
}
//
const code = `fn ${ layout.name }( ${ parameters.join( ', ' ) } ) -> ${ this.getType( layout.type ) } {
${ flowData.vars }
${ flowData.code }
return ${ flowData.result };
}`;
//
return code;
}
getInstanceIndex() {
if ( this.shaderStage === 'vertex' ) {
return this.getBuiltin( 'instance_index', 'instanceIndex', 'u32', 'attribute' );
}
return 'instanceIndex';
}
getDrawIndex() {
return null;
}
getFrontFacing() {
return this.getBuiltin( 'front_facing', 'isFront', 'bool' );
}
getFragCoord() {
return this.getBuiltin( 'position', 'fragCoord', 'vec4<f32>' ) + '.xyz';
}
getFragDepth() {
return 'output.' + this.getBuiltin( 'frag_depth', 'depth', 'f32', 'output' );
}
isFlipY() {
return false;
}
enableDirective( name, shaderStage = this.shaderStage ) {
const stage = this.directives[ shaderStage ] || ( this.directives[ shaderStage ] = [] );
stage.push( name );
}
getDirectives( shaderStage ) {
const snippets = [];
const directives = this.directives[ shaderStage ];
if ( directives !== undefined ) {
for ( const directive of directives ) {
snippets.push( `enable ${directive}` );
}
}
return snippets.join( '\n' );
}
enableClipDistances() {
this.enableDirective( 'clip_distances' );
}
enableShaderF16() {
this.enableDirective( 'f16' );
}
enableDualSourceBlending() {
this.enableDirective( 'dual_source_blending' );
}
getBuiltins( shaderStage ) {
const snippets = [];
const builtins = this.builtins[ shaderStage ];
if ( builtins !== undefined ) {
for ( const { name, property, type } of builtins.values() ) {
snippets.push( `@builtin( ${name} ) ${property} : ${type}` );
}
}
return snippets.join( ',\n\t' );
}
getAttributes( shaderStage ) {
const snippets = [];
if ( shaderStage === 'compute' ) {
this.getBuiltin( 'global_invocation_id', 'id', 'vec3<u32>', 'attribute' );
this.getBuiltin( 'workgroup_id', 'workgroupId', 'vec3<u32>', 'attribute' );
this.getBuiltin( 'local_invocation_id', 'localId', 'vec3<u32>', 'attribute' );
this.getBuiltin( 'num_workgroups', 'numWorkgroups', 'vec3<u32>', 'attribute' );
}
if ( shaderStage === 'vertex' || shaderStage === 'compute' ) {
const builtins = this.getBuiltins( 'attribute' );
if ( builtins ) snippets.push( builtins );
const attributes = this.getAttributesArray();
for ( let index = 0, length = attributes.length; index < length; index ++ ) {
const attribute = attributes[ index ];
const name = attribute.name;
const type = this.getType( attribute.type );
snippets.push( `@location( ${index} ) ${ name } : ${ type }` );
}
}
return snippets.join( ',\n\t' );
}
getStructMembers( struct ) {
const snippets = [];
const members = struct.getMemberTypes();
for ( let i = 0; i < members.length; i ++ ) {
const member = members[ i ];
snippets.push( `\t@location( ${i} ) m${i} : ${ member }<f32>` );
}
const builtins = this.getBuiltins( 'output' );
if ( builtins ) snippets.push( builtins );
return snippets.join( ',\n' );
}
getStructs( shaderStage ) {
const snippets = [];
const structs = this.structs[ shaderStage ];
for ( let index = 0, length = structs.length; index < length; index ++ ) {
const struct = structs[ index ];
const name = struct.name;
let snippet = `\struct ${ name } {\n`;
snippet += this.getStructMembers( struct );
snippet += '\n}';
snippets.push( snippet );
snippets.push( `\nvar<private> output : ${ name };\n\n` );
}
return snippets.join( '\n\n' );
}
getVar( type, name ) {
return `var ${ name } : ${ this.getType( type ) }`;
}
getVars( shaderStage ) {
const snippets = [];
const vars = this.vars[ shaderStage ];
if ( vars !== undefined ) {
for ( const variable of vars ) {
snippets.push( `\t${ this.getVar( variable.type, variable.name ) };` );
}
}
return `\n${ snippets.join( '\n' ) }\n`;
}
getVaryings( shaderStage ) {
const snippets = [];
if ( shaderStage === 'vertex' ) {
this.getBuiltin( 'position', 'Vertex', 'vec4<f32>', 'vertex' );
}
if ( shaderStage === 'vertex' || shaderStage === 'fragment' ) {
const varyings = this.varyings;
const vars = this.vars[ shaderStage ];
for ( let index = 0; index < varyings.length; index ++ ) {
const varying = varyings[ index ];
if ( varying.needsInterpolation ) {
let attributesSnippet = `@location( ${index} )`;
if ( /^(int|uint|ivec|uvec)/.test( varying.type ) ) {
attributesSnippet += ' @interpolate( flat )';
}
snippets.push( `${ attributesSnippet } ${ varying.name } : ${ this.getType( varying.type ) }` );
} else if ( shaderStage === 'vertex' && vars.includes( varying ) === false ) {
vars.push( varying );
}
}
}
const builtins = this.getBuiltins( shaderStage );
if ( builtins ) snippets.push( builtins );
const code = snippets.join( ',\n\t' );
return shaderStage === 'vertex' ? this._getWGSLStruct( 'VaryingsStruct', '\t' + code ) : code;
}
getUniforms( shaderStage ) {
const uniforms = this.uniforms[ shaderStage ];
const bindingSnippets = [];
const bufferSnippets = [];
const structSnippets = [];
const uniformGroups = {};
for ( const uniform of uniforms ) {
const groundName = uniform.groupNode.name;
const uniformIndexes = this.bindingsIndexes[ groundName ];
if ( uniform.type === 'texture' || uniform.type === 'cubeTexture' || uniform.type === 'storageTexture' || uniform.type === 'texture3D' ) {
const texture = uniform.node.value;
if ( shaderStage === 'fragment' && this.isUnfilterable( texture ) === false && uniform.node.isStorageTextureNode !== true ) {
if ( texture.isDepthTexture === true && texture.compareFunction !== null ) {
bindingSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var ${ uniform.name }_sampler : sampler_comparison;` );
} else {
bindingSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var ${ uniform.name }_sampler : sampler;` );
}
}
let textureType;
let multisampled = '';
if ( texture.isMultisampleRenderTargetTexture === true ) {
multisampled = '_multisampled';
}
if ( texture.isCubeTexture === true ) {
textureType = 'texture_cube<f32>';
} else if ( texture.isDataArrayTexture === true ) {
textureType = 'texture_2d_array<f32>';
} else if ( texture.isDepthTexture === true ) {
textureType = `texture_depth${multisampled}_2d`;
} else if ( texture.isVideoTexture === true ) {
textureType = 'texture_external';
} else if ( texture.isData3DTexture === true ) {
textureType = 'texture_3d<f32>';
} else if ( uniform.node.isStorageTextureNode === true ) {
const format = getFormat( texture );
const access = this.getStorageAccess( uniform.node );
textureType = `texture_storage_2d<${ format }, ${ access }>`;
} else {
const componentPrefix = this.getComponentTypeFromTexture( texture ).charAt( 0 );
textureType = `texture${multisampled}_2d<${ componentPrefix }32>`;
}
bindingSnippets.push( `@binding( ${ uniformIndexes.binding ++ } ) @group( ${ uniformIndexes.group } ) var ${ uniform.name } : ${ textureType };` );
} else if ( uniform.type === 'buffer' || uniform.type === 'storageBuffer' ) {
const bufferNode = uniform.node;
const bufferType = this.getType( bufferNode.bufferType );
const bufferCount = bufferNode.bufferCount;
const bufferCountSnippet = bufferCount > 0 ? ', ' + bufferCount : '';
const bufferSnippet = `\t${ uniform.name } : array< ${ bufferType }${ bufferCountSnippet } >\n`;
const bufferAccessMode = bufferNode.isStorageBufferNode ? `storage, ${ this.getStorageAccess( bufferNode ) }` : 'uniform';
bufferSnippets.push( this._getWGSLStructBinding( 'NodeBuffer_' + bufferNode.id, bufferSnippet, bufferAccessMode, uniformIndexes.binding ++, uniformIndexes.group ) );
} else {
const vectorType = this.getType( this.getVectorType( uniform.type ) );
const groupName = uniform.groupNode.name;
const group = uniformGroups[ groupName ] || ( uniformGroups[ groupName ] = {
index: uniformIndexes.binding ++,
id: uniformIndexes.group,
snippets: []
} );
group.snippets.push( `\t${ uniform.name } : ${ vectorType }` );
}
}
for ( const name in uniformGroups ) {
const group = uniformGroups[ name ];
structSnippets.push( this._getWGSLStructBinding( name, group.snippets.join( ',\n' ), 'uniform', group.index, group.id ) );
}
let code = bindingSnippets.join( '\n' );
code += bufferSnippets.join( '\n' );
code += structSnippets.join( '\n' );
return code;
}
buildCode() {
const shadersData = this.material !== null ? { fragment: {}, vertex: {} } : { compute: {} };
for ( const shaderStage in shadersData ) {
const stageData = shadersData[ shaderStage ];
stageData.uniforms = this.getUniforms( shaderStage );
stageData.attributes = this.getAttributes( shaderStage );
stageData.varyings = this.getVaryings( shaderStage );
stageData.structs = this.getStructs( shaderStage );
stageData.vars = this.getVars( shaderStage );
stageData.codes = this.getCodes( shaderStage );
stageData.directives = this.getDirectives( shaderStage );
//
let flow = '// code\n\n';
flow += this.flowCode[ shaderStage ];
const flowNodes = this.flowNodes[ shaderStage ];
const mainNode = flowNodes[ flowNodes.length - 1 ];
const outputNode = mainNode.outputNode;
const isOutputStruct = ( outputNode !== undefined && outputNode.isOutputStructNode === true );
for ( const node of flowNodes ) {
const flowSlotData = this.getFlowData( node/*, shaderStage*/ );
const slotName = node.name;
if ( slotName ) {
if ( flow.length > 0 ) flow += '\n';
flow += `\t// flow -> ${ slotName }\n\t`;
}
flow += `${ flowSlotData.code }\n\t`;
if ( node === mainNode && shaderStage !== 'compute' ) {
flow += '// result\n\n\t';
if ( shaderStage === 'vertex' ) {
flow += `varyings.Vertex = ${ flowSlotData.result };`;
} else if ( shaderStage === 'fragment' ) {
if ( isOutputStruct ) {
stageData.returnType = outputNode.nodeType;
flow += `return ${ flowSlotData.result };`;
} else {
let structSnippet = '\t@location(0) color: vec4<f32>';
const builtins = this.getBuiltins( 'output' );
if ( builtins ) structSnippet += ',\n\t' + builtins;
stageData.returnType = 'OutputStruct';
stageData.structs += this._getWGSLStruct( 'OutputStruct', structSnippet );
stageData.structs += '\nvar<private> output : OutputStruct;\n\n';
flow += `output.color = ${ flowSlotData.result };\n\n\treturn output;`;
}
}
}
}
stageData.flow = flow;
}
if ( this.material !== null ) {
this.vertexShader = this._getWGSLVertexCode( shadersData.vertex );
this.fragmentShader = this._getWGSLFragmentCode( shadersData.fragment );
} else {
this.computeShader = this._getWGSLComputeCode( shadersData.compute, ( this.object.workgroupSize || [ 64 ] ).join( ', ' ) );
}
}
getMethod( method, output = null ) {
let wgslMethod;
if ( output !== null ) {
wgslMethod = this._getWGSLMethod( method + '_' + output );
}
if ( wgslMethod === undefined ) {
wgslMethod = this._getWGSLMethod( method );
}
return wgslMethod || method;
}
getType( type ) {
return wgslTypeLib[ type ] || type;
}
isAvailable( name ) {
let result = supports[ name ];
if ( result === undefined ) {
if ( name === 'float32Filterable' ) {
result = this.renderer.hasFeature( 'float32-filterable' );
}
supports[ name ] = result;
}
return result;
}
_getWGSLMethod( method ) {
if ( wgslPolyfill[ method ] !== undefined ) {
this._include( method );
}
return wgslMethods[ method ];
}
_include( name ) {
const codeNode = wgslPolyfill[ name ];
codeNode.build( this );
if ( this.currentFunctionNode !== null ) {
this.currentFunctionNode.includes.push( codeNode );
}
return codeNode;
}
_getWGSLVertexCode( shaderData ) {
return `${ this.getSignature() }
// directives
${shaderData.directives};
// uniforms
