Files
METH_Transcendence/site/real_game/node_modules/.vite/deps/chunk-PJQOQ23Z.js
Kum1ta 87f3411af4 Game
- Starting class
2024-08-27 15:26:38 +02:00

3337 lines
124 KiB
JavaScript

import {
AnimationClip,
Bone,
Box3,
BufferAttribute,
BufferGeometry,
ClampToEdgeWrapping,
Color,
ColorManagement,
DirectionalLight,
DoubleSide,
FileLoader,
Float32BufferAttribute,
FrontSide,
Group,
ImageBitmapLoader,
InstancedBufferAttribute,
InstancedMesh,
InterleavedBuffer,
InterleavedBufferAttribute,
Interpolant,
InterpolateDiscrete,
InterpolateLinear,
Line,
LineBasicMaterial,
LineLoop,
LineSegments,
LinearFilter,
LinearMipmapLinearFilter,
LinearMipmapNearestFilter,
LinearSRGBColorSpace,
Loader,
LoaderUtils,
Material,
MathUtils,
Matrix4,
Mesh,
MeshBasicMaterial,
MeshPhysicalMaterial,
MeshStandardMaterial,
MirroredRepeatWrapping,
NearestFilter,
NearestMipmapLinearFilter,
NearestMipmapNearestFilter,
NumberKeyframeTrack,
Object3D,
OrthographicCamera,
PerspectiveCamera,
PointLight,
Points,
PointsMaterial,
PropertyBinding,
Quaternion,
QuaternionKeyframeTrack,
RepeatWrapping,
SRGBColorSpace,
Skeleton,
SkinnedMesh,
Sphere,
SpotLight,
Texture,
TextureLoader,
TriangleFanDrawMode,
TriangleStripDrawMode,
TrianglesDrawMode,
Vector2,
Vector3,
VectorKeyframeTrack
} from "./chunk-IS2ZBFBB.js";
import {
__export
} from "./chunk-HKJ2B2AA.js";
// node_modules/three/examples/jsm/utils/BufferGeometryUtils.js
var BufferGeometryUtils_exports = {};
__export(BufferGeometryUtils_exports, {
computeMikkTSpaceTangents: () => computeMikkTSpaceTangents,
computeMorphedAttributes: () => computeMorphedAttributes,
deepCloneAttribute: () => deepCloneAttribute,
deinterleaveAttribute: () => deinterleaveAttribute,
deinterleaveGeometry: () => deinterleaveGeometry,
estimateBytesUsed: () => estimateBytesUsed,
interleaveAttributes: () => interleaveAttributes,
mergeAttributes: () => mergeAttributes,
mergeGeometries: () => mergeGeometries,
mergeGroups: () => mergeGroups,
mergeVertices: () => mergeVertices,
toCreasedNormals: () => toCreasedNormals,
toTrianglesDrawMode: () => toTrianglesDrawMode
});
function computeMikkTSpaceTangents(geometry, MikkTSpace, negateSign = true) {
if (!MikkTSpace || !MikkTSpace.isReady) {
throw new Error("BufferGeometryUtils: Initialized MikkTSpace library required.");
}
if (!geometry.hasAttribute("position") || !geometry.hasAttribute("normal") || !geometry.hasAttribute("uv")) {
throw new Error('BufferGeometryUtils: Tangents require "position", "normal", and "uv" attributes.');
}
function getAttributeArray(attribute) {
if (attribute.normalized || attribute.isInterleavedBufferAttribute) {
const dstArray = new Float32Array(attribute.count * attribute.itemSize);
for (let i = 0, j = 0; i < attribute.count; i++) {
dstArray[j++] = attribute.getX(i);
dstArray[j++] = attribute.getY(i);
if (attribute.itemSize > 2) {
dstArray[j++] = attribute.getZ(i);
}
}
return dstArray;
}
if (attribute.array instanceof Float32Array) {
return attribute.array;
}
return new Float32Array(attribute.array);
}
const _geometry = geometry.index ? geometry.toNonIndexed() : geometry;
const tangents = MikkTSpace.generateTangents(
getAttributeArray(_geometry.attributes.position),
getAttributeArray(_geometry.attributes.normal),
getAttributeArray(_geometry.attributes.uv)
);
if (negateSign) {
for (let i = 3; i < tangents.length; i += 4) {
tangents[i] *= -1;
}
}
_geometry.setAttribute("tangent", new BufferAttribute(tangents, 4));
if (geometry !== _geometry) {
geometry.copy(_geometry);
}
return geometry;
}
function mergeGeometries(geometries, useGroups = false) {
const isIndexed = geometries[0].index !== null;
const attributesUsed = new Set(Object.keys(geometries[0].attributes));
const morphAttributesUsed = new Set(Object.keys(geometries[0].morphAttributes));
const attributes = {};
const morphAttributes = {};
const morphTargetsRelative = geometries[0].morphTargetsRelative;
const mergedGeometry = new BufferGeometry();
let offset = 0;
for (let i = 0; i < geometries.length; ++i) {
const geometry = geometries[i];
let attributesCount = 0;
if (isIndexed !== (geometry.index !== null)) {
console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". All geometries must have compatible attributes; make sure index attribute exists among all geometries, or in none of them.");
return null;
}
for (const name in geometry.attributes) {
if (!attributesUsed.has(name)) {
console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + '. All geometries must have compatible attributes; make sure "' + name + '" attribute exists among all geometries, or in none of them.');
return null;
}
if (attributes[name] === void 0) attributes[name] = [];
attributes[name].push(geometry.attributes[name]);
attributesCount++;
}
if (attributesCount !== attributesUsed.size) {
console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". Make sure all geometries have the same number of attributes.");
return null;
}
if (morphTargetsRelative !== geometry.morphTargetsRelative) {
console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". .morphTargetsRelative must be consistent throughout all geometries.");
return null;
}
for (const name in geometry.morphAttributes) {
if (!morphAttributesUsed.has(name)) {
console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". .morphAttributes must be consistent throughout all geometries.");
return null;
}
if (morphAttributes[name] === void 0) morphAttributes[name] = [];
morphAttributes[name].push(geometry.morphAttributes[name]);
}
if (useGroups) {
let count;
if (isIndexed) {
count = geometry.index.count;
} else if (geometry.attributes.position !== void 0) {
count = geometry.attributes.position.count;
} else {
console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". The geometry must have either an index or a position attribute");
return null;
}
mergedGeometry.addGroup(offset, count, i);
offset += count;
}
}
if (isIndexed) {
let indexOffset = 0;
const mergedIndex = [];
for (let i = 0; i < geometries.length; ++i) {
const index = geometries[i].index;
for (let j = 0; j < index.count; ++j) {
mergedIndex.push(index.getX(j) + indexOffset);
}
indexOffset += geometries[i].attributes.position.count;
}
mergedGeometry.setIndex(mergedIndex);
}
for (const name in attributes) {
const mergedAttribute = mergeAttributes(attributes[name]);
if (!mergedAttribute) {
console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed while trying to merge the " + name + " attribute.");
return null;
}
mergedGeometry.setAttribute(name, mergedAttribute);
}
for (const name in morphAttributes) {
const numMorphTargets = morphAttributes[name][0].length;
if (numMorphTargets === 0) break;
mergedGeometry.morphAttributes = mergedGeometry.morphAttributes || {};
mergedGeometry.morphAttributes[name] = [];
for (let i = 0; i < numMorphTargets; ++i) {
const morphAttributesToMerge = [];
for (let j = 0; j < morphAttributes[name].length; ++j) {
morphAttributesToMerge.push(morphAttributes[name][j][i]);
}
const mergedMorphAttribute = mergeAttributes(morphAttributesToMerge);
if (!mergedMorphAttribute) {
console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed while trying to merge the " + name + " morphAttribute.");
return null;
}
mergedGeometry.morphAttributes[name].push(mergedMorphAttribute);
}
}
return mergedGeometry;
}
function mergeAttributes(attributes) {
let TypedArray;
let itemSize;
let normalized;
let gpuType = -1;
let arrayLength = 0;
for (let i = 0; i < attributes.length; ++i) {
const attribute = attributes[i];
if (TypedArray === void 0) TypedArray = attribute.array.constructor;
if (TypedArray !== attribute.array.constructor) {
console.error("THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.array must be of consistent array types across matching attributes.");
return null;
}
if (itemSize === void 0) itemSize = attribute.itemSize;
if (itemSize !== attribute.itemSize) {
console.error("THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.itemSize must be consistent across matching attributes.");
return null;
}
if (normalized === void 0) normalized = attribute.normalized;
if (normalized !== attribute.normalized) {
console.error("THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.normalized must be consistent across matching attributes.");
return null;
}
if (gpuType === -1) gpuType = attribute.gpuType;
if (gpuType !== attribute.gpuType) {
console.error("THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.gpuType must be consistent across matching attributes.");
return null;
}
arrayLength += attribute.count * itemSize;
}
const array = new TypedArray(arrayLength);
const result = new BufferAttribute(array, itemSize, normalized);
let offset = 0;
for (let i = 0; i < attributes.length; ++i) {
const attribute = attributes[i];
if (attribute.isInterleavedBufferAttribute) {
const tupleOffset = offset / itemSize;
for (let j = 0, l = attribute.count; j < l; j++) {
for (let c = 0; c < itemSize; c++) {
const value = attribute.getComponent(j, c);
result.setComponent(j + tupleOffset, c, value);
}
}
} else {
array.set(attribute.array, offset);
}
offset += attribute.count * itemSize;
}
if (gpuType !== void 0) {
result.gpuType = gpuType;
}
return result;
}
function deepCloneAttribute(attribute) {
if (attribute.isInstancedInterleavedBufferAttribute || attribute.isInterleavedBufferAttribute) {
return deinterleaveAttribute(attribute);
}
if (attribute.isInstancedBufferAttribute) {
return new InstancedBufferAttribute().copy(attribute);
}
return new BufferAttribute().copy(attribute);
}
function interleaveAttributes(attributes) {
let TypedArray;
let arrayLength = 0;
let stride = 0;
for (let i = 0, l = attributes.length; i < l; ++i) {
const attribute = attributes[i];
if (TypedArray === void 0) TypedArray = attribute.array.constructor;
if (TypedArray !== attribute.array.constructor) {
console.error("AttributeBuffers of different types cannot be interleaved");
return null;
}
arrayLength += attribute.array.length;
stride += attribute.itemSize;
}
const interleavedBuffer = new InterleavedBuffer(new TypedArray(arrayLength), stride);
let offset = 0;
const res = [];
const getters = ["getX", "getY", "getZ", "getW"];
const setters = ["setX", "setY", "setZ", "setW"];
for (let j = 0, l = attributes.length; j < l; j++) {
const attribute = attributes[j];
const itemSize = attribute.itemSize;
const count = attribute.count;
const iba = new InterleavedBufferAttribute(interleavedBuffer, itemSize, offset, attribute.normalized);
res.push(iba);
offset += itemSize;
for (let c = 0; c < count; c++) {
for (let k = 0; k < itemSize; k++) {
iba[setters[k]](c, attribute[getters[k]](c));
}
}
}
return res;
}
function deinterleaveAttribute(attribute) {
const cons = attribute.data.array.constructor;
const count = attribute.count;
const itemSize = attribute.itemSize;
const normalized = attribute.normalized;
const array = new cons(count * itemSize);
let newAttribute;
if (attribute.isInstancedInterleavedBufferAttribute) {
newAttribute = new InstancedBufferAttribute(array, itemSize, normalized, attribute.meshPerAttribute);
} else {
newAttribute = new BufferAttribute(array, itemSize, normalized);
}
for (let i = 0; i < count; i++) {
newAttribute.setX(i, attribute.getX(i));
if (itemSize >= 2) {
newAttribute.setY(i, attribute.getY(i));
}
if (itemSize >= 3) {
newAttribute.setZ(i, attribute.getZ(i));
}
if (itemSize >= 4) {
newAttribute.setW(i, attribute.getW(i));
}
}
return newAttribute;
}
function deinterleaveGeometry(geometry) {
const attributes = geometry.attributes;
const morphTargets = geometry.morphTargets;
const attrMap = /* @__PURE__ */ new Map();
for (const key in attributes) {
const attr = attributes[key];
if (attr.isInterleavedBufferAttribute) {
if (!attrMap.has(attr)) {
attrMap.set(attr, deinterleaveAttribute(attr));
}
attributes[key] = attrMap.get(attr);
}
}
for (const key in morphTargets) {
const attr = morphTargets[key];
if (attr.isInterleavedBufferAttribute) {
if (!attrMap.has(attr)) {
attrMap.set(attr, deinterleaveAttribute(attr));
}
morphTargets[key] = attrMap.get(attr);
}
}
}
function estimateBytesUsed(geometry) {
let mem = 0;
for (const name in geometry.attributes) {
const attr = geometry.getAttribute(name);
mem += attr.count * attr.itemSize * attr.array.BYTES_PER_ELEMENT;
}
const indices = geometry.getIndex();
mem += indices ? indices.count * indices.itemSize * indices.array.BYTES_PER_ELEMENT : 0;
return mem;
}
function mergeVertices(geometry, tolerance = 1e-4) {
tolerance = Math.max(tolerance, Number.EPSILON);
const hashToIndex = {};
const indices = geometry.getIndex();
const positions = geometry.getAttribute("position");
const vertexCount = indices ? indices.count : positions.count;
let nextIndex = 0;
const attributeNames = Object.keys(geometry.attributes);
const tmpAttributes = {};
const tmpMorphAttributes = {};
const newIndices = [];
const getters = ["getX", "getY", "getZ", "getW"];
const setters = ["setX", "setY", "setZ", "setW"];
for (let i = 0, l = attributeNames.length; i < l; i++) {
const name = attributeNames[i];
const attr = geometry.attributes[name];
tmpAttributes[name] = new attr.constructor(
new attr.array.constructor(attr.count * attr.itemSize),
attr.itemSize,
attr.normalized
);
const morphAttributes = geometry.morphAttributes[name];
if (morphAttributes) {
if (!tmpMorphAttributes[name]) tmpMorphAttributes[name] = [];
morphAttributes.forEach((morphAttr, i2) => {
const array = new morphAttr.array.constructor(morphAttr.count * morphAttr.itemSize);
tmpMorphAttributes[name][i2] = new morphAttr.constructor(array, morphAttr.itemSize, morphAttr.normalized);
});
}
}
const halfTolerance = tolerance * 0.5;
const exponent = Math.log10(1 / tolerance);
const hashMultiplier = Math.pow(10, exponent);
const hashAdditive = halfTolerance * hashMultiplier;
for (let i = 0; i < vertexCount; i++) {
const index = indices ? indices.getX(i) : i;
let hash = "";
for (let j = 0, l = attributeNames.length; j < l; j++) {
const name = attributeNames[j];
const attribute = geometry.getAttribute(name);
const itemSize = attribute.itemSize;
for (let k = 0; k < itemSize; k++) {
hash += `${~~(attribute[getters[k]](index) * hashMultiplier + hashAdditive)},`;
}
}
if (hash in hashToIndex) {
newIndices.push(hashToIndex[hash]);
} else {
for (let j = 0, l = attributeNames.length; j < l; j++) {
const name = attributeNames[j];
const attribute = geometry.getAttribute(name);