${shaderData.uniforms}
// varyings
${shaderData.varyings}
var<private> varyings : VaryingsStruct;
// codes
${shaderData.codes}
@vertex
fn main( ${shaderData.attributes} ) -> VaryingsStruct {
// vars
${shaderData.vars}
// flow
${shaderData.flow}
return varyings;
}
`;
}
_getWGSLFragmentCode( shaderData ) {
return `${ this.getSignature() }
diagnostic( off, derivative_uniformity );
// uniforms
${shaderData.uniforms}
// structs
${shaderData.structs}
// codes
${shaderData.codes}
@fragment
fn main( ${shaderData.varyings} ) -> ${shaderData.returnType} {
// vars
${shaderData.vars}
// flow
${shaderData.flow}
}
`;
}
_getWGSLComputeCode( shaderData, workgroupSize ) {
return `${ this.getSignature() }
// directives
${shaderData.directives}
// system
var<private> instanceIndex : u32;
// uniforms
${shaderData.uniforms}
// codes
${shaderData.codes}
@compute @workgroup_size( ${workgroupSize} )
fn main( ${shaderData.attributes} ) {
// system
instanceIndex = id.x + id.y * numWorkgroups.x * u32(${workgroupSize}) + id.z * numWorkgroups.x * numWorkgroups.y * u32(${workgroupSize});
// vars
${shaderData.vars}
// flow
${shaderData.flow}
}
`;
}
_getWGSLStruct( name, vars ) {
return `
struct ${name} {
${vars}
};`;
}
_getWGSLStructBinding( name, vars, access, binding = 0, group = 0 ) {
const structName = name + 'Struct';
const structSnippet = this._getWGSLStruct( structName, vars );
return `${structSnippet}
@binding( ${binding} ) @group( ${group} )
var<${access}> ${name} : ${structName};`;
}
}
class WebGPUUtils {
constructor( backend ) {
this.backend = backend;
}
getCurrentDepthStencilFormat( renderContext ) {
let format;
if ( renderContext.depthTexture !== null ) {
format = this.getTextureFormatGPU( renderContext.depthTexture );
} else if ( renderContext.depth && renderContext.stencil ) {
format = GPUTextureFormat.Depth24PlusStencil8;
} else if ( renderContext.depth ) {
format = GPUTextureFormat.Depth24Plus;
}
return format;
}
getTextureFormatGPU( texture ) {
return this.backend.get( texture ).texture.format;
}
getCurrentColorFormat( renderContext ) {
let format;
if ( renderContext.textures !== null ) {
format = this.getTextureFormatGPU( renderContext.textures[ 0 ] );
} else {
format = GPUTextureFormat.BGRA8Unorm; // default context format
}
return format;
}
getCurrentColorSpace( renderContext ) {
if ( renderContext.textures !== null ) {
return renderContext.textures[ 0 ].colorSpace;
}
return this.backend.renderer.outputColorSpace;
}
getPrimitiveTopology( object, material ) {
if ( object.isPoints ) return GPUPrimitiveTopology.PointList;
else if ( object.isLineSegments || ( object.isMesh && material.wireframe === true ) ) return GPUPrimitiveTopology.LineList;
else if ( object.isLine ) return GPUPrimitiveTopology.LineStrip;
else if ( object.isMesh ) return GPUPrimitiveTopology.TriangleList;
}
getSampleCount( sampleCount ) {
let count = 1;
if ( sampleCount > 1 ) {
// WebGPU only supports power-of-two sample counts and 2 is not a valid value
count = Math.pow( 2, Math.floor( Math.log2( sampleCount ) ) );
if ( count === 2 ) {
count = 4;
}
}
return count;
}
getSampleCountRenderContext( renderContext ) {
if ( renderContext.textures !== null ) {
return this.getSampleCount( renderContext.sampleCount );
}
return this.getSampleCount( this.backend.renderer.samples );
}
}
const typedArraysToVertexFormatPrefix = new Map( [
[ Int8Array, [ 'sint8', 'snorm8' ]],
[ Uint8Array, [ 'uint8', 'unorm8' ]],
[ Int16Array, [ 'sint16', 'snorm16' ]],
[ Uint16Array, [ 'uint16', 'unorm16' ]],
[ Int32Array, [ 'sint32', 'snorm32' ]],
[ Uint32Array, [ 'uint32', 'unorm32' ]],
[ Float32Array, [ 'float32', ]],
] );
const typedAttributeToVertexFormatPrefix = new Map( [
[ Float16BufferAttribute, [ 'float16', ]],
] );
const typeArraysToVertexFormatPrefixForItemSize1 = new Map( [
[ Int32Array, 'sint32' ],
[ Int16Array, 'sint32' ], // patch for INT16
[ Uint32Array, 'uint32' ],
[ Uint16Array, 'uint32' ], // patch for UINT16
[ Float32Array, 'float32' ]
] );
class WebGPUAttributeUtils {
constructor( backend ) {
this.backend = backend;
}
createAttribute( attribute, usage ) {
const bufferAttribute = this._getBufferAttribute( attribute );
const backend = this.backend;
const bufferData = backend.get( bufferAttribute );
let buffer = bufferData.buffer;
if ( buffer === undefined ) {
const device = backend.device;
let array = bufferAttribute.array;
// patch for INT16 and UINT16
if ( attribute.normalized === false && ( array.constructor === Int16Array || array.constructor === Uint16Array ) ) {
const tempArray = new Uint32Array( array.length );
for ( let i = 0; i < array.length; i ++ ) {
tempArray[ i ] = array[ i ];
}
array = tempArray;
}
bufferAttribute.array = array;
if ( ( bufferAttribute.isStorageBufferAttribute || bufferAttribute.isStorageInstancedBufferAttribute ) && bufferAttribute.itemSize === 3 ) {
array = new array.constructor( bufferAttribute.count * 4 );
for ( let i = 0; i < bufferAttribute.count; i ++ ) {
array.set( bufferAttribute.array.subarray( i * 3, i * 3 + 3 ), i * 4 );
}
// Update BufferAttribute
bufferAttribute.itemSize = 4;
bufferAttribute.array = array;
}
const size = array.byteLength + ( ( 4 - ( array.byteLength % 4 ) ) % 4 ); // ensure 4 byte alignment, see #20441
buffer = device.createBuffer( {
label: bufferAttribute.name,
size: size,
usage: usage,
mappedAtCreation: true
} );
new array.constructor( buffer.getMappedRange() ).set( array );
buffer.unmap();
bufferData.buffer = buffer;
}
}
updateAttribute( attribute ) {
const bufferAttribute = this._getBufferAttribute( attribute );
const backend = this.backend;
const device = backend.device;
const buffer = backend.get( bufferAttribute ).buffer;
const array = bufferAttribute.array;
const updateRanges = bufferAttribute.updateRanges;
if ( updateRanges.length === 0 ) {
// Not using update ranges
device.queue.writeBuffer(
buffer,
0,
array,
0
);
} else {
for ( let i = 0, l = updateRanges.length; i < l; i ++ ) {
const range = updateRanges[ i ];
device.queue.writeBuffer(
buffer,
0,
array,
range.start * array.BYTES_PER_ELEMENT,
range.count * array.BYTES_PER_ELEMENT
);
}
bufferAttribute.clearUpdateRanges();
}
}
createShaderVertexBuffers( renderObject ) {
const attributes = renderObject.getAttributes();
const vertexBuffers = new Map();
for ( let slot = 0; slot < attributes.length; slot ++ ) {
const geometryAttribute = attributes[ slot ];
const bytesPerElement = geometryAttribute.array.BYTES_PER_ELEMENT;
const bufferAttribute = this._getBufferAttribute( geometryAttribute );
let vertexBufferLayout = vertexBuffers.get( bufferAttribute );
if ( vertexBufferLayout === undefined ) {
let arrayStride, stepMode;
if ( geometryAttribute.isInterleavedBufferAttribute === true ) {
arrayStride = geometryAttribute.data.stride * bytesPerElement;
stepMode = geometryAttribute.data.isInstancedInterleavedBuffer ? GPUInputStepMode.Instance : GPUInputStepMode.Vertex;
} else {
arrayStride = geometryAttribute.itemSize * bytesPerElement;
stepMode = geometryAttribute.isInstancedBufferAttribute ? GPUInputStepMode.Instance : GPUInputStepMode.Vertex;
}
// patch for INT16 and UINT16
if ( geometryAttribute.normalized === false && ( geometryAttribute.array.constructor === Int16Array || geometryAttribute.array.constructor === Uint16Array ) ) {
arrayStride = 4;
}
vertexBufferLayout = {
arrayStride,
attributes: [],
stepMode
};
vertexBuffers.set( bufferAttribute, vertexBufferLayout );
}
const format = this._getVertexFormat( geometryAttribute );
const offset = ( geometryAttribute.isInterleavedBufferAttribute === true ) ? geometryAttribute.offset * bytesPerElement : 0;
vertexBufferLayout.attributes.push( {
shaderLocation: slot,
offset,
format
} );
}
return Array.from( vertexBuffers.values() );
}
destroyAttribute( attribute ) {
const backend = this.backend;
const data = backend.get( this._getBufferAttribute( attribute ) );
data.buffer.destroy();
backend.delete( attribute );
}
async getArrayBufferAsync( attribute ) {
const backend = this.backend;
const device = backend.device;
const data = backend.get( this._getBufferAttribute( attribute ) );
const bufferGPU = data.buffer;
const size = bufferGPU.size;
let readBufferGPU = data.readBuffer;
let needsUnmap = true;
if ( readBufferGPU === undefined ) {
readBufferGPU = device.createBuffer( {
label: attribute.name,
size,
usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ
} );
needsUnmap = false;
data.readBuffer = readBufferGPU;
}
const cmdEncoder = device.createCommandEncoder( {} );
cmdEncoder.copyBufferToBuffer(
bufferGPU,
0,
readBufferGPU,
0,
size
);
if ( needsUnmap ) readBufferGPU.unmap();
const gpuCommands = cmdEncoder.finish();
device.queue.submit( [ gpuCommands ] );
await readBufferGPU.mapAsync( GPUMapMode.READ );
const arrayBuffer = readBufferGPU.getMappedRange();
return arrayBuffer;
}
_getVertexFormat( geometryAttribute ) {
const { itemSize, normalized } = geometryAttribute;
const ArrayType = geometryAttribute.array.constructor;
const AttributeType = geometryAttribute.constructor;
let format;
if ( itemSize == 1 ) {
format = typeArraysToVertexFormatPrefixForItemSize1.get( ArrayType );
} else {
const prefixOptions = typedAttributeToVertexFormatPrefix.get( AttributeType ) || typedArraysToVertexFormatPrefix.get( ArrayType );
const prefix = prefixOptions[ normalized ? 1 : 0 ];
if ( prefix ) {
const bytesPerUnit = ArrayType.BYTES_PER_ELEMENT * itemSize;
const paddedBytesPerUnit = Math.floor( ( bytesPerUnit + 3 ) / 4 ) * 4;
const paddedItemSize = paddedBytesPerUnit / ArrayType.BYTES_PER_ELEMENT;
if ( paddedItemSize % 1 ) {
throw new Error( 'THREE.WebGPUAttributeUtils: Bad vertex format item size.' );
}
format = `${prefix}x${paddedItemSize}`;
}
}
if ( ! format ) {
console.error( 'THREE.WebGPUAttributeUtils: Vertex format not supported yet.' );
}
return format;
}
_getBufferAttribute( attribute ) {
if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;
return attribute;
}
}
class WebGPUBindingUtils {
constructor( backend ) {
this.backend = backend;
}
createBindingsLayout( bindGroup ) {
const backend = this.backend;
const device = backend.device;
const entries = [];
let index = 0;
for ( const binding of bindGroup.bindings ) {
const bindingGPU = {
binding: index ++,
visibility: binding.visibility
};
if ( binding.isUniformBuffer || binding.isStorageBuffer ) {
const buffer = {}; // GPUBufferBindingLayout
if ( binding.isStorageBuffer ) {
buffer.type = binding.access;
}
bindingGPU.buffer = buffer;
} else if ( binding.isSampler ) {
const sampler = {}; // GPUSamplerBindingLayout
if ( binding.texture.isDepthTexture ) {
if ( binding.texture.compareFunction !== null ) {
sampler.type = 'comparison';
}
}
bindingGPU.sampler = sampler;
} else if ( binding.isSampledTexture && binding.texture.isVideoTexture ) {
bindingGPU.externalTexture = {}; // GPUExternalTextureBindingLayout
} else if ( binding.isSampledTexture && binding.store ) {
const format = this.backend.get( binding.texture ).texture.format;
const access = binding.access;
bindingGPU.storageTexture = { format, access }; // GPUStorageTextureBindingLayout
} else if ( binding.isSampledTexture ) {
const texture = {}; // GPUTextureBindingLayout
if ( binding.texture.isMultisampleRenderTargetTexture === true ) {
texture.multisampled = true;
}
if ( binding.texture.isDepthTexture ) {
texture.sampleType = GPUTextureSampleType.Depth;
} else if ( binding.texture.isDataTexture || binding.texture.isDataArrayTexture || binding.texture.isData3DTexture ) {
const type = binding.texture.type;
if ( type === IntType ) {
texture.sampleType = GPUTextureSampleType.SInt;
} else if ( type === UnsignedIntType ) {
texture.sampleType = GPUTextureSampleType.UInt;
} else if ( type === FloatType ) {
// @TODO: Add support for this soon: backend.hasFeature( 'float32-filterable' )
texture.sampleType = GPUTextureSampleType.UnfilterableFloat;
}
}
if ( binding.isSampledCubeTexture ) {
texture.viewDimension = GPUTextureViewDimension.Cube;
} else if ( binding.texture.isDataArrayTexture ) {
texture.viewDimension = GPUTextureViewDimension.TwoDArray;
} else if ( binding.isSampledTexture3D ) {
texture.viewDimension = GPUTextureViewDimension.ThreeD;
}
bindingGPU.texture = texture;
} else {
console.error( `WebGPUBindingUtils: Unsupported binding "${ binding }".` );
}
entries.push( bindingGPU );
}
return device.createBindGroupLayout( { entries } );
}
createBindings( bindGroup ) {
const backend = this.backend;
const bindingsData = backend.get( bindGroup );
// setup (static) binding layout and (dynamic) binding group
const bindLayoutGPU = this.createBindingsLayout( bindGroup );
const bindGroupGPU = this.createBindGroup( bindGroup, bindLayoutGPU );
bindingsData.layout = bindLayoutGPU;
bindingsData.group = bindGroupGPU;
}
updateBinding( binding ) {
const backend = this.backend;
const device = backend.device;
const buffer = binding.buffer;
const bufferGPU = backend.get( binding ).buffer;
device.queue.writeBuffer( bufferGPU, 0, buffer, 0 );
}
createBindGroup( bindGroup, layoutGPU ) {
const backend = this.backend;
const device = backend.device;
let bindingPoint = 0;
const entriesGPU = [];
for ( const binding of bindGroup.bindings ) {
if ( binding.isUniformBuffer ) {
const bindingData = backend.get( binding );
if ( bindingData.buffer === undefined ) {
const byteLength = binding.byteLength;
const usage = GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST;
const bufferGPU = device.createBuffer( {
label: 'bindingBuffer_' + binding.name,
size: byteLength,
usage: usage
} );
bindingData.buffer = bufferGPU;
}
entriesGPU.push( { binding: bindingPoint, resource: { buffer: bindingData.buffer } } );
} else if ( binding.isStorageBuffer ) {
const bindingData = backend.get( binding );
if ( bindingData.buffer === undefined ) {
const attribute = binding.attribute;
//const usage = GPUBufferUsage.STORAGE | GPUBufferUsage.VERTEX | /*GPUBufferUsage.COPY_SRC |*/ GPUBufferUsage.COPY_DST;
//backend.attributeUtils.createAttribute( attribute, usage ); // @TODO: Move it to universal renderer
bindingData.buffer = backend.get( attribute ).buffer;
}
entriesGPU.push( { binding: bindingPoint, resource: { buffer: bindingData.buffer } } );
} else if ( binding.isSampler ) {
const textureGPU = backend.get( binding.texture );
entriesGPU.push( { binding: bindingPoint, resource: textureGPU.sampler } );
} else if ( binding.isSampledTexture ) {
const textureData = backend.get( binding.texture );
let dimensionViewGPU;
if ( binding.isSampledCubeTexture ) {
dimensionViewGPU = GPUTextureViewDimension.Cube;
} else if ( binding.isSampledTexture3D ) {
dimensionViewGPU = GPUTextureViewDimension.ThreeD;
} else if ( binding.texture.isDataArrayTexture ) {
dimensionViewGPU = GPUTextureViewDimension.TwoDArray;
} else {
dimensionViewGPU = GPUTextureViewDimension.TwoD;
}
let resourceGPU;
if ( textureData.externalTexture !== undefined ) {
resourceGPU = device.importExternalTexture( { source: textureData.externalTexture } );
} else {
const aspectGPU = GPUTextureAspect.All;
resourceGPU = textureData.texture.createView( { aspect: aspectGPU, dimension: dimensionViewGPU, mipLevelCount: binding.store ? 1 : textureData.mipLevelCount } );
}
entriesGPU.push( { binding: bindingPoint, resource: resourceGPU } );
}
bindingPoint ++;
}
return device.createBindGroup( {
label: 'bindGroup_' + bindGroup.name,
layout: layoutGPU,
entries: entriesGPU
} );
}
}
class WebGPUPipelineUtils {
constructor( backend ) {
this.backend = backend;
}
_getSampleCount( renderObjectContext ) {
return this.backend.utils.getSampleCountRenderContext( renderObjectContext );
}
createRenderPipeline( renderObject, promises ) {
const { object, material, geometry, pipeline } = renderObject;
const { vertexProgram, fragmentProgram } = pipeline;
const backend = this.backend;
const device = backend.device;
const utils = backend.utils;
const pipelineData = backend.get( pipeline );
// bind group layouts
const bindGroupLayouts = [];
for ( const bindGroup of renderObject.getBindings() ) {
const bindingsData = backend.get( bindGroup );
bindGroupLayouts.push( bindingsData.layout );
}
// vertex buffers
const vertexBuffers = backend.attributeUtils.createShaderVertexBuffers( renderObject );
// blending
let blending;
if ( material.transparent === true && material.blending !== NoBlending ) {
blending = this._getBlending( material );
}
// stencil
let stencilFront = {};
if ( material.stencilWrite === true ) {
stencilFront = {
compare: this._getStencilCompare( material ),
failOp: this._getStencilOperation( material.stencilFail ),
depthFailOp: this._getStencilOperation( material.stencilZFail ),
passOp: this._getStencilOperation( material.stencilZPass )
};
}
const colorWriteMask = this._getColorWriteMask( material );
const targets = [];
if ( renderObject.context.textures !== null ) {
const textures = renderObject.context.textures;
for ( let i = 0; i < textures.length; i ++ ) {
const colorFormat = utils.getTextureFormatGPU( textures[ i ] );
targets.push( {
format: colorFormat,
blend: blending,
writeMask: colorWriteMask
} );
}
} else {
const colorFormat = utils.getCurrentColorFormat( renderObject.context );
targets.push( {
format: colorFormat,
blend: blending,
writeMask: colorWriteMask
} );
}
const vertexModule = backend.get( vertexProgram ).module;
const fragmentModule = backend.get( fragmentProgram ).module;
const primitiveState = this._getPrimitiveState( object, geometry, material );
const depthCompare = this._getDepthCompare( material );
const depthStencilFormat = utils.getCurrentDepthStencilFormat( renderObject.context );
const sampleCount = this._getSampleCount( renderObject.context );
const pipelineDescriptor = {
label: 'renderPipeline',
vertex: Object.assign( {}, vertexModule, { buffers: vertexBuffers } ),
fragment: Object.assign( {}, fragmentModule, { targets } ),
primitive: primitiveState,
depthStencil: {
format: depthStencilFormat,
depthWriteEnabled: material.depthWrite,
depthCompare: depthCompare,
stencilFront: stencilFront,
stencilBack: {}, // three.js does not provide an API to configure the back function (gl.stencilFuncSeparate() was never used)
stencilReadMask: material.stencilFuncMask,
stencilWriteMask: material.stencilWriteMask
},
multisample: {
count: sampleCount,
alphaToCoverageEnabled: material.alphaToCoverage
},
layout: device.createPipelineLayout( {
bindGroupLayouts
} )
};
if ( promises === null ) {
pipelineData.pipeline = device.createRenderPipeline( pipelineDescriptor );
} else {
const p = new Promise( ( resolve /*, reject*/ ) => {
device.createRenderPipelineAsync( pipelineDescriptor ).then( pipeline => {
pipelineData.pipeline = pipeline;
resolve();
} );
} );
promises.push( p );
}
}
createBundleEncoder( renderContext, renderObject ) {
const backend = this.backend;
const { utils, device } = backend;
const renderContextData = backend.get( renderContext );
const renderObjectData = backend.get( renderObject );
const depthStencilFormat = utils.getCurrentDepthStencilFormat( renderContext );
const colorFormat = utils.getCurrentColorFormat( renderContext );
const sampleCount = this._getSampleCount( renderObject.context );
const descriptor = {
label: 'renderBundleEncoder',
colorFormats: [ colorFormat ],
depthStencilFormat,
sampleCount
};
const bundleEncoder = device.createRenderBundleEncoder( descriptor );
renderObjectData.bundleEncoder = bundleEncoder;
renderContextData.currentSets = { attributes: {} };
renderContextData._renderBundleViewport = renderContext.width + '_' + renderContext.height;
return bundleEncoder;
}
createComputePipeline( pipeline, bindings ) {
const backend = this.backend;
const device = backend.device;
const computeProgram = backend.get( pipeline.computeProgram ).module;
const pipelineGPU = backend.get( pipeline );
// bind group layouts
const bindGroupLayouts = [];
for ( const bindingsGroup of bindings ) {
const bindingsData = backend.get( bindingsGroup );
bindGroupLayouts.push( bindingsData.layout );
}
pipelineGPU.pipeline = device.createComputePipeline( {
compute: computeProgram,
layout: device.createPipelineLayout( {
bindGroupLayouts
} )
} );
}
_getBlending( material ) {
let color, alpha;
const blending = material.blending;
const blendSrc = material.blendSrc;
const blendDst = material.blendDst;
const blendEquation = material.blendEquation;
if ( blending === CustomBlending ) {
const blendSrcAlpha = material.blendSrcAlpha !== null ? material.blendSrcAlpha : blendSrc;
const blendDstAlpha = material.blendDstAlpha !== null ? material.blendDstAlpha : blendDst;
const blendEquationAlpha = material.blendEquationAlpha !== null ? material.blendEquationAlpha : blendEquation;
color = {
srcFactor: this._getBlendFactor( blendSrc ),
dstFactor: this._getBlendFactor( blendDst ),
operation: this._getBlendOperation( blendEquation )
};
alpha = {
srcFactor: this._getBlendFactor( blendSrcAlpha ),
dstFactor: this._getBlendFactor( blendDstAlpha ),
operation: this._getBlendOperation( blendEquationAlpha )
};
} else {
const premultipliedAlpha = material.premultipliedAlpha;
const setBlend = ( srcRGB, dstRGB, srcAlpha, dstAlpha ) => {
color = {
srcFactor: srcRGB,
dstFactor: dstRGB,
operation: GPUBlendOperation.Add
};
alpha = {
srcFactor: srcAlpha,
dstFactor: dstAlpha,
operation: GPUBlendOperation.Add
};
};
if ( premultipliedAlpha ) {
switch ( blending ) {
case NormalBlending:
setBlend( GPUBlendFactor.SrcAlpha, GPUBlendFactor.OneMinusSrcAlpha, GPUBlendFactor.One, GPUBlendFactor.OneMinusSrcAlpha );
break;
case AdditiveBlending:
setBlend( GPUBlendFactor.SrcAlpha, GPUBlendFactor.One, GPUBlendFactor.One, GPUBlendFactor.One );
break;
case SubtractiveBlending:
setBlend( GPUBlendFactor.Zero, GPUBlendFactor.OneMinusSrc, GPUBlendFactor.Zero, GPUBlendFactor.One );
break;
case MultiplyBlending:
setBlend( GPUBlendFactor.Zero, GPUBlendFactor.Src, GPUBlendFactor.Zero, GPUBlendFactor.SrcAlpha );
break;
}
} else {
switch ( blending ) {
case NormalBlending:
setBlend( GPUBlendFactor.SrcAlpha, GPUBlendFactor.OneMinusSrcAlpha, GPUBlendFactor.One, GPUBlendFactor.OneMinusSrcAlpha );
break;
case AdditiveBlending:
setBlend( GPUBlendFactor.SrcAlpha, GPUBlendFactor.One, GPUBlendFactor.SrcAlpha, GPUBlendFactor.One );
break;
case SubtractiveBlending:
setBlend( GPUBlendFactor.Zero, GPUBlendFactor.OneMinusSrc, GPUBlendFactor.Zero, GPUBlendFactor.One );
break;
case MultiplyBlending:
setBlend( GPUBlendFactor.Zero, GPUBlendFactor.Src, GPUBlendFactor.Zero, GPUBlendFactor.Src );
break;
}
}
}
if ( color !== undefined && alpha !== undefined ) {
return { color, alpha };
} else {
console.error( 'THREE.WebGPURenderer: Invalid blending: ', blending );
}
}
_getBlendFactor( blend ) {