const morphAttributes = geometry.morphAttributes[name];
const itemSize = attribute.itemSize;
const newArray = tmpAttributes[name];
const newMorphArrays = tmpMorphAttributes[name];
for (let k = 0; k < itemSize; k++) {
const getterFunc = getters[k];
const setterFunc = setters[k];
newArray[setterFunc](nextIndex, attribute[getterFunc](index));
if (morphAttributes) {
for (let m = 0, ml = morphAttributes.length; m < ml; m++) {
newMorphArrays[m][setterFunc](nextIndex, morphAttributes[m][getterFunc](index));
}
}
}
}
hashToIndex[hash] = nextIndex;
newIndices.push(nextIndex);
nextIndex++;
}
}
const result = geometry.clone();
for (const name in geometry.attributes) {
const tmpAttribute = tmpAttributes[name];
result.setAttribute(name, new tmpAttribute.constructor(
tmpAttribute.array.slice(0, nextIndex * tmpAttribute.itemSize),
tmpAttribute.itemSize,
tmpAttribute.normalized
));
if (!(name in tmpMorphAttributes)) continue;
for (let j = 0; j < tmpMorphAttributes[name].length; j++) {
const tmpMorphAttribute = tmpMorphAttributes[name][j];
result.morphAttributes[name][j] = new tmpMorphAttribute.constructor(
tmpMorphAttribute.array.slice(0, nextIndex * tmpMorphAttribute.itemSize),
tmpMorphAttribute.itemSize,
tmpMorphAttribute.normalized
);
}
}
result.setIndex(newIndices);
return result;
}
function toTrianglesDrawMode(geometry, drawMode) {
if (drawMode === TrianglesDrawMode) {
console.warn("THREE.BufferGeometryUtils.toTrianglesDrawMode(): Geometry already defined as triangles.");
return geometry;
}
if (drawMode === TriangleFanDrawMode || drawMode === TriangleStripDrawMode) {
let index = geometry.getIndex();
if (index === null) {
const indices = [];
const position = geometry.getAttribute("position");
if (position !== void 0) {
for (let i = 0; i < position.count; i++) {
indices.push(i);
}
geometry.setIndex(indices);
index = geometry.getIndex();
} else {
console.error("THREE.BufferGeometryUtils.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.");
return geometry;
}
}
const numberOfTriangles = index.count - 2;
const newIndices = [];
if (drawMode === TriangleFanDrawMode) {
for (let i = 1; i <= numberOfTriangles; i++) {
newIndices.push(index.getX(0));
newIndices.push(index.getX(i));
newIndices.push(index.getX(i + 1));
}
} else {
for (let i = 0; i < numberOfTriangles; i++) {
if (i % 2 === 0) {
newIndices.push(index.getX(i));
newIndices.push(index.getX(i + 1));
newIndices.push(index.getX(i + 2));
} else {
newIndices.push(index.getX(i + 2));
newIndices.push(index.getX(i + 1));
newIndices.push(index.getX(i));
}
}
}
if (newIndices.length / 3 !== numberOfTriangles) {
console.error("THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unable to generate correct amount of triangles.");
}
const newGeometry = geometry.clone();
newGeometry.setIndex(newIndices);
newGeometry.clearGroups();
return newGeometry;
} else {
console.error("THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unknown draw mode:", drawMode);
return geometry;
}
}
function computeMorphedAttributes(object) {
const _vA = new Vector3();
const _vB = new Vector3();
const _vC = new Vector3();
const _tempA = new Vector3();
const _tempB = new Vector3();
const _tempC = new Vector3();
const _morphA = new Vector3();
const _morphB = new Vector3();
const _morphC = new Vector3();
function _calculateMorphedAttributeData(object2, attribute, morphAttribute, morphTargetsRelative2, a2, b2, c2, modifiedAttributeArray) {
_vA.fromBufferAttribute(attribute, a2);
_vB.fromBufferAttribute(attribute, b2);
_vC.fromBufferAttribute(attribute, c2);
const morphInfluences = object2.morphTargetInfluences;
if (morphAttribute && morphInfluences) {
_morphA.set(0, 0, 0);
_morphB.set(0, 0, 0);
_morphC.set(0, 0, 0);
for (let i2 = 0, il2 = morphAttribute.length; i2 < il2; i2++) {
const influence = morphInfluences[i2];
const morph = morphAttribute[i2];
if (influence === 0) continue;
_tempA.fromBufferAttribute(morph, a2);
_tempB.fromBufferAttribute(morph, b2);
_tempC.fromBufferAttribute(morph, c2);
if (morphTargetsRelative2) {
_morphA.addScaledVector(_tempA, influence);
_morphB.addScaledVector(_tempB, influence);
_morphC.addScaledVector(_tempC, influence);
} else {
_morphA.addScaledVector(_tempA.sub(_vA), influence);
_morphB.addScaledVector(_tempB.sub(_vB), influence);
_morphC.addScaledVector(_tempC.sub(_vC), influence);
}
}
_vA.add(_morphA);
_vB.add(_morphB);
_vC.add(_morphC);
}
if (object2.isSkinnedMesh) {
object2.applyBoneTransform(a2, _vA);
object2.applyBoneTransform(b2, _vB);
object2.applyBoneTransform(c2, _vC);
}
modifiedAttributeArray[a2 * 3 + 0] = _vA.x;
modifiedAttributeArray[a2 * 3 + 1] = _vA.y;
modifiedAttributeArray[a2 * 3 + 2] = _vA.z;
modifiedAttributeArray[b2 * 3 + 0] = _vB.x;
modifiedAttributeArray[b2 * 3 + 1] = _vB.y;
modifiedAttributeArray[b2 * 3 + 2] = _vB.z;
modifiedAttributeArray[c2 * 3 + 0] = _vC.x;
modifiedAttributeArray[c2 * 3 + 1] = _vC.y;
modifiedAttributeArray[c2 * 3 + 2] = _vC.z;
}
const geometry = object.geometry;
const material = object.material;
let a, b, c;
const index = geometry.index;
const positionAttribute = geometry.attributes.position;
const morphPosition = geometry.morphAttributes.position;
const morphTargetsRelative = geometry.morphTargetsRelative;
const normalAttribute = geometry.attributes.normal;
const morphNormal = geometry.morphAttributes.position;
const groups = geometry.groups;
const drawRange = geometry.drawRange;
let i, j, il, jl;
let group;
let start, end;
const modifiedPosition = new Float32Array(positionAttribute.count * positionAttribute.itemSize);
const modifiedNormal = new Float32Array(normalAttribute.count * normalAttribute.itemSize);
if (index !== null) {
if (Array.isArray(material)) {
for (i = 0, il = groups.length; i < il; i++) {
group = groups[i];
start = Math.max(group.start, drawRange.start);
end = Math.min(group.start + group.count, drawRange.start + drawRange.count);
for (j = start, jl = end; j < jl; j += 3) {
a = index.getX(j);
b = index.getX(j + 1);
c = index.getX(j + 2);
_calculateMorphedAttributeData(
object,
positionAttribute,
morphPosition,
morphTargetsRelative,
a,
b,
c,
modifiedPosition
);
_calculateMorphedAttributeData(
object,
normalAttribute,
morphNormal,
morphTargetsRelative,
a,
b,
c,
modifiedNormal
);
}
}
} else {
start = Math.max(0, drawRange.start);
end = Math.min(index.count, drawRange.start + drawRange.count);
for (i = start, il = end; i < il; i += 3) {
a = index.getX(i);
b = index.getX(i + 1);
c = index.getX(i + 2);
_calculateMorphedAttributeData(
object,
positionAttribute,
morphPosition,
morphTargetsRelative,
a,
b,
c,
modifiedPosition
);
_calculateMorphedAttributeData(
object,
normalAttribute,
morphNormal,
morphTargetsRelative,
a,
b,
c,
modifiedNormal
);
}
}
} else {
if (Array.isArray(material)) {
for (i = 0, il = groups.length; i < il; i++) {
group = groups[i];
start = Math.max(group.start, drawRange.start);
end = Math.min(group.start + group.count, drawRange.start + drawRange.count);
for (j = start, jl = end; j < jl; j += 3) {
a = j;
b = j + 1;
c = j + 2;
_calculateMorphedAttributeData(
object,
positionAttribute,
morphPosition,
morphTargetsRelative,
a,
b,
c,
modifiedPosition
);
_calculateMorphedAttributeData(
object,
normalAttribute,
morphNormal,
morphTargetsRelative,
a,
b,
c,
modifiedNormal
);
}
}
} else {
start = Math.max(0, drawRange.start);
end = Math.min(positionAttribute.count, drawRange.start + drawRange.count);
for (i = start, il = end; i < il; i += 3) {
a = i;
b = i + 1;
c = i + 2;
_calculateMorphedAttributeData(
object,
positionAttribute,
morphPosition,
morphTargetsRelative,
a,
b,
c,
modifiedPosition
);
_calculateMorphedAttributeData(
object,
normalAttribute,
morphNormal,
morphTargetsRelative,
a,
b,
c,
modifiedNormal
);
}
}
}
const morphedPositionAttribute = new Float32BufferAttribute(modifiedPosition, 3);
const morphedNormalAttribute = new Float32BufferAttribute(modifiedNormal, 3);
return {
positionAttribute,
normalAttribute,
morphedPositionAttribute,
morphedNormalAttribute
};
}
function mergeGroups(geometry) {
if (geometry.groups.length === 0) {
console.warn("THREE.BufferGeometryUtils.mergeGroups(): No groups are defined. Nothing to merge.");
return geometry;
}
let groups = geometry.groups;
groups = groups.sort((a, b) => {
if (a.materialIndex !== b.materialIndex) return a.materialIndex - b.materialIndex;
return a.start - b.start;
});
if (geometry.getIndex() === null) {
const positionAttribute = geometry.getAttribute("position");
const indices = [];
for (let i = 0; i < positionAttribute.count; i += 3) {
indices.push(i, i + 1, i + 2);
}
geometry.setIndex(indices);
}
const index = geometry.getIndex();
const newIndices = [];
for (let i = 0; i < groups.length; i++) {
const group = groups[i];
const groupStart = group.start;
const groupLength = groupStart + group.count;
for (let j = groupStart; j < groupLength; j++) {
newIndices.push(index.getX(j));
}
}
geometry.dispose();
geometry.setIndex(newIndices);
let start = 0;
for (let i = 0; i < groups.length; i++) {
const group = groups[i];
group.start = start;
start += group.count;
}
let currentGroup = groups[0];
geometry.groups = [currentGroup];
for (let i = 1; i < groups.length; i++) {
const group = groups[i];
if (currentGroup.materialIndex === group.materialIndex) {
currentGroup.count += group.count;
} else {
currentGroup = group;
geometry.groups.push(currentGroup);
}
}
return geometry;
}
function toCreasedNormals(geometry, creaseAngle = Math.PI / 3) {
const creaseDot = Math.cos(creaseAngle);
const hashMultiplier = (1 + 1e-10) * 100;
const verts = [new Vector3(), new Vector3(), new Vector3()];
const tempVec1 = new Vector3();
const tempVec2 = new Vector3();
const tempNorm = new Vector3();
const tempNorm2 = new Vector3();
function hashVertex(v) {
const x = ~~(v.x * hashMultiplier);
const y = ~~(v.y * hashMultiplier);
const z = ~~(v.z * hashMultiplier);
return `${x},${y},${z}`;
}
const resultGeometry = geometry.index ? geometry.toNonIndexed() : geometry;
const posAttr = resultGeometry.attributes.position;
const vertexMap = {};
for (let i = 0, l = posAttr.count / 3; i < l; i++) {
const i3 = 3 * i;
const a = verts[0].fromBufferAttribute(posAttr, i3 + 0);
const b = verts[1].fromBufferAttribute(posAttr, i3 + 1);
const c = verts[2].fromBufferAttribute(posAttr, i3 + 2);
tempVec1.subVectors(c, b);
tempVec2.subVectors(a, b);
const normal = new Vector3().crossVectors(tempVec1, tempVec2).normalize();
for (let n = 0; n < 3; n++) {
const vert = verts[n];
const hash = hashVertex(vert);
if (!(hash in vertexMap)) {
vertexMap[hash] = [];
}
vertexMap[hash].push(normal);
}
}
const normalArray = new Float32Array(posAttr.count * 3);
const normAttr = new BufferAttribute(normalArray, 3, false);
for (let i = 0, l = posAttr.count / 3; i < l; i++) {
const i3 = 3 * i;
const a = verts[0].fromBufferAttribute(posAttr, i3 + 0);
const b = verts[1].fromBufferAttribute(posAttr, i3 + 1);
const c = verts[2].fromBufferAttribute(posAttr, i3 + 2);
tempVec1.subVectors(c, b);
tempVec2.subVectors(a, b);
tempNorm.crossVectors(tempVec1, tempVec2).normalize();
for (let n = 0; n < 3; n++) {
const vert = verts[n];
const hash = hashVertex(vert);
const otherNormals = vertexMap[hash];
tempNorm2.set(0, 0, 0);
for (let k = 0, lk = otherNormals.length; k < lk; k++) {
const otherNorm = otherNormals[k];
if (tempNorm.dot(otherNorm) > creaseDot) {
tempNorm2.add(otherNorm);
}
}
tempNorm2.normalize();
normAttr.setXYZ(i3 + n, tempNorm2.x, tempNorm2.y, tempNorm2.z);
}
}
resultGeometry.setAttribute("normal", normAttr);
return resultGeometry;
}
// node_modules/three/examples/jsm/loaders/GLTFLoader.js
var GLTFLoader = class extends Loader {
constructor(manager) {
super(manager);
this.dracoLoader = null;
this.ktx2Loader = null;
this.meshoptDecoder = null;
this.pluginCallbacks = [];
this.register(function(parser) {
return new GLTFMaterialsClearcoatExtension(parser);
});
this.register(function(parser) {
return new GLTFMaterialsDispersionExtension(parser);
});
this.register(function(parser) {
return new GLTFTextureBasisUExtension(parser);
});
this.register(function(parser) {
return new GLTFTextureWebPExtension(parser);
});
this.register(function(parser) {
return new GLTFTextureAVIFExtension(parser);
});
this.register(function(parser) {
return new GLTFMaterialsSheenExtension(parser);
});
this.register(function(parser) {
return new GLTFMaterialsTransmissionExtension(parser);
});
this.register(function(parser) {
return new GLTFMaterialsVolumeExtension(parser);
});
this.register(function(parser) {
return new GLTFMaterialsIorExtension(parser);
});
this.register(function(parser) {
return new GLTFMaterialsEmissiveStrengthExtension(parser);
});
this.register(function(parser) {
return new GLTFMaterialsSpecularExtension(parser);
});
this.register(function(parser) {
return new GLTFMaterialsIridescenceExtension(parser);
});
this.register(function(parser) {
return new GLTFMaterialsAnisotropyExtension(parser);
});
this.register(function(parser) {
return new GLTFMaterialsBumpExtension(parser);
});
this.register(function(parser) {
return new GLTFLightsExtension(parser);
});
this.register(function(parser) {
return new GLTFMeshoptCompression(parser);
});
this.register(function(parser) {
return new GLTFMeshGpuInstancing(parser);
});
}
load(url, onLoad, onProgress, onError) {
const scope = this;
let resourcePath;
if (this.resourcePath !== "") {
resourcePath = this.resourcePath;
} else if (this.path !== "") {
const relativeUrl = LoaderUtils.extractUrlBase(url);
resourcePath = LoaderUtils.resolveURL(relativeUrl, this.path);
} else {
resourcePath = LoaderUtils.extractUrlBase(url);
}
this.manager.itemStart(url);
const _onError = function(e) {
if (onError) {
onError(e);
} else {
console.error(e);
}
scope.manager.itemError(url);
scope.manager.itemEnd(url);
};
const loader = new FileLoader(this.manager);
loader.setPath(this.path);
loader.setResponseType("arraybuffer");
loader.setRequestHeader(this.requestHeader);
loader.setWithCredentials(this.withCredentials);
loader.load(url, function(data) {
try {
scope.parse(data, resourcePath, function(gltf) {
onLoad(gltf);
scope.manager.itemEnd(url);
}, _onError);
} catch (e) {
_onError(e);
}
}, onProgress, _onError);
}
setDRACOLoader(dracoLoader) {
this.dracoLoader = dracoLoader;
return this;
}
setDDSLoader() {
throw new Error(
'THREE.GLTFLoader: "MSFT_texture_dds" no longer supported. Please update to "KHR_texture_basisu".'
);
}
setKTX2Loader(ktx2Loader) {
this.ktx2Loader = ktx2Loader;
return this;
}
setMeshoptDecoder(meshoptDecoder) {
this.meshoptDecoder = meshoptDecoder;
return this;
}
register(callback) {
if (this.pluginCallbacks.indexOf(callback) === -1) {
this.pluginCallbacks.push(callback);
}
return this;
}
unregister(callback) {
if (this.pluginCallbacks.indexOf(callback) !== -1) {
this.pluginCallbacks.splice(this.pluginCallbacks.indexOf(callback), 1);
}
return this;
}
parse(data, path, onLoad, onError) {
let json;
const extensions = {};
const plugins = {};
const textDecoder = new TextDecoder();
if (typeof data === "string") {
json = JSON.parse(data);
} else if (data instanceof ArrayBuffer) {
const magic = textDecoder.decode(new Uint8Array(data, 0, 4));
if (magic === BINARY_EXTENSION_HEADER_MAGIC) {
try {
extensions[EXTENSIONS.KHR_BINARY_GLTF] = new GLTFBinaryExtension(data);
} catch (error) {
if (onError) onError(error);
return;
}
json = JSON.parse(extensions[EXTENSIONS.KHR_BINARY_GLTF].content);
} else {
json = JSON.parse(textDecoder.decode(data));
}
} else {
json = data;
}
if (json.asset === void 0 || json.asset.version[0] < 2) {
if (onError) onError(new Error("THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported."));
return;
}
const parser = new GLTFParser(json, {
path: path || this.resourcePath || "",
crossOrigin: this.crossOrigin,
requestHeader: this.requestHeader,
manager: this.manager,
ktx2Loader: this.ktx2Loader,
meshoptDecoder: this.meshoptDecoder
});
parser.fileLoader.setRequestHeader(this.requestHeader);
for (let i = 0; i < this.pluginCallbacks.length; i++) {
const plugin = this.pluginCallbacks[i](parser);
if (!plugin.name) console.error("THREE.GLTFLoader: Invalid plugin found: missing name");
plugins[plugin.name] = plugin;
extensions[plugin.name] = true;
}
if (json.extensionsUsed) {
for (let i = 0; i < json.extensionsUsed.length; ++i) {
const extensionName = json.extensionsUsed[i];
const extensionsRequired = json.extensionsRequired || [];
switch (extensionName) {
case EXTENSIONS.KHR_MATERIALS_UNLIT:
extensions[extensionName] = new GLTFMaterialsUnlitExtension();
break;
case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
extensions[extensionName] = new GLTFDracoMeshCompressionExtension(json, this.dracoLoader);
break;
case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
extensions[extensionName] = new GLTFTextureTransformExtension();
break;
case EXTENSIONS.KHR_MESH_QUANTIZATION:
extensions[extensionName] = new GLTFMeshQuantizationExtension();
break;
default:
if (extensionsRequired.indexOf(extensionName) >= 0 && plugins[extensionName] === void 0) {
console.warn('THREE.GLTFLoader: Unknown extension "' + extensionName + '".');
}
}
}
}
parser.setExtensions(extensions);
parser.setPlugins(plugins);
parser.parse(onLoad, onError);
}
parseAsync(data, path) {
const scope = this;
return new Promise(function(resolve, reject) {
scope.parse(data, path, resolve, reject);
});
}
};
function GLTFRegistry() {
let objects = {};
return {
get: function(key) {
return objects[key];
},
add: function(key, object) {
objects[key] = object;
},
remove: function(key) {
delete objects[key];
},
removeAll: function() {
objects = {};
}
};
}
var EXTENSIONS = {
KHR_BINARY_GLTF: "KHR_binary_glTF",
KHR_DRACO_MESH_COMPRESSION: "KHR_draco_mesh_compression",
KHR_LIGHTS_PUNCTUAL: "KHR_lights_punctual",
KHR_MATERIALS_CLEARCOAT: "KHR_materials_clearcoat",
KHR_MATERIALS_DISPERSION: "KHR_materials_dispersion",
KHR_MATERIALS_IOR: "KHR_materials_ior",
KHR_MATERIALS_SHEEN: "KHR_materials_sheen",
KHR_MATERIALS_SPECULAR: "KHR_materials_specular",
KHR_MATERIALS_TRANSMISSION: "KHR_materials_transmission",
KHR_MATERIALS_IRIDESCENCE: "KHR_materials_iridescence",
KHR_MATERIALS_ANISOTROPY: "KHR_materials_anisotropy",
KHR_MATERIALS_UNLIT: "KHR_materials_unlit",
KHR_MATERIALS_VOLUME: "KHR_materials_volume",
KHR_TEXTURE_BASISU: "KHR_texture_basisu",
KHR_TEXTURE_TRANSFORM: "KHR_texture_transform",
KHR_MESH_QUANTIZATION: "KHR_mesh_quantization",
KHR_MATERIALS_EMISSIVE_STRENGTH: "KHR_materials_emissive_strength",
EXT_MATERIALS_BUMP: "EXT_materials_bump",
EXT_TEXTURE_WEBP: "EXT_texture_webp",
EXT_TEXTURE_AVIF: "EXT_texture_avif",
EXT_MESHOPT_COMPRESSION: "EXT_meshopt_compression",
EXT_MESH_GPU_INSTANCING: "EXT_mesh_gpu_instancing"
};
var GLTFLightsExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL;
this.cache = { refs: {}, uses: {} };
}
_markDefs() {
const parser = this.parser;
const nodeDefs = this.parser.json.nodes || [];
for (let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex++) {
const nodeDef = nodeDefs[nodeIndex];
if (nodeDef.extensions && nodeDef.extensions[this.name] && nodeDef.extensions[this.name].light !== void 0) {
parser._addNodeRef(this.cache, nodeDef.extensions[this.name].light);
}
}
}
_loadLight(lightIndex) {
const parser = this.parser;
const cacheKey = "light:" + lightIndex;
let dependency = parser.cache.get(cacheKey);
if (dependency) return dependency;
const json = parser.json;
const extensions = json.extensions && json.extensions[this.name] || {};
const lightDefs = extensions.lights || [];
const lightDef = lightDefs[lightIndex];
let lightNode;
const color = new Color(16777215);
if (lightDef.color !== void 0) color.setRGB(lightDef.color[0], lightDef.color[1], lightDef.color[2], LinearSRGBColorSpace);
const range = lightDef.range !== void 0 ? lightDef.range : 0;
switch (lightDef.type) {
case "directional":
lightNode = new DirectionalLight(color);
lightNode.target.position.set(0, 0, -1);
lightNode.add(lightNode.target);
break;
case "point":
lightNode = new PointLight(color);
lightNode.distance = range;
break;
case "spot":
lightNode = new SpotLight(color);
lightNode.distance = range;
lightDef.spot = lightDef.spot || {};
lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== void 0 ? lightDef.spot.innerConeAngle : 0;
lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== void 0 ? lightDef.spot.outerConeAngle : Math.PI / 4;
lightNode.angle = lightDef.spot.outerConeAngle;
lightNode.penumbra = 1 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
lightNode.target.position.set(0, 0, -1);
lightNode.add(lightNode.target);
break;
default:
throw new Error("THREE.GLTFLoader: Unexpected light type: " + lightDef.type);
}
lightNode.position.set(0, 0, 0);
lightNode.decay = 2;
assignExtrasToUserData(lightNode, lightDef);
if (lightDef.intensity !== void 0) lightNode.intensity = lightDef.intensity;
lightNode.name = parser.createUniqueName(lightDef.name || "light_" + lightIndex);
dependency = Promise.resolve(lightNode);
parser.cache.add(cacheKey, dependency);
return dependency;
}
getDependency(type, index) {
if (type !== "light") return;
return this._loadLight(index);
}
createNodeAttachment(nodeIndex) {
const self2 = this;
const parser = this.parser;
const json = parser.json;
const nodeDef = json.nodes[nodeIndex];
const lightDef = nodeDef.extensions && nodeDef.extensions[this.name] || {};
const lightIndex = lightDef.light;
if (lightIndex === void 0) return null;
return this._loadLight(lightIndex).then(function(light) {
return parser._getNodeRef(self2.cache, lightIndex, light);
});
}
};
var GLTFMaterialsUnlitExtension = class {
constructor() {
this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;
}
getMaterialType() {
return MeshBasicMaterial;
}
extendParams(materialParams, materialDef, parser) {
const pending = [];
materialParams.color = new Color(1, 1, 1);
materialParams.opacity = 1;
const metallicRoughness = materialDef.pbrMetallicRoughness;
if (metallicRoughness) {
if (Array.isArray(metallicRoughness.baseColorFactor)) {
const array = metallicRoughness.baseColorFactor;
materialParams.color.setRGB(array[0], array[1], array[2], LinearSRGBColorSpace);
materialParams.opacity = array[3];
}
if (metallicRoughness.baseColorTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "map", metallicRoughness.baseColorTexture, SRGBColorSpace));
}
}
return Promise.all(pending);
}
};
var GLTFMaterialsEmissiveStrengthExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_EMISSIVE_STRENGTH;
}
extendMaterialParams(materialIndex, materialParams) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) {
return Promise.resolve();
}
const emissiveStrength = materialDef.extensions[this.name].emissiveStrength;
if (emissiveStrength !== void 0) {
materialParams.emissiveIntensity = emissiveStrength;
}
return Promise.resolve();
}
};
var GLTFMaterialsClearcoatExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT;
}
getMaterialType(materialIndex) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams(materialIndex, materialParams) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[this.name];
if (extension.clearcoatFactor !== void 0) {
materialParams.clearcoat = extension.clearcoatFactor;
}
if (extension.clearcoatTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "clearcoatMap", extension.clearcoatTexture));
}
if (extension.clearcoatRoughnessFactor !== void 0) {
materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor;
}
if (extension.clearcoatRoughnessTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "clearcoatRoughnessMap", extension.clearcoatRoughnessTexture));
}
if (extension.clearcoatNormalTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "clearcoatNormalMap", extension.clearcoatNormalTexture));
if (extension.clearcoatNormalTexture.scale !== void 0) {
const scale = extension.clearcoatNormalTexture.scale;
materialParams.clearcoatNormalScale = new Vector2(scale, scale);
}
}
return Promise.all(pending);
}
};
var GLTFMaterialsDispersionExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_DISPERSION;
}
getMaterialType(materialIndex) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams(materialIndex, materialParams) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) {
return Promise.resolve();
}
const extension = materialDef.extensions[this.name];
materialParams.dispersion = extension.dispersion !== void 0 ? extension.dispersion : 0;
return Promise.resolve();
}
};
var GLTFMaterialsIridescenceExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_IRIDESCENCE;
}
getMaterialType(materialIndex) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams(materialIndex, materialParams) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[this.name];
if (extension.iridescenceFactor !== void 0) {
materialParams.iridescence = extension.iridescenceFactor;
}
if (extension.iridescenceTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "iridescenceMap", extension.iridescenceTexture));
}
if (extension.iridescenceIor !== void 0) {
materialParams.iridescenceIOR = extension.iridescenceIor;
}
if (materialParams.iridescenceThicknessRange === void 0) {
materialParams.iridescenceThicknessRange = [100, 400];
}
if (extension.iridescenceThicknessMinimum !== void 0) {
materialParams.iridescenceThicknessRange[0] = extension.iridescenceThicknessMinimum;
}
if (extension.iridescenceThicknessMaximum !== void 0) {
materialParams.iridescenceThicknessRange[1] = extension.iridescenceThicknessMaximum;
}
if (extension.iridescenceThicknessTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "iridescenceThicknessMap", extension.iridescenceThicknessTexture));
}
return Promise.all(pending);
}
};
var GLTFMaterialsSheenExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_SHEEN;
}
getMaterialType(materialIndex) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams(materialIndex, materialParams) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) {
return Promise.resolve();
}
const pending = [];
materialParams.sheenColor = new Color(0, 0, 0);
materialParams.sheenRoughness = 0;
materialParams.sheen = 1;
const extension = materialDef.extensions[this.name];
if (extension.sheenColorFactor !== void 0) {
const colorFactor = extension.sheenColorFactor;
materialParams.sheenColor.setRGB(colorFactor[0], colorFactor[1], colorFactor[2], LinearSRGBColorSpace);
}
if (extension.sheenRoughnessFactor !== void 0) {
materialParams.sheenRoughness = extension.sheenRoughnessFactor;
}
if (extension.sheenColorTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "sheenColorMap", extension.sheenColorTexture, SRGBColorSpace));
}
if (extension.sheenRoughnessTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "sheenRoughnessMap", extension.sheenRoughnessTexture));
}
return Promise.all(pending);
}
};
var GLTFMaterialsTransmissionExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_TRANSMISSION;
}
getMaterialType(materialIndex) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams(materialIndex, materialParams) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[this.name];
if (extension.transmissionFactor !== void 0) {
materialParams.transmission = extension.transmissionFactor;
}
if (extension.transmissionTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "transmissionMap", extension.transmissionTexture));
}
return Promise.all(pending);
}
};
var GLTFMaterialsVolumeExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_VOLUME;
}
getMaterialType(materialIndex) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams(materialIndex, materialParams) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[this.name];
materialParams.thickness = extension.thicknessFactor !== void 0 ? extension.thicknessFactor : 0;
if (extension.thicknessTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "thicknessMap", extension.thicknessTexture));
}
materialParams.attenuationDistance = extension.attenuationDistance || Infinity;
const colorArray = extension.attenuationColor || [1, 1, 1];
materialParams.attenuationColor = new Color().setRGB(colorArray[0], colorArray[1], colorArray[2], LinearSRGBColorSpace);
return Promise.all(pending);
}
};
var GLTFMaterialsIorExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_IOR;
}
getMaterialType(materialIndex) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams(materialIndex, materialParams) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) {
return Promise.resolve();
}
const extension = materialDef.extensions[this.name];
materialParams.ior = extension.ior !== void 0 ? extension.ior : 1.5;
return Promise.resolve();
}
};
var GLTFMaterialsSpecularExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_SPECULAR;
}
getMaterialType(materialIndex) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams(materialIndex, materialParams) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[this.name];
materialParams.specularIntensity = extension.specularFactor !== void 0 ? extension.specularFactor : 1;
if (extension.specularTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "specularIntensityMap", extension.specularTexture));
}
const colorArray = extension.specularColorFactor || [1, 1, 1];
materialParams.specularColor = new Color().setRGB(colorArray[0], colorArray[1], colorArray[2], LinearSRGBColorSpace);
if (extension.specularColorTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "specularColorMap", extension.specularColorTexture, SRGBColorSpace));
}
return Promise.all(pending);
}
};
var GLTFMaterialsBumpExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.EXT_MATERIALS_BUMP;
}
getMaterialType(materialIndex) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams(materialIndex, materialParams) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[this.name];
materialParams.bumpScale = extension.bumpFactor !== void 0 ? extension.bumpFactor : 1;
if (extension.bumpTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "bumpMap", extension.bumpTexture));
}
return Promise.all(pending);
}
};
var GLTFMaterialsAnisotropyExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.KHR_MATERIALS_ANISOTROPY;
}
getMaterialType(materialIndex) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) return null;
return MeshPhysicalMaterial;
}
extendMaterialParams(materialIndex, materialParams) {
const parser = this.parser;
const materialDef = parser.json.materials[materialIndex];
if (!materialDef.extensions || !materialDef.extensions[this.name]) {
return Promise.resolve();
}
const pending = [];
const extension = materialDef.extensions[this.name];
if (extension.anisotropyStrength !== void 0) {
materialParams.anisotropy = extension.anisotropyStrength;
}
if (extension.anisotropyRotation !== void 0) {
materialParams.anisotropyRotation = extension.anisotropyRotation;
}
if (extension.anisotropyTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "anisotropyMap", extension.anisotropyTexture));
}
return Promise.all(pending);
}
};
var GLTFTextureBasisUExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.KHR_TEXTURE_BASISU;
}
loadTexture(textureIndex) {
const parser = this.parser;
const json = parser.json;
const textureDef = json.textures[textureIndex];
if (!textureDef.extensions || !textureDef.extensions[this.name]) {
return null;
}
const extension = textureDef.extensions[this.name];
const loader = parser.options.ktx2Loader;
if (!loader) {
if (json.extensionsRequired && json.extensionsRequired.indexOf(this.name) >= 0) {
throw new Error("THREE.GLTFLoader: setKTX2Loader must be called before loading KTX2 textures");
} else {
return null;
}
}
return parser.loadTextureImage(textureIndex, extension.source, loader);
}
};
var GLTFTextureWebPExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.EXT_TEXTURE_WEBP;
this.isSupported = null;
}
loadTexture(textureIndex) {
const name = this.name;
const parser = this.parser;
const json = parser.json;
const textureDef = json.textures[textureIndex];
if (!textureDef.extensions || !textureDef.extensions[name]) {
return null;
}
const extension = textureDef.extensions[name];
const source = json.images[extension.source];
let loader = parser.textureLoader;
if (source.uri) {
const handler = parser.options.manager.getHandler(source.uri);
if (handler !== null) loader = handler;
}
return this.detectSupport().then(function(isSupported) {
if (isSupported) return parser.loadTextureImage(textureIndex, extension.source, loader);
if (json.extensionsRequired && json.extensionsRequired.indexOf(name) >= 0) {
throw new Error("THREE.GLTFLoader: WebP required by asset but unsupported.");
}
return parser.loadTexture(textureIndex);
});
}
detectSupport() {
if (!this.isSupported) {
this.isSupported = new Promise(function(resolve) {
const image = new Image();
image.src = "";
image.onload = image.onerror = function() {
resolve(image.height === 1);
};
});
}
return this.isSupported;
}
};
var GLTFTextureAVIFExtension = class {
constructor(parser) {
this.parser = parser;
this.name = EXTENSIONS.EXT_TEXTURE_AVIF;
this.isSupported = null;
}
loadTexture(textureIndex) {
const name = this.name;
const parser = this.parser;
const json = parser.json;
const textureDef = json.textures[textureIndex];
if (!textureDef.extensions || !textureDef.extensions[name]) {
return null;
}
const extension = textureDef.extensions[name];
const source = json.images[extension.source];
let loader = parser.textureLoader;
if (source.uri) {
const handler = parser.options.manager.getHandler(source.uri);
if (handler !== null) loader = handler;
}
return this.detectSupport().then(function(isSupported) {
if (isSupported) return parser.loadTextureImage(textureIndex, extension.source, loader);
if (json.extensionsRequired && json.extensionsRequired.indexOf(name) >= 0) {
throw new Error("THREE.GLTFLoader: AVIF required by asset but unsupported.");
}
return parser.loadTexture(textureIndex);
});
}
detectSupport() {
if (!this.isSupported) {
this.isSupported = new Promise(function(resolve) {
const image = new Image();
image.src = "";
image.onload = image.onerror = function() {
resolve(image.height === 1);
};
});
}
return this.isSupported;
}
};
var GLTFMeshoptCompression = class {
constructor(parser) {
this.name = EXTENSIONS.EXT_MESHOPT_COMPRESSION;
this.parser = parser;
}
loadBufferView(index) {
const json = this.parser.json;
const bufferView = json.bufferViews[index];
if (bufferView.extensions && bufferView.extensions[this.name]) {
const extensionDef = bufferView.extensions[this.name];
const buffer = this.parser.getDependency("buffer", extensionDef.buffer);
const decoder = this.parser.options.meshoptDecoder;
if (!decoder || !decoder.supported) {
if (json.extensionsRequired && json.extensionsRequired.indexOf(this.name) >= 0) {
throw new Error("THREE.GLTFLoader: setMeshoptDecoder must be called before loading compressed files");
} else {
return null;
}
}
return buffer.then(function(res) {
const byteOffset = extensionDef.byteOffset || 0;
const byteLength = extensionDef.byteLength || 0;
const count = extensionDef.count;
const stride = extensionDef.byteStride;
const source = new Uint8Array(res, byteOffset, byteLength);
if (decoder.decodeGltfBufferAsync) {
return decoder.decodeGltfBufferAsync(count, stride, source, extensionDef.mode, extensionDef.filter).then(function(res2) {
return res2.buffer;
});
} else {
return decoder.ready.then(function() {
const result = new ArrayBuffer(count * stride);
decoder.decodeGltfBuffer(new Uint8Array(result), count, stride, source, extensionDef.mode, extensionDef.filter);
return result;
});
}
});
} else {
return null;
}
}
};
var GLTFMeshGpuInstancing = class {
constructor(parser) {
this.name = EXTENSIONS.EXT_MESH_GPU_INSTANCING;
this.parser = parser;
}
createNodeMesh(nodeIndex) {
const json = this.parser.json;
const nodeDef = json.nodes[nodeIndex];
if (!nodeDef.extensions || !nodeDef.extensions[this.name] || nodeDef.mesh === void 0) {
return null;
}
const meshDef = json.meshes[nodeDef.mesh];
for (const primitive of meshDef.primitives) {
if (primitive.mode !== WEBGL_CONSTANTS.TRIANGLES && primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_STRIP && primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_FAN && primitive.mode !== void 0) {
return null;
}
}
const extensionDef = nodeDef.extensions[this.name];
const attributesDef = extensionDef.attributes;
const pending = [];
const attributes = {};
for (const key in attributesDef) {
pending.push(this.parser.getDependency("accessor", attributesDef[key]).then((accessor) => {
attributes[key] = accessor;
return attributes[key];
}));
}
if (pending.length < 1) {
return null;
}
pending.push(this.parser.createNodeMesh(nodeIndex));
return Promise.all(pending).then((results) => {
const nodeObject = results.pop();
const meshes = nodeObject.isGroup ? nodeObject.children : [nodeObject];
const count = results[0].count;
const instancedMeshes = [];
for (const mesh of meshes) {
const m = new Matrix4();
const p = new Vector3();
const q = new Quaternion();
const s = new Vector3(1, 1, 1);
const instancedMesh = new InstancedMesh(mesh.geometry, mesh.material, count);
for (let i = 0; i < count; i++) {
if (attributes.TRANSLATION) {
p.fromBufferAttribute(attributes.TRANSLATION, i);
}
if (attributes.ROTATION) {
q.fromBufferAttribute(attributes.ROTATION, i);
}
if (attributes.SCALE) {
s.fromBufferAttribute(attributes.SCALE, i);
}
instancedMesh.setMatrixAt(i, m.compose(p, q, s));
}
for (const attributeName in attributes) {
if (attributeName === "_COLOR_0") {
const attr = attributes[attributeName];
instancedMesh.instanceColor = new InstancedBufferAttribute(attr.array, attr.itemSize, attr.normalized);
} else if (attributeName !== "TRANSLATION" && attributeName !== "ROTATION" && attributeName !== "SCALE") {
mesh.geometry.setAttribute(attributeName, attributes[attributeName]);
}
}
Object3D.prototype.copy.call(instancedMesh, mesh);
this.parser.assignFinalMaterial(instancedMesh);
instancedMeshes.push(instancedMesh);
}
if (nodeObject.isGroup) {
nodeObject.clear();
nodeObject.add(...instancedMeshes);
return nodeObject;
}
return instancedMeshes[0];
});
}
};
var BINARY_EXTENSION_HEADER_MAGIC = "glTF";
var BINARY_EXTENSION_HEADER_LENGTH = 12;
var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 1313821514, BIN: 5130562 };
var GLTFBinaryExtension = class {
constructor(data) {
this.name = EXTENSIONS.KHR_BINARY_GLTF;
this.content = null;
this.body = null;
const headerView = new DataView(data, 0, BINARY_EXTENSION_HEADER_LENGTH);
const textDecoder = new TextDecoder();
this.header = {
magic: textDecoder.decode(new Uint8Array(data.slice(0, 4))),
version: headerView.getUint32(4, true),
length: headerView.getUint32(8, true)
};
if (this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC) {
throw new Error("THREE.GLTFLoader: Unsupported glTF-Binary header.");
} else if (this.header.version < 2) {
throw new Error("THREE.GLTFLoader: Legacy binary file detected.");
}
const chunkContentsLength = this.header.length - BINARY_EXTENSION_HEADER_LENGTH;
const chunkView = new DataView(data, BINARY_EXTENSION_HEADER_LENGTH);
let chunkIndex = 0;
while (chunkIndex < chunkContentsLength) {
const chunkLength = chunkView.getUint32(chunkIndex, true);
chunkIndex += 4;
const chunkType = chunkView.getUint32(chunkIndex, true);
chunkIndex += 4;
if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON) {
const contentArray = new Uint8Array(data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength);
this.content = textDecoder.decode(contentArray);
} else if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN) {
const byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex;
this.body = data.slice(byteOffset, byteOffset + chunkLength);
}
chunkIndex += chunkLength;
}
if (this.content === null) {
throw new Error("THREE.GLTFLoader: JSON content not found.");
}
}
};
var GLTFDracoMeshCompressionExtension = class {
constructor(json, dracoLoader) {
if (!dracoLoader) {
throw new Error("THREE.GLTFLoader: No DRACOLoader instance provided.");
}
this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION;
this.json = json;
this.dracoLoader = dracoLoader;
this.dracoLoader.preload();
}
decodePrimitive(primitive, parser) {
const json = this.json;
const dracoLoader = this.dracoLoader;
const bufferViewIndex = primitive.extensions[this.name].bufferView;