let blendFactor;
switch ( blend ) {
case ZeroFactor:
blendFactor = GPUBlendFactor.Zero;
break;
case OneFactor:
blendFactor = GPUBlendFactor.One;
break;
case SrcColorFactor:
blendFactor = GPUBlendFactor.Src;
break;
case OneMinusSrcColorFactor:
blendFactor = GPUBlendFactor.OneMinusSrc;
break;
case SrcAlphaFactor:
blendFactor = GPUBlendFactor.SrcAlpha;
break;
case OneMinusSrcAlphaFactor:
blendFactor = GPUBlendFactor.OneMinusSrcAlpha;
break;
case DstColorFactor:
blendFactor = GPUBlendFactor.Dst;
break;
case OneMinusDstColorFactor:
blendFactor = GPUBlendFactor.OneMinusDstColor;
break;
case DstAlphaFactor:
blendFactor = GPUBlendFactor.DstAlpha;
break;
case OneMinusDstAlphaFactor:
blendFactor = GPUBlendFactor.OneMinusDstAlpha;
break;
case SrcAlphaSaturateFactor:
blendFactor = GPUBlendFactor.SrcAlphaSaturated;
break;
case BlendColorFactor:
blendFactor = GPUBlendFactor.Constant;
break;
case OneMinusBlendColorFactor:
blendFactor = GPUBlendFactor.OneMinusConstant;
break;
default:
console.error( 'THREE.WebGPURenderer: Blend factor not supported.', blend );
}
return blendFactor;
}
_getStencilCompare( material ) {
let stencilCompare;
const stencilFunc = material.stencilFunc;
switch ( stencilFunc ) {
case NeverStencilFunc:
stencilCompare = GPUCompareFunction.Never;
break;
case AlwaysStencilFunc:
stencilCompare = GPUCompareFunction.Always;
break;
case LessStencilFunc:
stencilCompare = GPUCompareFunction.Less;
break;
case LessEqualStencilFunc:
stencilCompare = GPUCompareFunction.LessEqual;
break;
case EqualStencilFunc:
stencilCompare = GPUCompareFunction.Equal;
break;
case GreaterEqualStencilFunc:
stencilCompare = GPUCompareFunction.GreaterEqual;
break;
case GreaterStencilFunc:
stencilCompare = GPUCompareFunction.Greater;
break;
case NotEqualStencilFunc:
stencilCompare = GPUCompareFunction.NotEqual;
break;
default:
console.error( 'THREE.WebGPURenderer: Invalid stencil function.', stencilFunc );
}
return stencilCompare;
}
_getStencilOperation( op ) {
let stencilOperation;
switch ( op ) {
case KeepStencilOp:
stencilOperation = GPUStencilOperation.Keep;
break;
case ZeroStencilOp:
stencilOperation = GPUStencilOperation.Zero;
break;
case ReplaceStencilOp:
stencilOperation = GPUStencilOperation.Replace;
break;
case InvertStencilOp:
stencilOperation = GPUStencilOperation.Invert;
break;
case IncrementStencilOp:
stencilOperation = GPUStencilOperation.IncrementClamp;
break;
case DecrementStencilOp:
stencilOperation = GPUStencilOperation.DecrementClamp;
break;
case IncrementWrapStencilOp:
stencilOperation = GPUStencilOperation.IncrementWrap;
break;
case DecrementWrapStencilOp:
stencilOperation = GPUStencilOperation.DecrementWrap;
break;
default:
console.error( 'THREE.WebGPURenderer: Invalid stencil operation.', stencilOperation );
}
return stencilOperation;
}
_getBlendOperation( blendEquation ) {
let blendOperation;
switch ( blendEquation ) {
case AddEquation:
blendOperation = GPUBlendOperation.Add;
break;
case SubtractEquation:
blendOperation = GPUBlendOperation.Subtract;
break;
case ReverseSubtractEquation:
blendOperation = GPUBlendOperation.ReverseSubtract;
break;
case MinEquation:
blendOperation = GPUBlendOperation.Min;
break;
case MaxEquation:
blendOperation = GPUBlendOperation.Max;
break;
default:
console.error( 'THREE.WebGPUPipelineUtils: Blend equation not supported.', blendEquation );
}
return blendOperation;
}
_getPrimitiveState( object, geometry, material ) {
const descriptor = {};
const utils = this.backend.utils;
descriptor.topology = utils.getPrimitiveTopology( object, material );
if ( geometry.index !== null && object.isLine === true && object.isLineSegments !== true ) {
descriptor.stripIndexFormat = ( geometry.index.array instanceof Uint16Array ) ? GPUIndexFormat.Uint16 : GPUIndexFormat.Uint32;
}
switch ( material.side ) {
case FrontSide:
descriptor.frontFace = GPUFrontFace.CCW;
descriptor.cullMode = GPUCullMode.Back;
break;
case BackSide:
descriptor.frontFace = GPUFrontFace.CCW;
descriptor.cullMode = GPUCullMode.Front;
break;
case DoubleSide:
descriptor.frontFace = GPUFrontFace.CCW;
descriptor.cullMode = GPUCullMode.None;
break;
default:
console.error( 'THREE.WebGPUPipelineUtils: Unknown material.side value.', material.side );
break;
}
return descriptor;
}
_getColorWriteMask( material ) {
return ( material.colorWrite === true ) ? GPUColorWriteFlags.All : GPUColorWriteFlags.None;
}
_getDepthCompare( material ) {
let depthCompare;
if ( material.depthTest === false ) {
depthCompare = GPUCompareFunction.Always;
} else {
const depthFunc = material.depthFunc;
switch ( depthFunc ) {
case NeverDepth:
depthCompare = GPUCompareFunction.Never;
break;
case AlwaysDepth:
depthCompare = GPUCompareFunction.Always;
break;
case LessDepth:
depthCompare = GPUCompareFunction.Less;
break;
case LessEqualDepth:
depthCompare = GPUCompareFunction.LessEqual;
break;
case EqualDepth:
depthCompare = GPUCompareFunction.Equal;
break;
case GreaterEqualDepth:
depthCompare = GPUCompareFunction.GreaterEqual;
break;
case GreaterDepth:
depthCompare = GPUCompareFunction.Greater;
break;
case NotEqualDepth:
depthCompare = GPUCompareFunction.NotEqual;
break;
default:
console.error( 'THREE.WebGPUPipelineUtils: Invalid depth function.', depthFunc );
}
}
return depthCompare;
}
}
/*// debugger tools
import 'https://greggman.github.io/webgpu-avoid-redundant-state-setting/webgpu-check-redundant-state-setting.js';
//*/
//
class WebGPUBackend extends Backend {
constructor( parameters = {} ) {
super( parameters );
this.isWebGPUBackend = true;
// some parameters require default values other than "undefined"
this.parameters.alpha = ( parameters.alpha === undefined ) ? true : parameters.alpha;
this.parameters.requiredLimits = ( parameters.requiredLimits === undefined ) ? {} : parameters.requiredLimits;
this.trackTimestamp = ( parameters.trackTimestamp === true );
this.device = null;
this.context = null;
this.colorBuffer = null;
this.defaultRenderPassdescriptor = null;
this.utils = new WebGPUUtils( this );
this.attributeUtils = new WebGPUAttributeUtils( this );
this.bindingUtils = new WebGPUBindingUtils( this );
this.pipelineUtils = new WebGPUPipelineUtils( this );
this.textureUtils = new WebGPUTextureUtils( this );
this.occludedResolveCache = new Map();
}
async init( renderer ) {
await super.init( renderer );
//
const parameters = this.parameters;
// create the device if it is not passed with parameters
let device;
if ( parameters.device === undefined ) {
const adapterOptions = {
powerPreference: parameters.powerPreference
};
const adapter = await navigator.gpu.requestAdapter( adapterOptions );
if ( adapter === null ) {
throw new Error( 'WebGPUBackend: Unable to create WebGPU adapter.' );
}
// feature support
const features = Object.values( GPUFeatureName );
const supportedFeatures = [];
for ( const name of features ) {
if ( adapter.features.has( name ) ) {
supportedFeatures.push( name );
}
}
const deviceDescriptor = {
requiredFeatures: supportedFeatures,
requiredLimits: parameters.requiredLimits
};
device = await adapter.requestDevice( deviceDescriptor );
} else {
device = parameters.device;
}
const context = ( parameters.context !== undefined ) ? parameters.context : renderer.domElement.getContext( 'webgpu' );
this.device = device;
this.context = context;
const alphaMode = parameters.alpha ? 'premultiplied' : 'opaque';
this.context.configure( {
device: this.device,
format: GPUTextureFormat.BGRA8Unorm,
usage: GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.COPY_SRC,
alphaMode: alphaMode
} );
this.updateSize();
}
get coordinateSystem() {
return WebGPUCoordinateSystem;
}
async getArrayBufferAsync( attribute ) {
return await this.attributeUtils.getArrayBufferAsync( attribute );
}
getContext() {
return this.context;
}
_getDefaultRenderPassDescriptor() {
let descriptor = this.defaultRenderPassdescriptor;
if ( descriptor === null ) {
const renderer = this.renderer;
descriptor = {
colorAttachments: [ {
view: null
} ],
depthStencilAttachment: {
view: this.textureUtils.getDepthBuffer( renderer.depth, renderer.stencil ).createView()
}
};
const colorAttachment = descriptor.colorAttachments[ 0 ];
if ( this.renderer.samples > 0 ) {
colorAttachment.view = this.colorBuffer.createView();
} else {
colorAttachment.resolveTarget = undefined;
}
this.defaultRenderPassdescriptor = descriptor;
}
const colorAttachment = descriptor.colorAttachments[ 0 ];
if ( this.renderer.samples > 0 ) {
colorAttachment.resolveTarget = this.context.getCurrentTexture().createView();
} else {
colorAttachment.view = this.context.getCurrentTexture().createView();
}
return descriptor;
}
_getRenderPassDescriptor( renderContext ) {
const renderTarget = renderContext.renderTarget;
const renderTargetData = this.get( renderTarget );
let descriptors = renderTargetData.descriptors;
if ( descriptors === undefined ) {
descriptors = [];
renderTargetData.descriptors = descriptors;
}
if ( renderTargetData.width !== renderTarget.width ||
renderTargetData.height !== renderTarget.height ||
renderTargetData.activeMipmapLevel !== renderTarget.activeMipmapLevel ||
renderTargetData.samples !== renderTarget.samples ||
descriptors.length !== renderTarget.textures.length
) {
descriptors.length = 0;
// dispose
const onDispose = () => {
renderTarget.removeEventListener( 'dispose', onDispose );
this.delete( renderTarget );
};
renderTarget.addEventListener( 'dispose', onDispose );
}
let descriptor = descriptors[ renderContext.activeCubeFace ];
if ( descriptor === undefined ) {
const textures = renderContext.textures;
const colorAttachments = [];
for ( let i = 0; i < textures.length; i ++ ) {
const textureData = this.get( textures[ i ] );
const textureView = textureData.texture.createView( {
baseMipLevel: renderContext.activeMipmapLevel,
mipLevelCount: 1,
baseArrayLayer: renderContext.activeCubeFace,
dimension: GPUTextureViewDimension.TwoD
} );
let view, resolveTarget;
if ( textureData.msaaTexture !== undefined ) {
view = textureData.msaaTexture.createView();
resolveTarget = textureView;
} else {
view = textureView;
resolveTarget = undefined;
}
colorAttachments.push( {
view,
resolveTarget,
loadOp: GPULoadOp.Load,
storeOp: GPUStoreOp.Store
} );
}
const depthTextureData = this.get( renderContext.depthTexture );
const depthStencilAttachment = {
view: depthTextureData.texture.createView()
};
descriptor = {
colorAttachments,
depthStencilAttachment
};
descriptors[ renderContext.activeCubeFace ] = descriptor;
renderTargetData.width = renderTarget.width;
renderTargetData.height = renderTarget.height;
renderTargetData.samples = renderTarget.samples;
renderTargetData.activeMipmapLevel = renderTarget.activeMipmapLevel;
}
return descriptor;
}
beginRender( renderContext ) {
const renderContextData = this.get( renderContext );
const device = this.device;
const occlusionQueryCount = renderContext.occlusionQueryCount;
let occlusionQuerySet;
if ( occlusionQueryCount > 0 ) {
if ( renderContextData.currentOcclusionQuerySet ) renderContextData.currentOcclusionQuerySet.destroy();
if ( renderContextData.currentOcclusionQueryBuffer ) renderContextData.currentOcclusionQueryBuffer.destroy();
// Get a reference to the array of objects with queries. The renderContextData property
// can be changed by another render pass before the buffer.mapAsyc() completes.