const gltfAttributeMap = primitive.extensions[this.name].attributes;
const threeAttributeMap = {};
const attributeNormalizedMap = {};
const attributeTypeMap = {};
for (const attributeName in gltfAttributeMap) {
const threeAttributeName = ATTRIBUTES[attributeName] || attributeName.toLowerCase();
threeAttributeMap[threeAttributeName] = gltfAttributeMap[attributeName];
}
for (const attributeName in primitive.attributes) {
const threeAttributeName = ATTRIBUTES[attributeName] || attributeName.toLowerCase();
if (gltfAttributeMap[attributeName] !== void 0) {
const accessorDef = json.accessors[primitive.attributes[attributeName]];
const componentType = WEBGL_COMPONENT_TYPES[accessorDef.componentType];
attributeTypeMap[threeAttributeName] = componentType.name;
attributeNormalizedMap[threeAttributeName] = accessorDef.normalized === true;
}
}
return parser.getDependency("bufferView", bufferViewIndex).then(function(bufferView) {
return new Promise(function(resolve, reject) {
dracoLoader.decodeDracoFile(bufferView, function(geometry) {
for (const attributeName in geometry.attributes) {
const attribute = geometry.attributes[attributeName];
const normalized = attributeNormalizedMap[attributeName];
if (normalized !== void 0) attribute.normalized = normalized;
}
resolve(geometry);
}, threeAttributeMap, attributeTypeMap, LinearSRGBColorSpace, reject);
});
});
}
};
var GLTFTextureTransformExtension = class {
constructor() {
this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM;
}
extendTexture(texture, transform) {
if ((transform.texCoord === void 0 || transform.texCoord === texture.channel) && transform.offset === void 0 && transform.rotation === void 0 && transform.scale === void 0) {
return texture;
}
texture = texture.clone();
if (transform.texCoord !== void 0) {
texture.channel = transform.texCoord;
}
if (transform.offset !== void 0) {
texture.offset.fromArray(transform.offset);
}
if (transform.rotation !== void 0) {
texture.rotation = transform.rotation;
}
if (transform.scale !== void 0) {
texture.repeat.fromArray(transform.scale);
}
texture.needsUpdate = true;
return texture;
}
};
var GLTFMeshQuantizationExtension = class {
constructor() {
this.name = EXTENSIONS.KHR_MESH_QUANTIZATION;
}
};
var GLTFCubicSplineInterpolant = class extends Interpolant {
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
super(parameterPositions, sampleValues, sampleSize, resultBuffer);
}
copySampleValue_(index) {
const result = this.resultBuffer, values = this.sampleValues, valueSize = this.valueSize, offset = index * valueSize * 3 + valueSize;
for (let i = 0; i !== valueSize; i++) {
result[i] = values[offset + i];
}
return result;
}
interpolate_(i1, t0, t, t1) {
const result = this.resultBuffer;
const values = this.sampleValues;
const stride = this.valueSize;
const stride2 = stride * 2;
const stride3 = stride * 3;
const td = t1 - t0;
const p = (t - t0) / td;
const pp = p * p;
const ppp = pp * p;
const offset1 = i1 * stride3;
const offset0 = offset1 - stride3;
const s2 = -2 * ppp + 3 * pp;
const s3 = ppp - pp;
const s0 = 1 - s2;
const s1 = s3 - pp + p;
for (let i = 0; i !== stride; i++) {
const p0 = values[offset0 + i + stride];
const m0 = values[offset0 + i + stride2] * td;
const p1 = values[offset1 + i + stride];
const m1 = values[offset1 + i] * td;
result[i] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;
}
return result;
}
};
var _q = new Quaternion();
var GLTFCubicSplineQuaternionInterpolant = class extends GLTFCubicSplineInterpolant {
interpolate_(i1, t0, t, t1) {
const result = super.interpolate_(i1, t0, t, t1);
_q.fromArray(result).normalize().toArray(result);
return result;
}
};
var WEBGL_CONSTANTS = {
FLOAT: 5126,
//FLOAT_MAT2: 35674,
FLOAT_MAT3: 35675,
FLOAT_MAT4: 35676,
FLOAT_VEC2: 35664,
FLOAT_VEC3: 35665,
FLOAT_VEC4: 35666,
LINEAR: 9729,
REPEAT: 10497,
SAMPLER_2D: 35678,
POINTS: 0,
LINES: 1,
LINE_LOOP: 2,
LINE_STRIP: 3,
TRIANGLES: 4,
TRIANGLE_STRIP: 5,
TRIANGLE_FAN: 6,
UNSIGNED_BYTE: 5121,
UNSIGNED_SHORT: 5123
};
var WEBGL_COMPONENT_TYPES = {
5120: Int8Array,
5121: Uint8Array,
5122: Int16Array,
5123: Uint16Array,
5125: Uint32Array,
5126: Float32Array
};
var WEBGL_FILTERS = {
9728: NearestFilter,
9729: LinearFilter,
9984: NearestMipmapNearestFilter,
9985: LinearMipmapNearestFilter,
9986: NearestMipmapLinearFilter,
9987: LinearMipmapLinearFilter
};
var WEBGL_WRAPPINGS = {
33071: ClampToEdgeWrapping,
33648: MirroredRepeatWrapping,
10497: RepeatWrapping
};
var WEBGL_TYPE_SIZES = {
"SCALAR": 1,
"VEC2": 2,
"VEC3": 3,
"VEC4": 4,
"MAT2": 4,
"MAT3": 9,
"MAT4": 16
};
var ATTRIBUTES = {
POSITION: "position",
NORMAL: "normal",
TANGENT: "tangent",
TEXCOORD_0: "uv",
TEXCOORD_1: "uv1",
TEXCOORD_2: "uv2",
TEXCOORD_3: "uv3",
COLOR_0: "color",
WEIGHTS_0: "skinWeight",
JOINTS_0: "skinIndex"
};
var PATH_PROPERTIES = {
scale: "scale",
translation: "position",
rotation: "quaternion",
weights: "morphTargetInfluences"
};
var INTERPOLATION = {
CUBICSPLINE: void 0,
// We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each
// keyframe track will be initialized with a default interpolation type, then modified.
LINEAR: InterpolateLinear,
STEP: InterpolateDiscrete
};
var ALPHA_MODES = {
OPAQUE: "OPAQUE",
MASK: "MASK",
BLEND: "BLEND"
};
function createDefaultMaterial(cache) {
if (cache["DefaultMaterial"] === void 0) {
cache["DefaultMaterial"] = new MeshStandardMaterial({
color: 16777215,
emissive: 0,
metalness: 1,
roughness: 1,
transparent: false,
depthTest: true,
side: FrontSide
});
}
return cache["DefaultMaterial"];
}
function addUnknownExtensionsToUserData(knownExtensions, object, objectDef) {
for (const name in objectDef.extensions) {
if (knownExtensions[name] === void 0) {
object.userData.gltfExtensions = object.userData.gltfExtensions || {};
object.userData.gltfExtensions[name] = objectDef.extensions[name];
}
}
}
function assignExtrasToUserData(object, gltfDef) {
if (gltfDef.extras !== void 0) {
if (typeof gltfDef.extras === "object") {
Object.assign(object.userData, gltfDef.extras);
} else {
console.warn("THREE.GLTFLoader: Ignoring primitive type .extras, " + gltfDef.extras);
}
}
}
function addMorphTargets(geometry, targets, parser) {
let hasMorphPosition = false;
let hasMorphNormal = false;
let hasMorphColor = false;
for (let i = 0, il = targets.length; i < il; i++) {
const target = targets[i];
if (target.POSITION !== void 0) hasMorphPosition = true;
if (target.NORMAL !== void 0) hasMorphNormal = true;
if (target.COLOR_0 !== void 0) hasMorphColor = true;
if (hasMorphPosition && hasMorphNormal && hasMorphColor) break;
}
if (!hasMorphPosition && !hasMorphNormal && !hasMorphColor) return Promise.resolve(geometry);
const pendingPositionAccessors = [];
const pendingNormalAccessors = [];
const pendingColorAccessors = [];
for (let i = 0, il = targets.length; i < il; i++) {
const target = targets[i];
if (hasMorphPosition) {
const pendingAccessor = target.POSITION !== void 0 ? parser.getDependency("accessor", target.POSITION) : geometry.attributes.position;
pendingPositionAccessors.push(pendingAccessor);
}
if (hasMorphNormal) {
const pendingAccessor = target.NORMAL !== void 0 ? parser.getDependency("accessor", target.NORMAL) : geometry.attributes.normal;
pendingNormalAccessors.push(pendingAccessor);
}
if (hasMorphColor) {
const pendingAccessor = target.COLOR_0 !== void 0 ? parser.getDependency("accessor", target.COLOR_0) : geometry.attributes.color;
pendingColorAccessors.push(pendingAccessor);
}
}
return Promise.all([
Promise.all(pendingPositionAccessors),
Promise.all(pendingNormalAccessors),
Promise.all(pendingColorAccessors)
]).then(function(accessors) {
const morphPositions = accessors[0];
const morphNormals = accessors[1];
const morphColors = accessors[2];
if (hasMorphPosition) geometry.morphAttributes.position = morphPositions;
if (hasMorphNormal) geometry.morphAttributes.normal = morphNormals;
if (hasMorphColor) geometry.morphAttributes.color = morphColors;
geometry.morphTargetsRelative = true;
return geometry;
});
}
function updateMorphTargets(mesh, meshDef) {
mesh.updateMorphTargets();
if (meshDef.weights !== void 0) {
for (let i = 0, il = meshDef.weights.length; i < il; i++) {
mesh.morphTargetInfluences[i] = meshDef.weights[i];
}
}
if (meshDef.extras && Array.isArray(meshDef.extras.targetNames)) {
const targetNames = meshDef.extras.targetNames;
if (mesh.morphTargetInfluences.length === targetNames.length) {
mesh.morphTargetDictionary = {};
for (let i = 0, il = targetNames.length; i < il; i++) {
mesh.morphTargetDictionary[targetNames[i]] = i;
}
} else {
console.warn("THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.");
}
}
}
function createPrimitiveKey(primitiveDef) {
let geometryKey;
const dracoExtension = primitiveDef.extensions && primitiveDef.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION];
if (dracoExtension) {
geometryKey = "draco:" + dracoExtension.bufferView + ":" + dracoExtension.indices + ":" + createAttributesKey(dracoExtension.attributes);
} else {
geometryKey = primitiveDef.indices + ":" + createAttributesKey(primitiveDef.attributes) + ":" + primitiveDef.mode;
}
if (primitiveDef.targets !== void 0) {
for (let i = 0, il = primitiveDef.targets.length; i < il; i++) {
geometryKey += ":" + createAttributesKey(primitiveDef.targets[i]);
}
}
return geometryKey;
}
function createAttributesKey(attributes) {
let attributesKey = "";
const keys = Object.keys(attributes).sort();
for (let i = 0, il = keys.length; i < il; i++) {
attributesKey += keys[i] + ":" + attributes[keys[i]] + ";";
}
return attributesKey;
}
function getNormalizedComponentScale(constructor) {
switch (constructor) {
case Int8Array:
return 1 / 127;
case Uint8Array:
return 1 / 255;
case Int16Array:
return 1 / 32767;
case Uint16Array:
return 1 / 65535;
default:
throw new Error("THREE.GLTFLoader: Unsupported normalized accessor component type.");
}
}
function getImageURIMimeType(uri) {
if (uri.search(/\.jpe?g($|\?)/i) > 0 || uri.search(/^data\:image\/jpeg/) === 0) return "image/jpeg";
if (uri.search(/\.webp($|\?)/i) > 0 || uri.search(/^data\:image\/webp/) === 0) return "image/webp";
return "image/png";
}
var _identityMatrix = new Matrix4();
var GLTFParser = class {
constructor(json = {}, options = {}) {
this.json = json;
this.extensions = {};
this.plugins = {};
this.options = options;
this.cache = new GLTFRegistry();
this.associations = /* @__PURE__ */ new Map();
this.primitiveCache = {};
this.nodeCache = {};
this.meshCache = { refs: {}, uses: {} };
this.cameraCache = { refs: {}, uses: {} };
this.lightCache = { refs: {}, uses: {} };
this.sourceCache = {};
this.textureCache = {};
this.nodeNamesUsed = {};
let isSafari = false;
let safariVersion = -1;
let isFirefox = false;
let firefoxVersion = -1;
if (typeof navigator !== "undefined") {
const userAgent = navigator.userAgent;
isSafari = /^((?!chrome|android).)*safari/i.test(userAgent) === true;
const safariMatch = userAgent.match(/Version\/(\d+)/);
safariVersion = isSafari && safariMatch ? parseInt(safariMatch[1], 10) : -1;
isFirefox = userAgent.indexOf("Firefox") > -1;
firefoxVersion = isFirefox ? userAgent.match(/Firefox\/([0-9]+)\./)[1] : -1;
}
if (typeof createImageBitmap === "undefined" || isSafari && safariVersion < 17 || isFirefox && firefoxVersion < 98) {
this.textureLoader = new TextureLoader(this.options.manager);
} else {
this.textureLoader = new ImageBitmapLoader(this.options.manager);
}
this.textureLoader.setCrossOrigin(this.options.crossOrigin);
this.textureLoader.setRequestHeader(this.options.requestHeader);
this.fileLoader = new FileLoader(this.options.manager);
this.fileLoader.setResponseType("arraybuffer");
if (this.options.crossOrigin === "use-credentials") {
this.fileLoader.setWithCredentials(true);
}
}
setExtensions(extensions) {
this.extensions = extensions;
}
setPlugins(plugins) {
this.plugins = plugins;
}
parse(onLoad, onError) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
this.cache.removeAll();
this.nodeCache = {};
this._invokeAll(function(ext) {
return ext._markDefs && ext._markDefs();
});
Promise.all(this._invokeAll(function(ext) {
return ext.beforeRoot && ext.beforeRoot();
})).then(function() {
return Promise.all([
parser.getDependencies("scene"),
parser.getDependencies("animation"),
parser.getDependencies("camera")
]);
}).then(function(dependencies) {
const result = {
scene: dependencies[0][json.scene || 0],
scenes: dependencies[0],
animations: dependencies[1],
cameras: dependencies[2],
asset: json.asset,
parser,
userData: {}
};
addUnknownExtensionsToUserData(extensions, result, json);
assignExtrasToUserData(result, json);
return Promise.all(parser._invokeAll(function(ext) {
return ext.afterRoot && ext.afterRoot(result);
})).then(function() {
for (const scene of result.scenes) {
scene.updateMatrixWorld();
}
onLoad(result);
});
}).catch(onError);
}
/**
* Marks the special nodes/meshes in json for efficient parse.
*/
_markDefs() {
const nodeDefs = this.json.nodes || [];
const skinDefs = this.json.skins || [];
const meshDefs = this.json.meshes || [];
for (let skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex++) {
const joints = skinDefs[skinIndex].joints;
for (let i = 0, il = joints.length; i < il; i++) {
nodeDefs[joints[i]].isBone = true;
}
}
for (let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex++) {
const nodeDef = nodeDefs[nodeIndex];
if (nodeDef.mesh !== void 0) {
this._addNodeRef(this.meshCache, nodeDef.mesh);
if (nodeDef.skin !== void 0) {
meshDefs[nodeDef.mesh].isSkinnedMesh = true;
}
}
if (nodeDef.camera !== void 0) {
this._addNodeRef(this.cameraCache, nodeDef.camera);
}
}
}
/**
* Counts references to shared node / Object3D resources. These resources
* can be reused, or "instantiated", at multiple nodes in the scene
* hierarchy. Mesh, Camera, and Light instances are instantiated and must
* be marked. Non-scenegraph resources (like Materials, Geometries, and
* Textures) can be reused directly and are not marked here.
*
* Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
*/
_addNodeRef(cache, index) {
if (index === void 0) return;
if (cache.refs[index] === void 0) {
cache.refs[index] = cache.uses[index] = 0;
}
cache.refs[index]++;
}
/** Returns a reference to a shared resource, cloning it if necessary. */
_getNodeRef(cache, index, object) {
if (cache.refs[index] <= 1) return object;
const ref = object.clone();
const updateMappings = (original, clone) => {
const mappings = this.associations.get(original);
if (mappings != null) {
this.associations.set(clone, mappings);
}
for (const [i, child] of original.children.entries()) {
updateMappings(child, clone.children[i]);
}
};
updateMappings(object, ref);
ref.name += "_instance_" + cache.uses[index]++;
return ref;
}
_invokeOne(func) {
const extensions = Object.values(this.plugins);
extensions.push(this);
for (let i = 0; i < extensions.length; i++) {
const result = func(extensions[i]);
if (result) return result;
}
return null;
}
_invokeAll(func) {
const extensions = Object.values(this.plugins);
extensions.unshift(this);
const pending = [];
for (let i = 0; i < extensions.length; i++) {
const result = func(extensions[i]);
if (result) pending.push(result);
}
return pending;
}
/**
* Requests the specified dependency asynchronously, with caching.
* @param {string} type
* @param {number} index
* @return {Promise<Object3D|Material|THREE.Texture|AnimationClip|ArrayBuffer|Object>}
*/
getDependency(type, index) {
const cacheKey = type + ":" + index;
let dependency = this.cache.get(cacheKey);
if (!dependency) {
switch (type) {
case "scene":
dependency = this.loadScene(index);
break;
case "node":
dependency = this._invokeOne(function(ext) {
return ext.loadNode && ext.loadNode(index);
});
break;
case "mesh":
dependency = this._invokeOne(function(ext) {
return ext.loadMesh && ext.loadMesh(index);
});
break;
case "accessor":
dependency = this.loadAccessor(index);
break;
case "bufferView":
dependency = this._invokeOne(function(ext) {
return ext.loadBufferView && ext.loadBufferView(index);
});
break;
case "buffer":
dependency = this.loadBuffer(index);
break;
case "material":
dependency = this._invokeOne(function(ext) {
return ext.loadMaterial && ext.loadMaterial(index);
});
break;
case "texture":
dependency = this._invokeOne(function(ext) {
return ext.loadTexture && ext.loadTexture(index);
});
break;
case "skin":
dependency = this.loadSkin(index);
break;
case "animation":
dependency = this._invokeOne(function(ext) {
return ext.loadAnimation && ext.loadAnimation(index);
});
break;
case "camera":
dependency = this.loadCamera(index);
break;
default:
dependency = this._invokeOne(function(ext) {
return ext != this && ext.getDependency && ext.getDependency(type, index);
});
if (!dependency) {
throw new Error("Unknown type: " + type);
}
break;
}
this.cache.add(cacheKey, dependency);
}
return dependency;
}
/**
* Requests all dependencies of the specified type asynchronously, with caching.
* @param {string} type
* @return {Promise<Array<Object>>}
*/
getDependencies(type) {
let dependencies = this.cache.get(type);
if (!dependencies) {
const parser = this;
const defs = this.json[type + (type === "mesh" ? "es" : "s")] || [];
dependencies = Promise.all(defs.map(function(def, index) {
return parser.getDependency(type, index);
}));
this.cache.add(type, dependencies);
}
return dependencies;
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
* @param {number} bufferIndex
* @return {Promise<ArrayBuffer>}
*/
loadBuffer(bufferIndex) {
const bufferDef = this.json.buffers[bufferIndex];
const loader = this.fileLoader;
if (bufferDef.type && bufferDef.type !== "arraybuffer") {
throw new Error("THREE.GLTFLoader: " + bufferDef.type + " buffer type is not supported.");
}
if (bufferDef.uri === void 0 && bufferIndex === 0) {
return Promise.resolve(this.extensions[EXTENSIONS.KHR_BINARY_GLTF].body);
}
const options = this.options;
return new Promise(function(resolve, reject) {
loader.load(LoaderUtils.resolveURL(bufferDef.uri, options.path), resolve, void 0, function() {
reject(new Error('THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".'));
});
});
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
* @param {number} bufferViewIndex
* @return {Promise<ArrayBuffer>}
*/
loadBufferView(bufferViewIndex) {
const bufferViewDef = this.json.bufferViews[bufferViewIndex];
return this.getDependency("buffer", bufferViewDef.buffer).then(function(buffer) {
const byteLength = bufferViewDef.byteLength || 0;
const byteOffset = bufferViewDef.byteOffset || 0;
return buffer.slice(byteOffset, byteOffset + byteLength);
});
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors
* @param {number} accessorIndex
* @return {Promise<BufferAttribute|InterleavedBufferAttribute>}
*/
loadAccessor(accessorIndex) {
const parser = this;
const json = this.json;
const accessorDef = this.json.accessors[accessorIndex];
if (accessorDef.bufferView === void 0 && accessorDef.sparse === void 0) {
const itemSize = WEBGL_TYPE_SIZES[accessorDef.type];
const TypedArray = WEBGL_COMPONENT_TYPES[accessorDef.componentType];
const normalized = accessorDef.normalized === true;
const array = new TypedArray(accessorDef.count * itemSize);
return Promise.resolve(new BufferAttribute(array, itemSize, normalized));
}
const pendingBufferViews = [];
if (accessorDef.bufferView !== void 0) {
pendingBufferViews.push(this.getDependency("bufferView", accessorDef.bufferView));
} else {
pendingBufferViews.push(null);
}
if (accessorDef.sparse !== void 0) {
pendingBufferViews.push(this.getDependency("bufferView", accessorDef.sparse.indices.bufferView));
pendingBufferViews.push(this.getDependency("bufferView", accessorDef.sparse.values.bufferView));
}
return Promise.all(pendingBufferViews).then(function(bufferViews) {
const bufferView = bufferViews[0];
const itemSize = WEBGL_TYPE_SIZES[accessorDef.type];
const TypedArray = WEBGL_COMPONENT_TYPES[accessorDef.componentType];
const elementBytes = TypedArray.BYTES_PER_ELEMENT;
const itemBytes = elementBytes * itemSize;
const byteOffset = accessorDef.byteOffset || 0;
const byteStride = accessorDef.bufferView !== void 0 ? json.bufferViews[accessorDef.bufferView].byteStride : void 0;
const normalized = accessorDef.normalized === true;
let array, bufferAttribute;
if (byteStride && byteStride !== itemBytes) {
const ibSlice = Math.floor(byteOffset / byteStride);
const ibCacheKey = "InterleavedBuffer:" + accessorDef.bufferView + ":" + accessorDef.componentType + ":" + ibSlice + ":" + accessorDef.count;
let ib = parser.cache.get(ibCacheKey);
if (!ib) {
array = new TypedArray(bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes);
ib = new InterleavedBuffer(array, byteStride / elementBytes);
parser.cache.add(ibCacheKey, ib);
}
bufferAttribute = new InterleavedBufferAttribute(ib, itemSize, byteOffset % byteStride / elementBytes, normalized);
} else {
if (bufferView === null) {
array = new TypedArray(accessorDef.count * itemSize);
} else {
array = new TypedArray(bufferView, byteOffset, accessorDef.count * itemSize);
}
bufferAttribute = new BufferAttribute(array, itemSize, normalized);
}
if (accessorDef.sparse !== void 0) {
const itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
const TypedArrayIndices = WEBGL_COMPONENT_TYPES[accessorDef.sparse.indices.componentType];
const byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
const byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;
const sparseIndices = new TypedArrayIndices(bufferViews[1], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices);
const sparseValues = new TypedArray(bufferViews[2], byteOffsetValues, accessorDef.sparse.count * itemSize);
if (bufferView !== null) {
bufferAttribute = new BufferAttribute(bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized);
}
for (let i = 0, il = sparseIndices.length; i < il; i++) {
const index = sparseIndices[i];
bufferAttribute.setX(index, sparseValues[i * itemSize]);
if (itemSize >= 2) bufferAttribute.setY(index, sparseValues[i * itemSize + 1]);
if (itemSize >= 3) bufferAttribute.setZ(index, sparseValues[i * itemSize + 2]);
if (itemSize >= 4) bufferAttribute.setW(index, sparseValues[i * itemSize + 3]);
if (itemSize >= 5) throw new Error("THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.");
}
}
return bufferAttribute;
});
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures
* @param {number} textureIndex
* @return {Promise<THREE.Texture|null>}
*/
loadTexture(textureIndex) {
const json = this.json;
const options = this.options;
const textureDef = json.textures[textureIndex];
const sourceIndex = textureDef.source;
const sourceDef = json.images[sourceIndex];
let loader = this.textureLoader;
if (sourceDef.uri) {
const handler = options.manager.getHandler(sourceDef.uri);
if (handler !== null) loader = handler;
}
return this.loadTextureImage(textureIndex, sourceIndex, loader);
}
loadTextureImage(textureIndex, sourceIndex, loader) {
const parser = this;
const json = this.json;
const textureDef = json.textures[textureIndex];
const sourceDef = json.images[sourceIndex];
const cacheKey = (sourceDef.uri || sourceDef.bufferView) + ":" + textureDef.sampler;
if (this.textureCache[cacheKey]) {
return this.textureCache[cacheKey];
}
const promise = this.loadImageSource(sourceIndex, loader).then(function(texture) {
texture.flipY = false;
texture.name = textureDef.name || sourceDef.name || "";
if (texture.name === "" && typeof sourceDef.uri === "string" && sourceDef.uri.startsWith("data:image/") === false) {
texture.name = sourceDef.uri;
}
const samplers = json.samplers || {};
const sampler = samplers[textureDef.sampler] || {};
texture.magFilter = WEBGL_FILTERS[sampler.magFilter] || LinearFilter;
texture.minFilter = WEBGL_FILTERS[sampler.minFilter] || LinearMipmapLinearFilter;
texture.wrapS = WEBGL_WRAPPINGS[sampler.wrapS] || RepeatWrapping;
texture.wrapT = WEBGL_WRAPPINGS[sampler.wrapT] || RepeatWrapping;
parser.associations.set(texture, { textures: textureIndex });
return texture;
}).catch(function() {
return null;
});
this.textureCache[cacheKey] = promise;
return promise;
}
loadImageSource(sourceIndex, loader) {
const parser = this;
const json = this.json;
const options = this.options;
if (this.sourceCache[sourceIndex] !== void 0) {
return this.sourceCache[sourceIndex].then((texture) => texture.clone());
}
const sourceDef = json.images[sourceIndex];
const URL = self.URL || self.webkitURL;
let sourceURI = sourceDef.uri || "";
let isObjectURL = false;
if (sourceDef.bufferView !== void 0) {
sourceURI = parser.getDependency("bufferView", sourceDef.bufferView).then(function(bufferView) {
isObjectURL = true;
const blob = new Blob([bufferView], { type: sourceDef.mimeType });
sourceURI = URL.createObjectURL(blob);
return sourceURI;
});
} else if (sourceDef.uri === void 0) {
throw new Error("THREE.GLTFLoader: Image " + sourceIndex + " is missing URI and bufferView");
}
const promise = Promise.resolve(sourceURI).then(function(sourceURI2) {
return new Promise(function(resolve, reject) {
let onLoad = resolve;
if (loader.isImageBitmapLoader === true) {
onLoad = function(imageBitmap) {
const texture = new Texture(imageBitmap);
texture.needsUpdate = true;
resolve(texture);
};
}
loader.load(LoaderUtils.resolveURL(sourceURI2, options.path), onLoad, void 0, reject);
});
}).then(function(texture) {
if (isObjectURL === true) {
URL.revokeObjectURL(sourceURI);
}
assignExtrasToUserData(texture, sourceDef);
texture.userData.mimeType = sourceDef.mimeType || getImageURIMimeType(sourceDef.uri);
return texture;
}).catch(function(error) {
console.error("THREE.GLTFLoader: Couldn't load texture", sourceURI);
throw error;
});
this.sourceCache[sourceIndex] = promise;
return promise;
}
/**
* Asynchronously assigns a texture to the given material parameters.