renderContextData.currentOcclusionQuerySet = renderContextData.occlusionQuerySet;
renderContextData.currentOcclusionQueryBuffer = renderContextData.occlusionQueryBuffer;
renderContextData.currentOcclusionQueryObjects = renderContextData.occlusionQueryObjects;
//
occlusionQuerySet = device.createQuerySet( { type: 'occlusion', count: occlusionQueryCount } );
renderContextData.occlusionQuerySet = occlusionQuerySet;
renderContextData.occlusionQueryIndex = 0;
renderContextData.occlusionQueryObjects = new Array( occlusionQueryCount );
renderContextData.lastOcclusionObject = null;
}
let descriptor;
if ( renderContext.textures === null ) {
descriptor = this._getDefaultRenderPassDescriptor();
} else {
descriptor = this._getRenderPassDescriptor( renderContext );
}
this.initTimestampQuery( renderContext, descriptor );
descriptor.occlusionQuerySet = occlusionQuerySet;
const depthStencilAttachment = descriptor.depthStencilAttachment;
if ( renderContext.textures !== null ) {
const colorAttachments = descriptor.colorAttachments;
for ( let i = 0; i < colorAttachments.length; i ++ ) {
const colorAttachment = colorAttachments[ i ];
if ( renderContext.clearColor ) {
colorAttachment.clearValue = renderContext.clearColorValue;
colorAttachment.loadOp = GPULoadOp.Clear;
colorAttachment.storeOp = GPUStoreOp.Store;
} else {
colorAttachment.loadOp = GPULoadOp.Load;
colorAttachment.storeOp = GPUStoreOp.Store;
}
}
} else {
const colorAttachment = descriptor.colorAttachments[ 0 ];
if ( renderContext.clearColor ) {
colorAttachment.clearValue = renderContext.clearColorValue;
colorAttachment.loadOp = GPULoadOp.Clear;
colorAttachment.storeOp = GPUStoreOp.Store;
} else {
colorAttachment.loadOp = GPULoadOp.Load;
colorAttachment.storeOp = GPUStoreOp.Store;
}
}
//
if ( renderContext.depth ) {
if ( renderContext.clearDepth ) {
depthStencilAttachment.depthClearValue = renderContext.clearDepthValue;
depthStencilAttachment.depthLoadOp = GPULoadOp.Clear;
depthStencilAttachment.depthStoreOp = GPUStoreOp.Store;
} else {
depthStencilAttachment.depthLoadOp = GPULoadOp.Load;
depthStencilAttachment.depthStoreOp = GPUStoreOp.Store;
}
}
if ( renderContext.stencil ) {
if ( renderContext.clearStencil ) {
depthStencilAttachment.stencilClearValue = renderContext.clearStencilValue;
depthStencilAttachment.stencilLoadOp = GPULoadOp.Clear;
depthStencilAttachment.stencilStoreOp = GPUStoreOp.Store;
} else {
depthStencilAttachment.stencilLoadOp = GPULoadOp.Load;
depthStencilAttachment.stencilStoreOp = GPUStoreOp.Store;
}
}
//
const encoder = device.createCommandEncoder( { label: 'renderContext_' + renderContext.id } );
const currentPass = encoder.beginRenderPass( descriptor );
//
renderContextData.descriptor = descriptor;
renderContextData.encoder = encoder;
renderContextData.currentPass = currentPass;
renderContextData.currentSets = { attributes: {} };
//
if ( renderContext.viewport ) {
this.updateViewport( renderContext );
}
if ( renderContext.scissor ) {
const { x, y, width, height } = renderContext.scissorValue;
currentPass.setScissorRect( x, renderContext.height - height - y, width, height );
}
}
finishRender( renderContext ) {
const renderContextData = this.get( renderContext );
const occlusionQueryCount = renderContext.occlusionQueryCount;
if ( renderContextData.renderBundles !== undefined && renderContextData.renderBundles.length > 0 ) {
renderContextData.registerBundlesPhase = false;
renderContextData.currentPass.executeBundles( renderContextData.renderBundles );
}
if ( occlusionQueryCount > renderContextData.occlusionQueryIndex ) {
renderContextData.currentPass.endOcclusionQuery();
}
renderContextData.currentPass.end();
if ( occlusionQueryCount > 0 ) {
const bufferSize = occlusionQueryCount * 8; // 8 byte entries for query results
//
let queryResolveBuffer = this.occludedResolveCache.get( bufferSize );
if ( queryResolveBuffer === undefined ) {
queryResolveBuffer = this.device.createBuffer(
{
size: bufferSize,
usage: GPUBufferUsage.QUERY_RESOLVE | GPUBufferUsage.COPY_SRC
}
);
this.occludedResolveCache.set( bufferSize, queryResolveBuffer );
}
//
const readBuffer = this.device.createBuffer(
{
size: bufferSize,
usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ
}
);
// two buffers required here - WebGPU doesn't allow usage of QUERY_RESOLVE & MAP_READ to be combined
renderContextData.encoder.resolveQuerySet( renderContextData.occlusionQuerySet, 0, occlusionQueryCount, queryResolveBuffer, 0 );
renderContextData.encoder.copyBufferToBuffer( queryResolveBuffer, 0, readBuffer, 0, bufferSize );
renderContextData.occlusionQueryBuffer = readBuffer;
//
this.resolveOccludedAsync( renderContext );
}
this.prepareTimestampBuffer( renderContext, renderContextData.encoder );
this.device.queue.submit( [ renderContextData.encoder.finish() ] );
//
if ( renderContext.textures !== null ) {
const textures = renderContext.textures;
for ( let i = 0; i < textures.length; i ++ ) {
const texture = textures[ i ];
if ( texture.generateMipmaps === true ) {
this.textureUtils.generateMipmaps( texture );
}
}
}
}
isOccluded( renderContext, object ) {
const renderContextData = this.get( renderContext );
return renderContextData.occluded && renderContextData.occluded.has( object );
}
async resolveOccludedAsync( renderContext ) {
const renderContextData = this.get( renderContext );
// handle occlusion query results
const { currentOcclusionQueryBuffer, currentOcclusionQueryObjects } = renderContextData;
if ( currentOcclusionQueryBuffer && currentOcclusionQueryObjects ) {
const occluded = new WeakSet();
renderContextData.currentOcclusionQueryObjects = null;
renderContextData.currentOcclusionQueryBuffer = null;
await currentOcclusionQueryBuffer.mapAsync( GPUMapMode.READ );
const buffer = currentOcclusionQueryBuffer.getMappedRange();
const results = new BigUint64Array( buffer );
for ( let i = 0; i < currentOcclusionQueryObjects.length; i ++ ) {
if ( results[ i ] !== BigInt( 0 ) ) {
occluded.add( currentOcclusionQueryObjects[ i ] );
}
}
currentOcclusionQueryBuffer.destroy();
renderContextData.occluded = occluded;
}
}
updateViewport( renderContext ) {
const { currentPass } = this.get( renderContext );
const { x, y, width, height, minDepth, maxDepth } = renderContext.viewportValue;
currentPass.setViewport( x, renderContext.height - height - y, width, height, minDepth, maxDepth );
}
clear( color, depth, stencil, renderTargetData = null ) {
const device = this.device;
const renderer = this.renderer;
let colorAttachments = [];
let depthStencilAttachment;
let clearValue;
let supportsDepth;
let supportsStencil;
if ( color ) {
const clearColor = this.getClearColor();
clearValue = { r: clearColor.r, g: clearColor.g, b: clearColor.b, a: clearColor.a };
}
if ( renderTargetData === null ) {
supportsDepth = renderer.depth;
supportsStencil = renderer.stencil;
const descriptor = this._getDefaultRenderPassDescriptor();
if ( color ) {
colorAttachments = descriptor.colorAttachments;
const colorAttachment = colorAttachments[ 0 ];
colorAttachment.clearValue = clearValue;
colorAttachment.loadOp = GPULoadOp.Clear;
colorAttachment.storeOp = GPUStoreOp.Store;
}
if ( supportsDepth || supportsStencil ) {
depthStencilAttachment = descriptor.depthStencilAttachment;
}
} else {
supportsDepth = renderTargetData.depth;
supportsStencil = renderTargetData.stencil;
if ( color ) {
for ( const texture of renderTargetData.textures ) {
const textureData = this.get( texture );
const textureView = textureData.texture.createView();
let view, resolveTarget;
if ( textureData.msaaTexture !== undefined ) {
view = textureData.msaaTexture.createView();
resolveTarget = textureView;
} else {
view = textureView;
resolveTarget = undefined;
}
colorAttachments.push( {
view,
resolveTarget,
clearValue,
loadOp: GPULoadOp.Clear,
storeOp: GPUStoreOp.Store
} );
}
}
if ( supportsDepth || supportsStencil ) {
const depthTextureData = this.get( renderTargetData.depthTexture );
depthStencilAttachment = {
view: depthTextureData.texture.createView()
};
}
}
//
if ( supportsDepth ) {
if ( depth ) {
depthStencilAttachment.depthLoadOp = GPULoadOp.Clear;
depthStencilAttachment.depthClearValue = renderer.getClearDepth();
depthStencilAttachment.depthStoreOp = GPUStoreOp.Store;
} else {
depthStencilAttachment.depthLoadOp = GPULoadOp.Load;
depthStencilAttachment.depthStoreOp = GPUStoreOp.Store;
}
}
//
if ( supportsStencil ) {
if ( stencil ) {
depthStencilAttachment.stencilLoadOp = GPULoadOp.Clear;
depthStencilAttachment.stencilClearValue = renderer.getClearStencil();
depthStencilAttachment.stencilStoreOp = GPUStoreOp.Store;
} else {
depthStencilAttachment.stencilLoadOp = GPULoadOp.Load;
depthStencilAttachment.stencilStoreOp = GPUStoreOp.Store;
}
}
//
const encoder = device.createCommandEncoder( {} );
const currentPass = encoder.beginRenderPass( {
colorAttachments,
depthStencilAttachment
} );
currentPass.end();
device.queue.submit( [ encoder.finish() ] );
}
// compute
beginCompute( computeGroup ) {
const groupGPU = this.get( computeGroup );
const descriptor = {};
this.initTimestampQuery( computeGroup, descriptor );
groupGPU.cmdEncoderGPU = this.device.createCommandEncoder();
groupGPU.passEncoderGPU = groupGPU.cmdEncoderGPU.beginComputePass( descriptor );
}
compute( computeGroup, computeNode, bindings, pipeline ) {
const { passEncoderGPU } = this.get( computeGroup );
// pipeline
const pipelineGPU = this.get( pipeline ).pipeline;
passEncoderGPU.setPipeline( pipelineGPU );
// bind groups
for ( let i = 0, l = bindings.length; i < l; i ++ ) {
const bindGroup = bindings[ i ];
const bindingsData = this.get( bindGroup );
passEncoderGPU.setBindGroup( i, bindingsData.group );
}
const maxComputeWorkgroupsPerDimension = this.device.limits.maxComputeWorkgroupsPerDimension;
const computeNodeData = this.get( computeNode );
if ( computeNodeData.dispatchSize === undefined ) computeNodeData.dispatchSize = { x: 0, y: 1, z: 1 };
const { dispatchSize } = computeNodeData;
if ( computeNode.dispatchCount > maxComputeWorkgroupsPerDimension ) {
dispatchSize.x = Math.min( computeNode.dispatchCount, maxComputeWorkgroupsPerDimension );
dispatchSize.y = Math.ceil( computeNode.dispatchCount / maxComputeWorkgroupsPerDimension );
} else {
dispatchSize.x = computeNode.dispatchCount;
}
passEncoderGPU.dispatchWorkgroups(
dispatchSize.x,
dispatchSize.y,
dispatchSize.z
);
}
finishCompute( computeGroup ) {
const groupData = this.get( computeGroup );
groupData.passEncoderGPU.end();
this.prepareTimestampBuffer( computeGroup, groupData.cmdEncoderGPU );
this.device.queue.submit( [ groupData.cmdEncoderGPU.finish() ] );
}
// render object
draw( renderObject, info ) {
const { object, geometry, context, pipeline } = renderObject;
const bindings = renderObject.getBindings();
const contextData = this.get( context );
const pipelineGPU = this.get( pipeline ).pipeline;
const currentSets = contextData.currentSets;
const renderObjectData = this.get( renderObject );
const { bundleEncoder, renderBundle, lastPipelineGPU } = renderObjectData;
const renderContextData = this.get( context );
if ( renderContextData.registerBundlesPhase === true && bundleEncoder !== undefined && lastPipelineGPU === pipelineGPU ) {
renderContextData.renderBundles.push( renderBundle );
return;
}
const passEncoderGPU = this.renderer._currentRenderBundle ? this.createBundleEncoder( context, renderObject ) : contextData.currentPass;
// pipeline