* @param {Object} materialParams
* @param {string} mapName
* @param {Object} mapDef
* @return {Promise<Texture>}
*/
assignTexture(materialParams, mapName, mapDef, colorSpace) {
const parser = this;
return this.getDependency("texture", mapDef.index).then(function(texture) {
if (!texture) return null;
if (mapDef.texCoord !== void 0 && mapDef.texCoord > 0) {
texture = texture.clone();
texture.channel = mapDef.texCoord;
}
if (parser.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM]) {
const transform = mapDef.extensions !== void 0 ? mapDef.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM] : void 0;
if (transform) {
const gltfReference = parser.associations.get(texture);
texture = parser.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM].extendTexture(texture, transform);
parser.associations.set(texture, gltfReference);
}
}
if (colorSpace !== void 0) {
texture.colorSpace = colorSpace;
}
materialParams[mapName] = texture;
return texture;
});
}
/**
* Assigns final material to a Mesh, Line, or Points instance. The instance
* already has a material (generated from the glTF material options alone)
* but reuse of the same glTF material may require multiple threejs materials
* to accommodate different primitive types, defines, etc. New materials will
* be created if necessary, and reused from a cache.
* @param {Object3D} mesh Mesh, Line, or Points instance.
*/
assignFinalMaterial(mesh) {
const geometry = mesh.geometry;
let material = mesh.material;
const useDerivativeTangents = geometry.attributes.tangent === void 0;
const useVertexColors = geometry.attributes.color !== void 0;
const useFlatShading = geometry.attributes.normal === void 0;
if (mesh.isPoints) {
const cacheKey = "PointsMaterial:" + material.uuid;
let pointsMaterial = this.cache.get(cacheKey);
if (!pointsMaterial) {
pointsMaterial = new PointsMaterial();
Material.prototype.copy.call(pointsMaterial, material);
pointsMaterial.color.copy(material.color);
pointsMaterial.map = material.map;
pointsMaterial.sizeAttenuation = false;
this.cache.add(cacheKey, pointsMaterial);
}
material = pointsMaterial;
} else if (mesh.isLine) {
const cacheKey = "LineBasicMaterial:" + material.uuid;
let lineMaterial = this.cache.get(cacheKey);
if (!lineMaterial) {
lineMaterial = new LineBasicMaterial();
Material.prototype.copy.call(lineMaterial, material);
lineMaterial.color.copy(material.color);
lineMaterial.map = material.map;
this.cache.add(cacheKey, lineMaterial);
}
material = lineMaterial;
}
if (useDerivativeTangents || useVertexColors || useFlatShading) {
let cacheKey = "ClonedMaterial:" + material.uuid + ":";
if (useDerivativeTangents) cacheKey += "derivative-tangents:";
if (useVertexColors) cacheKey += "vertex-colors:";
if (useFlatShading) cacheKey += "flat-shading:";
let cachedMaterial = this.cache.get(cacheKey);
if (!cachedMaterial) {
cachedMaterial = material.clone();
if (useVertexColors) cachedMaterial.vertexColors = true;
if (useFlatShading) cachedMaterial.flatShading = true;
if (useDerivativeTangents) {
if (cachedMaterial.normalScale) cachedMaterial.normalScale.y *= -1;
if (cachedMaterial.clearcoatNormalScale) cachedMaterial.clearcoatNormalScale.y *= -1;
}
this.cache.add(cacheKey, cachedMaterial);
this.associations.set(cachedMaterial, this.associations.get(material));
}
material = cachedMaterial;
}
mesh.material = material;
}
getMaterialType() {
return MeshStandardMaterial;
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials
* @param {number} materialIndex
* @return {Promise<Material>}
*/
loadMaterial(materialIndex) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
const materialDef = json.materials[materialIndex];
let materialType;
const materialParams = {};
const materialExtensions = materialDef.extensions || {};
const pending = [];
if (materialExtensions[EXTENSIONS.KHR_MATERIALS_UNLIT]) {
const kmuExtension = extensions[EXTENSIONS.KHR_MATERIALS_UNLIT];
materialType = kmuExtension.getMaterialType();
pending.push(kmuExtension.extendParams(materialParams, materialDef, parser));
} else {
const metallicRoughness = materialDef.pbrMetallicRoughness || {};
materialParams.color = new Color(1, 1, 1);
materialParams.opacity = 1;
if (Array.isArray(metallicRoughness.baseColorFactor)) {
const array = metallicRoughness.baseColorFactor;
materialParams.color.setRGB(array[0], array[1], array[2], LinearSRGBColorSpace);
materialParams.opacity = array[3];
}
if (metallicRoughness.baseColorTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "map", metallicRoughness.baseColorTexture, SRGBColorSpace));
}
materialParams.metalness = metallicRoughness.metallicFactor !== void 0 ? metallicRoughness.metallicFactor : 1;
materialParams.roughness = metallicRoughness.roughnessFactor !== void 0 ? metallicRoughness.roughnessFactor : 1;
if (metallicRoughness.metallicRoughnessTexture !== void 0) {
pending.push(parser.assignTexture(materialParams, "metalnessMap", metallicRoughness.metallicRoughnessTexture));
pending.push(parser.assignTexture(materialParams, "roughnessMap", metallicRoughness.metallicRoughnessTexture));
}
materialType = this._invokeOne(function(ext) {
return ext.getMaterialType && ext.getMaterialType(materialIndex);
});
pending.push(Promise.all(this._invokeAll(function(ext) {
return ext.extendMaterialParams && ext.extendMaterialParams(materialIndex, materialParams);
})));
}
if (materialDef.doubleSided === true) {
materialParams.side = DoubleSide;
}
const alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;
if (alphaMode === ALPHA_MODES.BLEND) {
materialParams.transparent = true;
materialParams.depthWrite = false;
} else {
materialParams.transparent = false;
if (alphaMode === ALPHA_MODES.MASK) {
materialParams.alphaTest = materialDef.alphaCutoff !== void 0 ? materialDef.alphaCutoff : 0.5;
}
}
if (materialDef.normalTexture !== void 0 && materialType !== MeshBasicMaterial) {
pending.push(parser.assignTexture(materialParams, "normalMap", materialDef.normalTexture));
materialParams.normalScale = new Vector2(1, 1);
if (materialDef.normalTexture.scale !== void 0) {
const scale = materialDef.normalTexture.scale;
materialParams.normalScale.set(scale, scale);
}
}
if (materialDef.occlusionTexture !== void 0 && materialType !== MeshBasicMaterial) {
pending.push(parser.assignTexture(materialParams, "aoMap", materialDef.occlusionTexture));
if (materialDef.occlusionTexture.strength !== void 0) {
materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;
}
}
if (materialDef.emissiveFactor !== void 0 && materialType !== MeshBasicMaterial) {
const emissiveFactor = materialDef.emissiveFactor;
materialParams.emissive = new Color().setRGB(emissiveFactor[0], emissiveFactor[1], emissiveFactor[2], LinearSRGBColorSpace);
}
if (materialDef.emissiveTexture !== void 0 && materialType !== MeshBasicMaterial) {
pending.push(parser.assignTexture(materialParams, "emissiveMap", materialDef.emissiveTexture, SRGBColorSpace));
}
return Promise.all(pending).then(function() {
const material = new materialType(materialParams);
if (materialDef.name) material.name = materialDef.name;
assignExtrasToUserData(material, materialDef);
parser.associations.set(material, { materials: materialIndex });
if (materialDef.extensions) addUnknownExtensionsToUserData(extensions, material, materialDef);
return material;
});
}
/** When Object3D instances are targeted by animation, they need unique names. */
createUniqueName(originalName) {
const sanitizedName = PropertyBinding.sanitizeNodeName(originalName || "");
if (sanitizedName in this.nodeNamesUsed) {
return sanitizedName + "_" + ++this.nodeNamesUsed[sanitizedName];
} else {
this.nodeNamesUsed[sanitizedName] = 0;
return sanitizedName;
}
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry
*
* Creates BufferGeometries from primitives.
*
* @param {Array<GLTF.Primitive>} primitives
* @return {Promise<Array<BufferGeometry>>}
*/
loadGeometries(primitives) {
const parser = this;
const extensions = this.extensions;
const cache = this.primitiveCache;
function createDracoPrimitive(primitive) {
return extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION].decodePrimitive(primitive, parser).then(function(geometry) {
return addPrimitiveAttributes(geometry, primitive, parser);
});
}
const pending = [];
for (let i = 0, il = primitives.length; i < il; i++) {
const primitive = primitives[i];
const cacheKey = createPrimitiveKey(primitive);
const cached = cache[cacheKey];
if (cached) {
pending.push(cached.promise);
} else {
let geometryPromise;
if (primitive.extensions && primitive.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]) {
geometryPromise = createDracoPrimitive(primitive);
} else {
geometryPromise = addPrimitiveAttributes(new BufferGeometry(), primitive, parser);
}
cache[cacheKey] = { primitive, promise: geometryPromise };
pending.push(geometryPromise);
}
}
return Promise.all(pending);
}
/**
* Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes
* @param {number} meshIndex
* @return {Promise<Group|Mesh|SkinnedMesh>}
*/
loadMesh(meshIndex) {
const parser = this;
const json = this.json;
const extensions = this.extensions;
const meshDef = json.meshes[meshIndex];
const primitives = meshDef.primitives;
const pending = [];
for (let i = 0, il = primitives.length; i < il; i++) {
const material = primitives[i].material === void 0 ? createDefaultMaterial(this.cache) : this.getDependency("material", primitives[i].material);
pending.push(material);
}
pending.push(parser.loadGeometries(primitives));
return Promise.all(pending).then(function(results) {
const materials = results.slice(0, results.length - 1);
const geometries = results[results.length - 1];
const meshes = [];
for (let i = 0, il = geometries.length; i < il; i++) {
const geometry = geometries[i];
const primitive = primitives[i];
let mesh;
const material = materials[i];
if (primitive.mode === WEBGL_CONSTANTS.TRIANGLES || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN || primitive.mode === void 0) {
mesh = meshDef.isSkinnedMesh === true ? new SkinnedMesh(geometry, material) : new Mesh(geometry, material);
if (mesh.isSkinnedMesh === true) {
mesh.normalizeSkinWeights();
}
if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP) {
mesh.geometry = toTrianglesDrawMode(mesh.geometry, TriangleStripDrawMode);
} else if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN) {
mesh.geometry = toTrianglesDrawMode(mesh.geometry, TriangleFanDrawMode);
}
} else if (primitive.mode === WEBGL_CONSTANTS.LINES) {
mesh = new LineSegments(geometry, material);
} else if (primitive.mode === WEBGL_CONSTANTS.LINE_STRIP) {
mesh = new Line(geometry, material);
} else if (primitive.mode === WEBGL_CONSTANTS.LINE_LOOP) {
mesh = new LineLoop(geometry, material);
} else if (primitive.mode === WEBGL_CONSTANTS.POINTS) {
mesh = new Points(geometry, material);
} else {
throw new Error("THREE.GLTFLoader: Primitive mode unsupported: " + primitive.mode);
}
if (Object.keys(mesh.geometry.morphAttributes).length > 0) {
updateMorphTargets(mesh, meshDef);
}
mesh.name = parser.createUniqueName(meshDef.name || "mesh_" + meshIndex);
assignExtrasToUserData(mesh, meshDef);
if (primitive.extensions) addUnknownExtensionsToUserData(extensions, mesh, primitive);
parser.assignFinalMaterial(mesh);
meshes.push(mesh);
}
for (let i = 0, il = meshes.length; i < il; i++) {
parser.associations.set(meshes[i], {
meshes: meshIndex,
primitives: i
});
}
if (meshes.length === 1) {
if (meshDef.extensions) addUnknownExtensionsToUserData(extensions, meshes[0], meshDef);
return meshes[0];
}
const group = new Group();
if (meshDef.extensions) addUnknownExtensionsToUserData(extensions, group, meshDef);
parser.associations.set(group, { meshes: meshIndex });
for (let i = 0, il = meshes.length; i < il; i++) {
group.add(meshes[i]);
}
return group;
});
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras
* @param {number} cameraIndex
* @return {Promise<THREE.Camera>}
*/
loadCamera(cameraIndex) {
let camera;
const cameraDef = this.json.cameras[cameraIndex];
const params = cameraDef[cameraDef.type];
if (!params) {
console.warn("THREE.GLTFLoader: Missing camera parameters.");
return;
}
if (cameraDef.type === "perspective") {
camera = new PerspectiveCamera(MathUtils.radToDeg(params.yfov), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6);
} else if (cameraDef.type === "orthographic") {
camera = new OrthographicCamera(-params.xmag, params.xmag, params.ymag, -params.ymag, params.znear, params.zfar);
}
if (cameraDef.name) camera.name = this.createUniqueName(cameraDef.name);
assignExtrasToUserData(camera, cameraDef);
return Promise.resolve(camera);
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins
* @param {number} skinIndex
* @return {Promise<Skeleton>}
*/
loadSkin(skinIndex) {
const skinDef = this.json.skins[skinIndex];
const pending = [];
for (let i = 0, il = skinDef.joints.length; i < il; i++) {
pending.push(this._loadNodeShallow(skinDef.joints[i]));
}
if (skinDef.inverseBindMatrices !== void 0) {
pending.push(this.getDependency("accessor", skinDef.inverseBindMatrices));
} else {
pending.push(null);
}
return Promise.all(pending).then(function(results) {
const inverseBindMatrices = results.pop();
const jointNodes = results;
const bones = [];
const boneInverses = [];
for (let i = 0, il = jointNodes.length; i < il; i++) {
const jointNode = jointNodes[i];
if (jointNode) {
bones.push(jointNode);
const mat = new Matrix4();
if (inverseBindMatrices !== null) {
mat.fromArray(inverseBindMatrices.array, i * 16);
}
boneInverses.push(mat);
} else {
console.warn('THREE.GLTFLoader: Joint "%s" could not be found.', skinDef.joints[i]);
}
}
return new Skeleton(bones, boneInverses);
});
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations
* @param {number} animationIndex
* @return {Promise<AnimationClip>}
*/
loadAnimation(animationIndex) {
const json = this.json;
const parser = this;
const animationDef = json.animations[animationIndex];
const animationName = animationDef.name ? animationDef.name : "animation_" + animationIndex;
const pendingNodes = [];
const pendingInputAccessors = [];
const pendingOutputAccessors = [];
const pendingSamplers = [];
const pendingTargets = [];
for (let i = 0, il = animationDef.channels.length; i < il; i++) {
const channel = animationDef.channels[i];
const sampler = animationDef.samplers[channel.sampler];
const target = channel.target;
const name = target.node;
const input = animationDef.parameters !== void 0 ? animationDef.parameters[sampler.input] : sampler.input;
const output = animationDef.parameters !== void 0 ? animationDef.parameters[sampler.output] : sampler.output;
if (target.node === void 0) continue;
pendingNodes.push(this.getDependency("node", name));
pendingInputAccessors.push(this.getDependency("accessor", input));
pendingOutputAccessors.push(this.getDependency("accessor", output));
pendingSamplers.push(sampler);
pendingTargets.push(target);
}
return Promise.all([
Promise.all(pendingNodes),
Promise.all(pendingInputAccessors),
Promise.all(pendingOutputAccessors),
Promise.all(pendingSamplers),
Promise.all(pendingTargets)
]).then(function(dependencies) {
const nodes = dependencies[0];
const inputAccessors = dependencies[1];
const outputAccessors = dependencies[2];
const samplers = dependencies[3];
const targets = dependencies[4];
const tracks = [];
for (let i = 0, il = nodes.length; i < il; i++) {
const node = nodes[i];
const inputAccessor = inputAccessors[i];
const outputAccessor = outputAccessors[i];
const sampler = samplers[i];
const target = targets[i];
if (node === void 0) continue;
if (node.updateMatrix) {
node.updateMatrix();
}
const createdTracks = parser._createAnimationTracks(node, inputAccessor, outputAccessor, sampler, target);
if (createdTracks) {
for (let k = 0; k < createdTracks.length; k++) {
tracks.push(createdTracks[k]);
}
}
}
return new AnimationClip(animationName, void 0, tracks);
});
}
createNodeMesh(nodeIndex) {
const json = this.json;
const parser = this;
const nodeDef = json.nodes[nodeIndex];
if (nodeDef.mesh === void 0) return null;
return parser.getDependency("mesh", nodeDef.mesh).then(function(mesh) {
const node = parser._getNodeRef(parser.meshCache, nodeDef.mesh, mesh);
if (nodeDef.weights !== void 0) {
node.traverse(function(o) {
if (!o.isMesh) return;
for (let i = 0, il = nodeDef.weights.length; i < il; i++) {
o.morphTargetInfluences[i] = nodeDef.weights[i];
}
});
}
return node;
});
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy
* @param {number} nodeIndex
* @return {Promise<Object3D>}
*/
loadNode(nodeIndex) {
const json = this.json;
const parser = this;
const nodeDef = json.nodes[nodeIndex];
const nodePending = parser._loadNodeShallow(nodeIndex);
const childPending = [];
const childrenDef = nodeDef.children || [];
for (let i = 0, il = childrenDef.length; i < il; i++) {
childPending.push(parser.getDependency("node", childrenDef[i]));
}
const skeletonPending = nodeDef.skin === void 0 ? Promise.resolve(null) : parser.getDependency("skin", nodeDef.skin);
return Promise.all([
nodePending,
Promise.all(childPending),
skeletonPending
]).then(function(results) {
const node = results[0];
const children = results[1];
const skeleton = results[2];
if (skeleton !== null) {
node.traverse(function(mesh) {
if (!mesh.isSkinnedMesh) return;
mesh.bind(skeleton, _identityMatrix);
});
}
for (let i = 0, il = children.length; i < il; i++) {
node.add(children[i]);
}
return node;
});
}
// ._loadNodeShallow() parses a single node.
// skin and child nodes are created and added in .loadNode() (no '_' prefix).
_loadNodeShallow(nodeIndex) {
const json = this.json;
const extensions = this.extensions;
const parser = this;
if (this.nodeCache[nodeIndex] !== void 0) {
return this.nodeCache[nodeIndex];
}
const nodeDef = json.nodes[nodeIndex];
const nodeName = nodeDef.name ? parser.createUniqueName(nodeDef.name) : "";
const pending = [];
const meshPromise = parser._invokeOne(function(ext) {
return ext.createNodeMesh && ext.createNodeMesh(nodeIndex);
});
if (meshPromise) {
pending.push(meshPromise);
}
if (nodeDef.camera !== void 0) {
pending.push(parser.getDependency("camera", nodeDef.camera).then(function(camera) {
return parser._getNodeRef(parser.cameraCache, nodeDef.camera, camera);
}));
}
parser._invokeAll(function(ext) {
return ext.createNodeAttachment && ext.createNodeAttachment(nodeIndex);
}).forEach(function(promise) {
pending.push(promise);
});
this.nodeCache[nodeIndex] = Promise.all(pending).then(function(objects) {
let node;
if (nodeDef.isBone === true) {
node = new Bone();
} else if (objects.length > 1) {
node = new Group();
} else if (objects.length === 1) {
node = objects[0];
} else {
node = new Object3D();
}
if (node !== objects[0]) {
for (let i = 0, il = objects.length; i < il; i++) {
node.add(objects[i]);
}
}
if (nodeDef.name) {
node.userData.name = nodeDef.name;
node.name = nodeName;
}
assignExtrasToUserData(node, nodeDef);
if (nodeDef.extensions) addUnknownExtensionsToUserData(extensions, node, nodeDef);
if (nodeDef.matrix !== void 0) {
const matrix = new Matrix4();
matrix.fromArray(nodeDef.matrix);
node.applyMatrix4(matrix);
} else {
if (nodeDef.translation !== void 0) {
node.position.fromArray(nodeDef.translation);
}
if (nodeDef.rotation !== void 0) {
node.quaternion.fromArray(nodeDef.rotation);
}
if (nodeDef.scale !== void 0) {
node.scale.fromArray(nodeDef.scale);
}
}
if (!parser.associations.has(node)) {
parser.associations.set(node, {});
}
parser.associations.get(node).nodes = nodeIndex;
return node;
});
return this.nodeCache[nodeIndex];
}
/**
* Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes
* @param {number} sceneIndex
* @return {Promise<Group>}
*/
loadScene(sceneIndex) {
const extensions = this.extensions;
const sceneDef = this.json.scenes[sceneIndex];
const parser = this;
const scene = new Group();
if (sceneDef.name) scene.name = parser.createUniqueName(sceneDef.name);
assignExtrasToUserData(scene, sceneDef);
if (sceneDef.extensions) addUnknownExtensionsToUserData(extensions, scene, sceneDef);
const nodeIds = sceneDef.nodes || [];
const pending = [];
for (let i = 0, il = nodeIds.length; i < il; i++) {
pending.push(parser.getDependency("node", nodeIds[i]));
}
return Promise.all(pending).then(function(nodes) {
for (let i = 0, il = nodes.length; i < il; i++) {
scene.add(nodes[i]);
}
const reduceAssociations = (node) => {
const reducedAssociations = /* @__PURE__ */ new Map();
for (const [key, value] of parser.associations) {
if (key instanceof Material || key instanceof Texture) {
reducedAssociations.set(key, value);
}
}
node.traverse((node2) => {
const mappings = parser.associations.get(node2);
if (mappings != null) {
reducedAssociations.set(node2, mappings);
}
});
return reducedAssociations;
};
parser.associations = reduceAssociations(scene);
return scene;
});
}
_createAnimationTracks(node, inputAccessor, outputAccessor, sampler, target) {
const tracks = [];
const targetName = node.name ? node.name : node.uuid;
const targetNames = [];
if (PATH_PROPERTIES[target.path] === PATH_PROPERTIES.weights) {
node.traverse(function(object) {
if (object.morphTargetInfluences) {
targetNames.push(object.name ? object.name : object.uuid);
}
});
} else {
targetNames.push(targetName);
}
let TypedKeyframeTrack;
switch (PATH_PROPERTIES[target.path]) {
case PATH_PROPERTIES.weights:
TypedKeyframeTrack = NumberKeyframeTrack;
break;
case PATH_PROPERTIES.rotation:
TypedKeyframeTrack = QuaternionKeyframeTrack;
break;
case PATH_PROPERTIES.position:
case PATH_PROPERTIES.scale:
TypedKeyframeTrack = VectorKeyframeTrack;
break;
default:
switch (outputAccessor.itemSize) {
case 1:
TypedKeyframeTrack = NumberKeyframeTrack;
break;
case 2:
case 3:
default:
TypedKeyframeTrack = VectorKeyframeTrack;
break;
}
break;
}
const interpolation = sampler.interpolation !== void 0 ? INTERPOLATION[sampler.interpolation] : InterpolateLinear;
const outputArray = this._getArrayFromAccessor(outputAccessor);
for (let j = 0, jl = targetNames.length; j < jl; j++) {
const track = new TypedKeyframeTrack(
targetNames[j] + "." + PATH_PROPERTIES[target.path],
inputAccessor.array,
outputArray,
interpolation
);
if (sampler.interpolation === "CUBICSPLINE") {
this._createCubicSplineTrackInterpolant(track);
}
tracks.push(track);
}
return tracks;
}
_getArrayFromAccessor(accessor) {
let outputArray = accessor.array;
if (accessor.normalized) {
const scale = getNormalizedComponentScale(outputArray.constructor);
const scaled = new Float32Array(outputArray.length);
for (let j = 0, jl = outputArray.length; j < jl; j++) {
scaled[j] = outputArray[j] * scale;
}
outputArray = scaled;
}
return outputArray;
}
_createCubicSplineTrackInterpolant(track) {
track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline(result) {
const interpolantType = this instanceof QuaternionKeyframeTrack ? GLTFCubicSplineQuaternionInterpolant : GLTFCubicSplineInterpolant;
return new interpolantType(this.times, this.values, this.getValueSize() / 3, result);
};
track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;
}
};
function computeBounds(geometry, primitiveDef, parser) {
const attributes = primitiveDef.attributes;
const box = new Box3();
if (attributes.POSITION !== void 0) {
const accessor = parser.json.accessors[attributes.POSITION];
const min = accessor.min;
const max = accessor.max;
if (min !== void 0 && max !== void 0) {
box.set(
new Vector3(min[0], min[1], min[2]),
new Vector3(max[0], max[1], max[2])
);
if (accessor.normalized) {
const boxScale = getNormalizedComponentScale(WEBGL_COMPONENT_TYPES[accessor.componentType]);
box.min.multiplyScalar(boxScale);
box.max.multiplyScalar(boxScale);
}
} else {
console.warn("THREE.GLTFLoader: Missing min/max properties for accessor POSITION.");
return;
}
} else {
return;
}
const targets = primitiveDef.targets;
if (targets !== void 0) {
const maxDisplacement = new Vector3();
const vector = new Vector3();
for (let i = 0, il = targets.length; i < il; i++) {
const target = targets[i];
if (target.POSITION !== void 0) {
const accessor = parser.json.accessors[target.POSITION];
const min = accessor.min;
const max = accessor.max;
if (min !== void 0 && max !== void 0) {
vector.setX(Math.max(Math.abs(min[0]), Math.abs(max[0])));
vector.setY(Math.max(Math.abs(min[1]), Math.abs(max[1])));
vector.setZ(Math.max(Math.abs(min[2]), Math.abs(max[2])));
if (accessor.normalized) {
const boxScale = getNormalizedComponentScale(WEBGL_COMPONENT_TYPES[accessor.componentType]);
vector.multiplyScalar(boxScale);
}
maxDisplacement.max(vector);
} else {
console.warn("THREE.GLTFLoader: Missing min/max properties for accessor POSITION.");
}
}
}
box.expandByVector(maxDisplacement);
}
geometry.boundingBox = box;
const sphere = new Sphere();
box.getCenter(sphere.center);
sphere.radius = box.min.distanceTo(box.max) / 2;
geometry.boundingSphere = sphere;
}
function addPrimitiveAttributes(geometry, primitiveDef, parser) {
const attributes = primitiveDef.attributes;
const pending = [];
function assignAttributeAccessor(accessorIndex, attributeName) {
return parser.getDependency("accessor", accessorIndex).then(function(accessor) {
geometry.setAttribute(attributeName, accessor);
});
}
for (const gltfAttributeName in attributes) {
const threeAttributeName = ATTRIBUTES[gltfAttributeName] || gltfAttributeName.toLowerCase();
if (threeAttributeName in geometry.attributes) continue;
pending.push(assignAttributeAccessor(attributes[gltfAttributeName], threeAttributeName));
}
if (primitiveDef.indices !== void 0 && !geometry.index) {
const accessor = parser.getDependency("accessor", primitiveDef.indices).then(function(accessor2) {
geometry.setIndex(accessor2);
});
pending.push(accessor);
}
if (ColorManagement.workingColorSpace !== LinearSRGBColorSpace && "COLOR_0" in attributes) {
console.warn(`THREE.GLTFLoader: Converting vertex colors from "srgb-linear" to "${ColorManagement.workingColorSpace}" not supported.`);
}
assignExtrasToUserData(geometry, primitiveDef);
computeBounds(geometry, primitiveDef, parser);
return Promise.all(pending).then(function() {
return primitiveDef.targets !== void 0 ? addMorphTargets(geometry, primitiveDef.targets, parser) : geometry;
});
}
export {
mergeGeometries,
deepCloneAttribute,
mergeVertices,
mergeGroups,
BufferGeometryUtils_exports,
GLTFLoader
};
//# sourceMappingURL=chunk-PJQOQ23Z.js.map