if ( currentSets.pipeline !== pipelineGPU ) {
passEncoderGPU.setPipeline( pipelineGPU );
currentSets.pipeline = pipelineGPU;
}
// bind groups
for ( let i = 0, l = bindings.length; i < l; i ++ ) {
const bindGroup = bindings[ i ];
const bindingsData = this.get( bindGroup );
passEncoderGPU.setBindGroup( i, bindingsData.group );
}
// attributes
const index = renderObject.getIndex();
const hasIndex = ( index !== null );
// index
if ( hasIndex === true ) {
if ( currentSets.index !== index ) {
const buffer = this.get( index ).buffer;
const indexFormat = ( index.array instanceof Uint16Array ) ? GPUIndexFormat.Uint16 : GPUIndexFormat.Uint32;
passEncoderGPU.setIndexBuffer( buffer, indexFormat );
currentSets.index = index;
}
}
// vertex buffers
const vertexBuffers = renderObject.getVertexBuffers();
for ( let i = 0, l = vertexBuffers.length; i < l; i ++ ) {
const vertexBuffer = vertexBuffers[ i ];
if ( currentSets.attributes[ i ] !== vertexBuffer ) {
const buffer = this.get( vertexBuffer ).buffer;
passEncoderGPU.setVertexBuffer( i, buffer );
currentSets.attributes[ i ] = vertexBuffer;
}
}
// occlusion queries - handle multiple consecutive draw calls for an object
if ( contextData.occlusionQuerySet !== undefined ) {
const lastObject = contextData.lastOcclusionObject;
if ( lastObject !== object ) {
if ( lastObject !== null && lastObject.occlusionTest === true ) {
passEncoderGPU.endOcclusionQuery();
contextData.occlusionQueryIndex ++;
}
if ( object.occlusionTest === true ) {
passEncoderGPU.beginOcclusionQuery( contextData.occlusionQueryIndex );
contextData.occlusionQueryObjects[ contextData.occlusionQueryIndex ] = object;
}
contextData.lastOcclusionObject = object;
}
}
// draw
const drawRange = renderObject.drawRange;
const firstVertex = drawRange.start;
const instanceCount = this.getInstanceCount( renderObject );
if ( instanceCount === 0 ) return;
if ( object.isBatchedMesh === true ) {
const starts = object._multiDrawStarts;
const counts = object._multiDrawCounts;
const drawCount = object._multiDrawCount;
const drawInstances = object._multiDrawInstances;
const bytesPerElement = index.bytesPerElement || 1;
for ( let i = 0; i < drawCount; i ++ ) {
const count = drawInstances ? drawInstances[ i ] : 1;
const firstInstance = count > 1 ? 0 : i;
passEncoderGPU.drawIndexed( counts[ i ] / bytesPerElement, count, starts[ i ] / 4, 0, firstInstance );
}
} else if ( hasIndex === true ) {
const indexCount = ( drawRange.count !== Infinity ) ? drawRange.count : index.count;
passEncoderGPU.drawIndexed( indexCount, instanceCount, firstVertex, 0, 0 );
info.update( object, indexCount, instanceCount );
} else {
const positionAttribute = geometry.attributes.position;
const vertexCount = ( drawRange.count !== Infinity ) ? drawRange.count : positionAttribute.count;
passEncoderGPU.draw( vertexCount, instanceCount, firstVertex, 0 );
info.update( object, vertexCount, instanceCount );
}
if ( this.renderer._currentRenderBundle ) {
const renderBundle = passEncoderGPU.finish();
renderObjectData.lastPipelineGPU = pipelineGPU;
renderObjectData.renderBundle = renderBundle;
renderObjectData.bundleEncoder = passEncoderGPU;
}
}
// cache key
needsRenderUpdate( renderObject ) {
const data = this.get( renderObject );
const { object, material } = renderObject;
const utils = this.utils;
const sampleCount = utils.getSampleCountRenderContext( renderObject.context );
const colorSpace = utils.getCurrentColorSpace( renderObject.context );
const colorFormat = utils.getCurrentColorFormat( renderObject.context );
const depthStencilFormat = utils.getCurrentDepthStencilFormat( renderObject.context );
const primitiveTopology = utils.getPrimitiveTopology( object, material );
let needsUpdate = false;
if ( data.material !== material || data.materialVersion !== material.version ||
data.transparent !== material.transparent || data.blending !== material.blending || data.premultipliedAlpha !== material.premultipliedAlpha ||
data.blendSrc !== material.blendSrc || data.blendDst !== material.blendDst || data.blendEquation !== material.blendEquation ||
data.blendSrcAlpha !== material.blendSrcAlpha || data.blendDstAlpha !== material.blendDstAlpha || data.blendEquationAlpha !== material.blendEquationAlpha ||
data.colorWrite !== material.colorWrite || data.depthWrite !== material.depthWrite || data.depthTest !== material.depthTest || data.depthFunc !== material.depthFunc ||
data.stencilWrite !== material.stencilWrite || data.stencilFunc !== material.stencilFunc ||
data.stencilFail !== material.stencilFail || data.stencilZFail !== material.stencilZFail || data.stencilZPass !== material.stencilZPass ||
data.stencilFuncMask !== material.stencilFuncMask || data.stencilWriteMask !== material.stencilWriteMask ||
data.side !== material.side || data.alphaToCoverage !== material.alphaToCoverage ||
data.sampleCount !== sampleCount || data.colorSpace !== colorSpace ||
data.colorFormat !== colorFormat || data.depthStencilFormat !== depthStencilFormat ||
data.primitiveTopology !== primitiveTopology ||
data.clippingContextVersion !== renderObject.clippingContextVersion
) {
data.material = material; data.materialVersion = material.version;
data.transparent = material.transparent; data.blending = material.blending; data.premultipliedAlpha = material.premultipliedAlpha;
data.blendSrc = material.blendSrc; data.blendDst = material.blendDst; data.blendEquation = material.blendEquation;
data.blendSrcAlpha = material.blendSrcAlpha; data.blendDstAlpha = material.blendDstAlpha; data.blendEquationAlpha = material.blendEquationAlpha;
data.colorWrite = material.colorWrite;
data.depthWrite = material.depthWrite; data.depthTest = material.depthTest; data.depthFunc = material.depthFunc;
data.stencilWrite = material.stencilWrite; data.stencilFunc = material.stencilFunc;
data.stencilFail = material.stencilFail; data.stencilZFail = material.stencilZFail; data.stencilZPass = material.stencilZPass;
data.stencilFuncMask = material.stencilFuncMask; data.stencilWriteMask = material.stencilWriteMask;
data.side = material.side; data.alphaToCoverage = material.alphaToCoverage;
data.sampleCount = sampleCount;
data.colorSpace = colorSpace;
data.colorFormat = colorFormat;
data.depthStencilFormat = depthStencilFormat;
data.primitiveTopology = primitiveTopology;
data.clippingContextVersion = renderObject.clippingContextVersion;
needsUpdate = true;
}
return needsUpdate;
}
getRenderCacheKey( renderObject ) {
const { object, material } = renderObject;
const utils = this.utils;
const renderContext = renderObject.context;
return [
material.transparent, material.blending, material.premultipliedAlpha,
material.blendSrc, material.blendDst, material.blendEquation,
material.blendSrcAlpha, material.blendDstAlpha, material.blendEquationAlpha,
material.colorWrite,
material.depthWrite, material.depthTest, material.depthFunc,
material.stencilWrite, material.stencilFunc,
material.stencilFail, material.stencilZFail, material.stencilZPass,
material.stencilFuncMask, material.stencilWriteMask,
material.side,
utils.getSampleCountRenderContext( renderContext ),
utils.getCurrentColorSpace( renderContext ), utils.getCurrentColorFormat( renderContext ), utils.getCurrentDepthStencilFormat( renderContext ),
utils.getPrimitiveTopology( object, material ),
renderObject.clippingContextVersion
].join();
}
// textures
createSampler( texture ) {
this.textureUtils.createSampler( texture );
}
destroySampler( texture ) {
this.textureUtils.destroySampler( texture );
}
createDefaultTexture( texture ) {
this.textureUtils.createDefaultTexture( texture );
}
createTexture( texture, options ) {
this.textureUtils.createTexture( texture, options );
}
updateTexture( texture, options ) {
this.textureUtils.updateTexture( texture, options );
}
generateMipmaps( texture ) {
this.textureUtils.generateMipmaps( texture );
}
destroyTexture( texture ) {
this.textureUtils.destroyTexture( texture );
}
copyTextureToBuffer( texture, x, y, width, height ) {
return this.textureUtils.copyTextureToBuffer( texture, x, y, width, height );
}
initTimestampQuery( renderContext, descriptor ) {
if ( ! this.hasFeature( GPUFeatureName.TimestampQuery ) || ! this.trackTimestamp ) return;
const renderContextData = this.get( renderContext );
if ( ! renderContextData.timeStampQuerySet ) {
// Create a GPUQuerySet which holds 2 timestamp query results: one for the
// beginning and one for the end of compute pass execution.
const timeStampQuerySet = this.device.createQuerySet( { type: 'timestamp', count: 2 } );
const timestampWrites = {
querySet: timeStampQuerySet,
beginningOfPassWriteIndex: 0, // Write timestamp in index 0 when pass begins.
endOfPassWriteIndex: 1, // Write timestamp in index 1 when pass ends.
};
Object.assign( descriptor, {
timestampWrites,
} );
renderContextData.timeStampQuerySet = timeStampQuerySet;
}
}
// timestamp utils
prepareTimestampBuffer( renderContext, encoder ) {
if ( ! this.hasFeature( GPUFeatureName.TimestampQuery ) || ! this.trackTimestamp ) return;
const renderContextData = this.get( renderContext );
const size = 2 * BigInt64Array.BYTES_PER_ELEMENT;
if ( renderContextData.currentTimestampQueryBuffers === undefined ) {
renderContextData.currentTimestampQueryBuffers = {
resolveBuffer: this.device.createBuffer( {
label: 'timestamp resolve buffer',
size: size,
usage: GPUBufferUsage.QUERY_RESOLVE | GPUBufferUsage.COPY_SRC,
} ),
resultBuffer: this.device.createBuffer( {
label: 'timestamp result buffer',
size: size,
usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ,
} ),
isMappingPending: false,
};
}
const { resolveBuffer, resultBuffer, isMappingPending } = renderContextData.currentTimestampQueryBuffers;
if ( isMappingPending === true ) return;
encoder.resolveQuerySet( renderContextData.timeStampQuerySet, 0, 2, resolveBuffer, 0 );
encoder.copyBufferToBuffer( resolveBuffer, 0, resultBuffer, 0, size );
}
async resolveTimestampAsync( renderContext, type = 'render' ) {
if ( ! this.hasFeature( GPUFeatureName.TimestampQuery ) || ! this.trackTimestamp ) return;
const renderContextData = this.get( renderContext );
if ( renderContextData.currentTimestampQueryBuffers === undefined ) return;
const { resultBuffer, isMappingPending } = renderContextData.currentTimestampQueryBuffers;
if ( isMappingPending === true ) return;
renderContextData.currentTimestampQueryBuffers.isMappingPending = true;
resultBuffer.mapAsync( GPUMapMode.READ ).then( () => {
const times = new BigUint64Array( resultBuffer.getMappedRange() );
const duration = Number( times[ 1 ] - times[ 0 ] ) / 1000000;
this.renderer.info.updateTimestamp( type, duration );
resultBuffer.unmap();
renderContextData.currentTimestampQueryBuffers.isMappingPending = false;
} );
}
// node builder
createNodeBuilder( object, renderer ) {
return new WGSLNodeBuilder( object, renderer );
}
// program
createProgram( program ) {
const programGPU = this.get( program );
programGPU.module = {
module: this.device.createShaderModule( { code: program.code, label: program.stage } ),
entryPoint: 'main'
};
}
destroyProgram( program ) {
this.delete( program );
}
// pipelines
createRenderPipeline( renderObject, promises ) {
this.pipelineUtils.createRenderPipeline( renderObject, promises );
}
createComputePipeline( computePipeline, bindings ) {
this.pipelineUtils.createComputePipeline( computePipeline, bindings );
}
createBundleEncoder( renderContext, renderObject ) {
return this.pipelineUtils.createBundleEncoder( renderContext, renderObject );
}
// bindings
createBindings( bindGroup ) {
this.bindingUtils.createBindings( bindGroup );
}
updateBindings( bindGroup ) {
this.bindingUtils.createBindings( bindGroup );
}
updateBinding( binding ) {
this.bindingUtils.updateBinding( binding );
}
// attributes
createIndexAttribute( attribute ) {
this.attributeUtils.createAttribute( attribute, GPUBufferUsage.INDEX | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST );
}
createAttribute( attribute ) {
this.attributeUtils.createAttribute( attribute, GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST );
}
createStorageAttribute( attribute ) {
this.attributeUtils.createAttribute( attribute, GPUBufferUsage.STORAGE | GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST );
}
updateAttribute( attribute ) {
this.attributeUtils.updateAttribute( attribute );
}
destroyAttribute( attribute ) {
this.attributeUtils.destroyAttribute( attribute );
}
// canvas
updateSize() {
this.colorBuffer = this.textureUtils.getColorBuffer();
this.defaultRenderPassdescriptor = null;
}
// utils public
getMaxAnisotropy() {
return 16;
}
hasFeature( name ) {
return this.device.features.has( name );
}
copyTextureToTexture( srcTexture, dstTexture, srcRegion = null, dstPosition = null, level = 0 ) {
let dstX = 0;
let dstY = 0;
let srcX = 0;
let srcY = 0;
let srcWidth = srcTexture.image.width;
let srcHeight = srcTexture.image.height;
if ( srcRegion !== null ) {
srcX = srcRegion.x;
srcY = srcRegion.y;
srcWidth = srcRegion.width;
srcHeight = srcRegion.height;
}
if ( dstPosition !== null ) {
dstX = dstPosition.x;
dstY = dstPosition.y;
}
const encoder = this.device.createCommandEncoder( { label: 'copyTextureToTexture_' + srcTexture.id + '_' + dstTexture.id } );
const sourceGPU = this.get( srcTexture ).texture;
const destinationGPU = this.get( dstTexture ).texture;
encoder.copyTextureToTexture(
{
texture: sourceGPU,
mipLevel: level,
origin: { x: srcX, y: srcY, z: 0 }
},
{
texture: destinationGPU,
mipLevel: level,
origin: { x: dstX, y: dstY, z: 0 }
},
[
srcWidth,
srcHeight
]
);
this.device.queue.submit( [ encoder.finish() ] );
}
copyFramebufferToTexture( texture, renderContext ) {
const renderContextData = this.get( renderContext );
const { encoder, descriptor } = renderContextData;
let sourceGPU = null;
if ( renderContext.renderTarget ) {
if ( texture.isDepthTexture ) {
sourceGPU = this.get( renderContext.depthTexture ).texture;
} else {
sourceGPU = this.get( renderContext.textures[ 0 ] ).texture;
}
} else {
if ( texture.isDepthTexture ) {
sourceGPU = this.textureUtils.getDepthBuffer( renderContext.depth, renderContext.stencil );
} else {
sourceGPU = this.context.getCurrentTexture();
}
}
const destinationGPU = this.get( texture ).texture;
if ( sourceGPU.format !== destinationGPU.format ) {
console.error( 'WebGPUBackend: copyFramebufferToTexture: Source and destination formats do not match.', sourceGPU.format, destinationGPU.format );
return;
}
renderContextData.currentPass.end();
encoder.copyTextureToTexture(
{
texture: sourceGPU,
origin: { x: 0, y: 0, z: 0 }
},
{
texture: destinationGPU
},
[
texture.image.width,
texture.image.height
]
);
if ( texture.generateMipmaps ) this.textureUtils.generateMipmaps( texture );
for ( let i = 0; i < descriptor.colorAttachments.length; i ++ ) {
descriptor.colorAttachments[ i ].loadOp = GPULoadOp.Load;
}
if ( renderContext.depth ) descriptor.depthStencilAttachment.depthLoadOp = GPULoadOp.Load;
if ( renderContext.stencil ) descriptor.depthStencilAttachment.stencilLoadOp = GPULoadOp.Load;
renderContextData.currentPass = encoder.beginRenderPass( descriptor );
renderContextData.currentSets = { attributes: {} };
}
}
/*
const debugHandler = {
get: function ( target, name ) {
// Add |update
if ( /^(create|destroy)/.test( name ) ) console.log( 'WebGPUBackend.' + name );
return target[ name ];
}
};
*/
class WebGPURenderer extends Renderer {
constructor( parameters = {} ) {
let BackendClass;
if ( parameters.forceWebGL ) {
BackendClass = WebGLBackend;
} else if ( WebGPU.isAvailable() ) {
BackendClass = WebGPUBackend;
} else {
BackendClass = WebGLBackend;
console.warn( 'THREE.WebGPURenderer: WebGPU is not available, running under WebGL2 backend.' );
}
const backend = new BackendClass( parameters );
//super( new Proxy( backend, debugHandler ) );
super( backend, parameters );
this.isWebGPURenderer = true;
}
}
const _material = /*@__PURE__*/ new NodeMaterial();
const _quadMesh = /*@__PURE__*/ new QuadMesh( _material );
class PostProcessing {
constructor( renderer, outputNode = vec4( 0, 0, 1, 1 ) ) {
this.renderer = renderer;
this.outputNode = outputNode;
this.outputColorTransform = true;
this.needsUpdate = true;
}
render() {
this.update();
const renderer = this.renderer;
const toneMapping = renderer.toneMapping;
const outputColorSpace = renderer.outputColorSpace;
renderer.toneMapping = NoToneMapping;
renderer.outputColorSpace = LinearSRGBColorSpace;
//
_quadMesh.render( renderer );
//
renderer.toneMapping = toneMapping;
renderer.outputColorSpace = outputColorSpace;
}
update() {
if ( this.needsUpdate === true ) {
const renderer = this.renderer;
const toneMapping = renderer.toneMapping;
const outputColorSpace = renderer.outputColorSpace;
_quadMesh.material.fragmentNode = this.outputColorTransform === true ? renderOutput( this.outputNode, toneMapping, outputColorSpace ) : this.outputNode.context( { toneMapping, outputColorSpace } );
_quadMesh.material.needsUpdate = true;
this.needsUpdate = false;
}
}
async renderAsync() {
this.update();
const renderer = this.renderer;
const toneMapping = renderer.toneMapping;
const outputColorSpace = renderer.outputColorSpace;
renderer.toneMapping = NoToneMapping;
renderer.outputColorSpace = LinearSRGBColorSpace;
//
await _quadMesh.renderAsync( renderer );
//
renderer.toneMapping = toneMapping;
renderer.outputColorSpace = outputColorSpace;
}
}
class StorageTexture extends Texture {
constructor( width = 1, height = 1 ) {
super();
this.image = { width, height };
this.magFilter = LinearFilter;
this.minFilter = LinearFilter;
this.isStorageTexture = true;
}
}
class StorageBufferAttribute extends BufferAttribute {
constructor( array, itemSize, typeClass = Float32Array ) {
if ( ArrayBuffer.isView( array ) === false ) array = new typeClass( array * itemSize );
super( array, itemSize );
this.isStorageBufferAttribute = true;
}
}
class StorageInstancedBufferAttribute extends InstancedBufferAttribute {
constructor( array, itemSize, typeClass = Float32Array ) {
if ( ArrayBuffer.isView( array ) === false ) array = new typeClass( array * itemSize );
super( array, itemSize );
this.isStorageInstancedBufferAttribute = true;
}
}
if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) {
__THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'register', { detail: {
revision: REVISION,
} } ) );
}
if ( typeof window !== 'undefined' ) {
if ( window.__THREE__ ) {
console.warn( 'WARNING: Multiple instances of Three.js being imported.' );
} else {
window.__THREE__ = REVISION;
}
}
export { ACESFilmicToneMapping, AONode, AddEquation, AddOperation, AdditiveAnimationBlendMode, AdditiveBlending, AfterImageNode, AgXToneMapping, AlphaFormat, AlwaysCompare, AlwaysDepth, AlwaysStencilFunc, AmbientLight, AmbientLightNode, AnalyticLightNode, AnamorphicNode, AnimationAction, AnimationClip, AnimationLoader, AnimationMixer, AnimationObjectGroup, AnimationUtils, ArcCurve, ArrayCamera, ArrayElementNode, ArrowHelper, AssignNode, AttachedBindMode, AttributeNode, Audio, AudioAnalyser, AudioContext, AudioListener, AudioLoader, AxesHelper, BRDF_GGX, BRDF_Lambert, BackSide, BasicDepthPacking, BasicEnvironmentNode, BasicShadowMap$1 as BasicShadowMap, BatchNode, BatchedMesh, BlendModeNode, BloomNode, Bone, BooleanKeyframeTrack, Box2, Box3, Box3Helper, BoxGeometry, BoxHelper, Break, BufferAttribute, BufferAttributeNode, BufferGeometry, BufferGeometryLoader, BufferNode, BumpMapNode, BypassNode, ByteType, Cache, CacheNode, Camera, CameraHelper, CanvasTexture, CapsuleGeometry, CatmullRomCurve3, CheckerNode, CineonToneMapping, CircleGeometry, ClampToEdgeWrapping, Clock, CodeNode, Color, ColorAdjustmentNode, ColorKeyframeTrack, ColorManagement, ColorSpaceNode, CompressedArrayTexture, CompressedCubeTexture, CompressedTexture, CompressedTextureLoader, ComputeNode, CondNode, ConeGeometry, ConstNode, ConstantAlphaFactor, ConstantColorFactor, ContextNode, Continue, ConvertNode, CubeCamera, CubeReflectionMapping, CubeRefractionMapping, CubeTexture, CubeTextureLoader, CubeTextureNode, CubeUVReflectionMapping, CubicBezierCurve, CubicBezierCurve3, CubicInterpolant, CullFaceBack, CullFaceFront, CullFaceFrontBack, CullFaceNone, Curve, CurvePath, CustomBlending, CustomToneMapping, CylinderGeometry, Cylindrical, DFGApprox, D_GGX, Data3DTexture, DataArrayTexture, DataTexture, DataTextureLoader, DataUtils, DecrementStencilOp, DecrementWrapStencilOp, DefaultLoadingManager, DenoiseNode, DepthFormat, DepthOfFieldNode, DepthStencilFormat, DepthTexture, DetachedBindMode, DirectionalLight, DirectionalLightHelper, DirectionalLightNode, DiscardNode, DiscreteInterpolant, DisplayP3ColorSpace, DodecahedronGeometry, DotScreenNode, DoubleSide, DstAlphaFactor, DstColorFactor, DynamicCopyUsage, DynamicDrawUsage, DynamicReadUsage, EPSILON, EdgesGeometry, EllipseCurve, EnvironmentNode, EqualCompare, EqualDepth, EqualStencilFunc, EquirectUVNode, EquirectangularReflectionMapping, EquirectangularRefractionMapping, Euler, EventDispatcher, ExpressionNode, ExtrudeGeometry, FXAANode, F_Schlick, FileLoader, FilmNode, Float16BufferAttribute, Float32BufferAttribute, FloatType, Fog, FogExp2, FogExp2Node, FogNode, FogRangeNode, FramebufferTexture, FrontFacingNode, FrontSide, Frustum, FunctionCallNode, FunctionNode, FunctionOverloadingNode, GLBufferAttribute, GLSL1, GLSL3, GLSLNodeParser, GTAONode, GaussianBlurNode, GreaterCompare, GreaterDepth, GreaterEqualCompare, GreaterEqualDepth, GreaterEqualStencilFunc, GreaterStencilFunc, GridHelper, Group, HalfFloatType, HashNode, HemisphereLight, HemisphereLightHelper, HemisphereLightNode, IESSpotLight, IESSpotLightNode, INFINITY, IcosahedronGeometry, If, ImageBitmapLoader, ImageLoader, ImageUtils, IncrementStencilOp, IncrementWrapStencilOp, IndexNode, InstanceNode, InstancedBufferAttribute, InstancedBufferGeometry, InstancedInterleavedBuffer, InstancedMesh, InstancedPointsNodeMaterial, Int16BufferAttribute, Int32BufferAttribute, Int8BufferAttribute, IntType, InterleavedBuffer, InterleavedBufferAttribute, Interpolant, InterpolateDiscrete, InterpolateLinear, InterpolateSmooth, InvertStencilOp, IrradianceNode, JoinNode, KeepStencilOp, KeyframeTrack, LOD, LatheGeometry, Layers, LessCompare, LessDepth, LessEqualCompare, LessEqualDepth, LessEqualStencilFunc, LessStencilFunc, Light, LightNode, LightProbe, LightingContextNode, LightingModel, LightingNode, LightsNode, Line, Line2NodeMaterial, Line3, LineBasicMaterial, LineBasicNodeMaterial, LineCurve, LineCurve3, LineDashedMaterial, LineDashedNodeMaterial, LineLoop, LineSegments, LinearDisplayP3ColorSpace, LinearFilter, LinearInterpolant, LinearMipMapLinearFilter, LinearMipMapNearestFilter, LinearMipmapLinearFilter, LinearMipmapNearestFilter, LinearSRGBColorSpace, LinearToneMapping, LinearTransfer, Loader, LoaderUtils, LoadingManager, LoopNode, LoopOnce, LoopPingPong, LoopRepeat, LuminanceAlphaFormat, LuminanceFormat, Lut3DNode, MOUSE, MRTNode, MatcapUVNode, Material, MaterialLoader, MaterialNode, MaterialReferenceNode, MathNode, MathUtils, Matrix2, Matrix3, Matrix4, MaxEquation, MaxMipLevelNode, Mesh, MeshBasicMaterial, MeshBasicNodeMaterial, MeshDepthMaterial, MeshDistanceMaterial, MeshLambertMaterial, MeshLambertNodeMaterial, MeshMatcapMaterial, MeshMatcapNodeMaterial, MeshNormalMaterial, MeshNormalNodeMaterial, MeshPhongMaterial, MeshPhongNodeMaterial, MeshPhysicalMaterial, MeshPhysicalNodeMaterial, MeshSSSNodeMaterial, MeshStandardMaterial, MeshStandardNodeMaterial, MeshToonMaterial, MeshToonNodeMaterial, MinEquation, MirroredRepeatWrapping, MixOperation, ModelNode, ModelViewProjectionNode, MorphNode, MultiplyBlending, MultiplyOperation, NearestFilter, NearestMipMapLinearFilter, NearestMipMapNearestFilter, NearestMipmapLinearFilter, NearestMipmapNearestFilter, NeutralToneMapping, NeverCompare, NeverDepth, NeverStencilFunc, NoBlending, NoColorSpace, NoToneMapping, Node, NodeAttribute, NodeBuilder, NodeCache, NodeCode, NodeFrame, NodeFunctionInput, NodeKeywords, NodeLoader, NodeMaterial, NodeMaterialLoader, NodeObjectLoader, NodeShaderStage, NodeType, NodeUniform, NodeUpdateType, NodeUtils, NodeVar, NodeVarying, NormalAnimationBlendMode, NormalBlending, NormalMapNode, NotEqualCompare, NotEqualDepth, NotEqualStencilFunc, NumberKeyframeTrack, Object3D, Object3DNode, ObjectLoader, ObjectSpaceNormalMap, OctahedronGeometry, OneFactor, OneMinusConstantAlphaFactor, OneMinusConstantColorFactor, OneMinusDstAlphaFactor, OneMinusDstColorFactor, OneMinusSrcAlphaFactor, OneMinusSrcColorFactor, OperatorNode, OrthographicCamera, OscNode, OutputStructNode, P3Primaries, PCFShadowMap$1 as PCFShadowMap, PCFSoftShadowMap$1 as PCFSoftShadowMap, PI, PI2, PMREMGenerator, PMREMNode, PackingNode, ParameterNode, PassNode, Path, PerspectiveCamera, PhongLightingModel, PhysicalLightingModel, PixelationPassNode, Plane, PlaneGeometry, PlaneHelper, PointLight, PointLightHelper, PointLightNode, PointUVNode, Points, PointsMaterial, PointsNodeMaterial, PolarGridHelper, PolyhedronGeometry, PositionalAudio, PostProcessing, PosterizeNode, PropertyBinding, PropertyMixer, PropertyNode, QuadMesh, QuadraticBezierCurve, QuadraticBezierCurve3, Quaternion, QuaternionKeyframeTrack, QuaternionLinearInterpolant, RED_GREEN_RGTC2_Format, RED_RGTC1_Format, REVISION, RGBADepthPacking, RGBAFormat, RGBAIntegerFormat, RGBA_ASTC_10x10_Format, RGBA_ASTC_10x5_Format, RGBA_ASTC_10x6_Format, RGBA_ASTC_10x8_Format, RGBA_ASTC_12x10_Format, RGBA_ASTC_12x12_Format, RGBA_ASTC_4x4_Format, RGBA_ASTC_5x4_Format, RGBA_ASTC_5x5_Format, RGBA_ASTC_6x5_Format, RGBA_ASTC_6x6_Format, RGBA_ASTC_8x5_Format, RGBA_ASTC_8x6_Format, RGBA_ASTC_8x8_Format, RGBA_BPTC_Format, RGBA_ETC2_EAC_Format, RGBA_PVRTC_2BPPV1_Format, RGBA_PVRTC_4BPPV1_Format, RGBA_S3TC_DXT1_Format, RGBA_S3TC_DXT3_Format, RGBA_S3TC_DXT5_Format, RGBDepthPacking, RGBFormat, RGBIntegerFormat, RGBShiftNode, RGB_BPTC_SIGNED_Format, RGB_BPTC_UNSIGNED_Format, RGB_ETC1_Format, RGB_ETC2_Format, RGB_PVRTC_2BPPV1_Format, RGB_PVRTC_4BPPV1_Format, RGB_S3TC_DXT1_Format, RGDepthPacking, RGFormat, RGIntegerFormat, RTTNode, RangeNode, RawShaderMaterial, Ray, Raycaster, Rec709Primaries, RectAreaLight, RectAreaLightNode, RedFormat, RedIntegerFormat, ReferenceNode, ReflectorNode, ReinhardToneMapping, RemapNode, RenderOutputNode, RenderTarget, RendererReferenceNode, RepeatWrapping, ReplaceStencilOp, Return, ReverseSubtractEquation, RingGeometry, RotateNode, RotateUVNode, SIGNED_RED_GREEN_RGTC2_Format, SIGNED_RED_RGTC1_Format, SRGBColorSpace, SRGBTransfer, Scene, SceneNode, Schlick_to_F0, ScriptableNode, ScriptableValueNode, SetNode, ShaderMaterial, ShaderNode, ShadowMaterial, ShadowNodeMaterial, Shape, ShapeGeometry, ShapePath, ShapeUtils, ShortType, Skeleton, SkeletonHelper, SkinnedMesh, SkinningNode, SobelOperatorNode, Source, Sphere, SphereGeometry, Spherical, SphericalHarmonics3, SplineCurve, SplitNode, SpotLight, SpotLightHelper, SpotLightNode, Sprite, SpriteMaterial, SpriteNodeMaterial, SpriteSheetUVNode, SrcAlphaFactor, SrcAlphaSaturateFactor, SrcColorFactor, StackNode, StaticCopyUsage, StaticDrawUsage, StaticReadUsage, StereoCamera, StorageArrayElementNode, StorageBufferAttribute, StorageBufferNode, StorageInstancedBufferAttribute, StorageTexture, StorageTextureNode, StreamCopyUsage, StreamDrawUsage, StreamReadUsage, StringKeyframeTrack, SubtractEquation, SubtractiveBlending, TBNViewMatrix, TOUCH, TangentSpaceNormalMap, TempNode, TetrahedronGeometry, Texture, Texture3DNode, TextureBicubicNode, TextureLoader, TextureNode, TextureSizeNode, TimerNode, ToneMappingNode, TorusGeometry, TorusKnotGeometry, TransitionNode, Triangle, TriangleFanDrawMode, TriangleStripDrawMode, TrianglesDrawMode, TriplanarTexturesNode, TubeGeometry, UVMapping, Uint16BufferAttribute, Uint32BufferAttribute, Uint8BufferAttribute, Uint8ClampedBufferAttribute, Uniform$1 as Uniform, UniformGroupNode, UniformNode, UniformsGroup$1 as UniformsGroup, UniformsNode, UnsignedByteType, UnsignedInt248Type, UnsignedInt5999Type, UnsignedIntType, UnsignedShort4444Type, UnsignedShort5551Type, UnsignedShortType, UserDataNode, VSMShadowMap, V_GGX_SmithCorrelated, VarNode, VaryingNode, Vector2, Vector3, Vector4, VectorKeyframeTrack, VertexColorNode, VideoTexture, ViewportDepthNode, ViewportDepthTextureNode, ViewportNode, ViewportSharedTextureNode, ViewportTextureNode, VolumeNodeMaterial, WebGL3DRenderTarget, WebGLArrayRenderTarget, WebGLCoordinateSystem, WebGLCubeRenderTarget, WebGLMultipleRenderTargets, WebGLRenderTarget, WebGPUCoordinateSystem, WebGPURenderer, WireframeGeometry, WrapAroundEnding, ZeroCurvatureEnding, ZeroFactor, ZeroSlopeEnding, ZeroStencilOp, abs, acos, add, addLightNode, addNodeClass, addNodeElement, addNodeMaterial, afterImage, all, alphaT, anamorphic, and, anisotropy, anisotropyB, anisotropyT, any, ao, append, arrayBuffer, asin, assign, atan, atan2, attribute, backgroundBlurriness, backgroundIntensity, batch, bitAnd, bitNot, bitOr, bitXor, bitangentGeometry, bitangentLocal, bitangentView, bitangentWorld, bitcast, bloom, blur, bmat2, bmat3, bmat4, bool, buffer, bufferAttribute, bumpMap, burn, bvec2, bvec3, bvec4, bypass, cache, call, cameraFar, cameraLogDepth, cameraNear, cameraNormalMatrix, cameraPosition, cameraProjectionMatrix, cameraProjectionMatrixInverse, cameraViewMatrix, cameraWorldMatrix, cbrt, ceil, checker, clamp, clearcoat, clearcoatRoughness, code, color, colorSpaceToLinear, colorToDirection, compute, cond, context, convert, cos, createCanvasElement, createNodeFromType, createNodeMaterialFromType, cross, cubeTexture, dFdx, dFdy, dashSize, defaultBuildStages, defaultShaderStages, defined, degrees, denoise, densityFog, depth, depthPass, difference, diffuseColor, directionToColor, discard, distance, div, dodge, dof, dot, dotScreen, drawIndex, dynamicBufferAttribute, element, emissive, equal, equals, equirectUV, exp, exp2, expression, faceDirection, faceForward, film, float, floor, fog, fract, frameGroup, frameId, frontFacing, fwidth, fxaa, gain, gapSize, gaussianBlur, getConstNodeType, getCurrentStack, getDirection, getDistanceAttenuation, getGeometryRoughness, getRoughness, global, glsl, glslFn, greaterThan, greaterThanEqual, hash, hue, imat2, imat3, imat4, instance, instanceIndex, instancedBufferAttribute, instancedDynamicBufferAttribute, int, inverseSqrt, iridescence, iridescenceIOR, iridescenceThickness, ivec2, ivec3, ivec4, js, label, length, lengthSq, lessThan, lessThanEqual, lightTargetDirection, lightingContext, lights, lightsNode, linearDepth, linearToColorSpace, linearTosRGB, log, log2, loop, luminance, lut3D, mat2, mat3, mat4, matcapUV, materialAOMap, materialAlphaTest, materialAnisotropy, materialAnisotropyVector, materialClearcoat, materialClearcoatNormal, materialClearcoatRoughness, materialColor, materialDispersion, materialEmissive, materialIridescence, materialIridescenceIOR, materialIridescenceThickness, materialLightMap, materialLineDashOffset, materialLineDashSize, materialLineGapSize, materialLineScale, materialLineWidth, materialMetalness, materialNormal, materialOpacity, materialPointWidth, materialReference, materialReflectivity, materialRotation, materialRoughness, materialSheen, materialSheenRoughness, materialShininess, materialSpecular, materialSpecularStrength, max$1 as max, maxMipLevel, metalness, min$1 as min, mix, mod, modelDirection, modelNormalMatrix, modelPosition, modelScale, modelViewMatrix, modelViewPosition, modelViewProjection, modelWorldMatrix, modelWorldMatrixInverse, morphReference, mrt, mul, mx_aastep, mx_cell_noise_float, mx_contrast, mx_fractal_noise_float, mx_fractal_noise_vec2, mx_fractal_noise_vec3, mx_fractal_noise_vec4, mx_hsvtorgb, mx_noise_float, mx_noise_vec3, mx_noise_vec4, mx_ramplr, mx_ramptb, mx_rgbtohsv, mx_safepower, mx_splitlr, mx_splittb, mx_srgb_texture_to_lin_rec709, mx_transform_uv, mx_worley_noise_float, mx_worley_noise_vec2, mx_worley_noise_vec3, negate, nodeArray, nodeImmutable, nodeObject, nodeObjects, nodeProxy, normalGeometry, normalLocal, normalMap, normalView, normalWorld, normalize, not, objectDirection, objectGroup, objectNormalMatrix, objectPosition, objectScale, objectViewMatrix, objectViewPosition, objectWorldMatrix, oneMinus, or, orthographicDepthToViewZ, oscSawtooth, oscSine, oscSquare, oscTriangle, output, outputStruct, overlay, overloadingFn, parabola, parallaxDirection, parallaxUV, parameter, pass, passTexture, pcurve, perspectiveDepthToViewZ, pixelationPass, pmremTexture, pointUV, pointWidth, positionGeometry, positionLocal, positionView, positionViewDirection, positionWorld, positionWorldDirection, posterize, pow, pow2, pow3, pow4, property, radians, rand, range, rangeFog, reciprocal, reference, referenceBuffer, reflect, reflectVector, reflectView, reflector, refract, refractVector, refractView, remainder, remap, remapClamp, renderGroup, renderOutput, rendererReference, rgbShift, rotate, rotateUV, roughness, round, rtt, sRGBToLinear, sampler, saturate, saturation, screen, scriptable, scriptableValue, setCurrentStack, shaderStages, sheen, sheenRoughness, shiftLeft, shiftRight, shininess, sign, sin, sinc, skinning, skinningReference, smoothstep, sobel, specularColor, split, spritesheetUV, sqrt, stack, step, storage, storageObject, storageTexture, string, sub, tan, tangentGeometry, tangentLocal, tangentView, tangentWorld, temp, texture, texture3D, textureBicubic, textureCubeUV, textureLoad, textureSize, textureStore, threshold, timerDelta, timerGlobal, timerLocal, toneMapping, transformDirection, transformedBentNormalView, transformedBitangentView, transformedBitangentWorld, transformedClearcoatNormalView, transformedNormalView, transformedNormalWorld, transformedTangentView, transformedTangentWorld, transition, transpose, triNoise3D, triplanarTexture, triplanarTextures, trunc, tslFn, uint, umat2, umat3, umat4, uniform, uniformGroup, uniforms, userData, uv, uvec2, uvec3, uvec4, varying, varyingProperty, vec2, vec3, vec4, vectorComponents, vertexColor, vertexIndex, vibrance, viewZToOrthographicDepth, viewZToPerspectiveDepth, viewport, viewportBottomLeft, viewportBottomRight, viewportCoordinate, viewportDepthTexture, viewportLinearDepth, viewportMipTexture, viewportResolution, viewportSharedTexture, viewportTexture, viewportTopLeft, viewportTopRight, wgsl, wgslFn, xor };