import { AnimationClip, Bone, Box3, BufferAttribute, BufferGeometry, ClampToEdgeWrapping, Color, ColorManagement, DirectionalLight, DoubleSide, FileLoader, Float32BufferAttribute, FrontSide, Group, ImageBitmapLoader, InstancedBufferAttribute, InstancedMesh, InterleavedBuffer, InterleavedBufferAttribute, Interpolant, InterpolateDiscrete, InterpolateLinear, Line, LineBasicMaterial, LineLoop, LineSegments, LinearFilter, LinearMipmapLinearFilter, LinearMipmapNearestFilter, LinearSRGBColorSpace, Loader, LoaderUtils, Material, MathUtils, Matrix4, Mesh, MeshBasicMaterial, MeshPhysicalMaterial, MeshStandardMaterial, MirroredRepeatWrapping, NearestFilter, NearestMipmapLinearFilter, NearestMipmapNearestFilter, NumberKeyframeTrack, Object3D, OrthographicCamera, PerspectiveCamera, PointLight, Points, PointsMaterial, PropertyBinding, Quaternion, QuaternionKeyframeTrack, RepeatWrapping, SRGBColorSpace, Skeleton, SkinnedMesh, Sphere, SpotLight, Texture, TextureLoader, TriangleFanDrawMode, TriangleStripDrawMode, TrianglesDrawMode, Vector2, Vector3, VectorKeyframeTrack } from "./chunk-IS2ZBFBB.js"; import { __export } from "./chunk-HKJ2B2AA.js"; // node_modules/three/examples/jsm/utils/BufferGeometryUtils.js var BufferGeometryUtils_exports = {}; __export(BufferGeometryUtils_exports, { computeMikkTSpaceTangents: () => computeMikkTSpaceTangents, computeMorphedAttributes: () => computeMorphedAttributes, deepCloneAttribute: () => deepCloneAttribute, deinterleaveAttribute: () => deinterleaveAttribute, deinterleaveGeometry: () => deinterleaveGeometry, estimateBytesUsed: () => estimateBytesUsed, interleaveAttributes: () => interleaveAttributes, mergeAttributes: () => mergeAttributes, mergeGeometries: () => mergeGeometries, mergeGroups: () => mergeGroups, mergeVertices: () => mergeVertices, toCreasedNormals: () => toCreasedNormals, toTrianglesDrawMode: () => toTrianglesDrawMode }); function computeMikkTSpaceTangents(geometry, MikkTSpace, negateSign = true) { if (!MikkTSpace || !MikkTSpace.isReady) { throw new Error("BufferGeometryUtils: Initialized MikkTSpace library required."); } if (!geometry.hasAttribute("position") || !geometry.hasAttribute("normal") || !geometry.hasAttribute("uv")) { throw new Error('BufferGeometryUtils: Tangents require "position", "normal", and "uv" attributes.'); } function getAttributeArray(attribute) { if (attribute.normalized || attribute.isInterleavedBufferAttribute) { const dstArray = new Float32Array(attribute.count * attribute.itemSize); for (let i = 0, j = 0; i < attribute.count; i++) { dstArray[j++] = attribute.getX(i); dstArray[j++] = attribute.getY(i); if (attribute.itemSize > 2) { dstArray[j++] = attribute.getZ(i); } } return dstArray; } if (attribute.array instanceof Float32Array) { return attribute.array; } return new Float32Array(attribute.array); } const _geometry = geometry.index ? geometry.toNonIndexed() : geometry; const tangents = MikkTSpace.generateTangents( getAttributeArray(_geometry.attributes.position), getAttributeArray(_geometry.attributes.normal), getAttributeArray(_geometry.attributes.uv) ); if (negateSign) { for (let i = 3; i < tangents.length; i += 4) { tangents[i] *= -1; } } _geometry.setAttribute("tangent", new BufferAttribute(tangents, 4)); if (geometry !== _geometry) { geometry.copy(_geometry); } return geometry; } function mergeGeometries(geometries, useGroups = false) { const isIndexed = geometries[0].index !== null; const attributesUsed = new Set(Object.keys(geometries[0].attributes)); const morphAttributesUsed = new Set(Object.keys(geometries[0].morphAttributes)); const attributes = {}; const morphAttributes = {}; const morphTargetsRelative = geometries[0].morphTargetsRelative; const mergedGeometry = new BufferGeometry(); let offset = 0; for (let i = 0; i < geometries.length; ++i) { const geometry = geometries[i]; let attributesCount = 0; if (isIndexed !== (geometry.index !== null)) { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". All geometries must have compatible attributes; make sure index attribute exists among all geometries, or in none of them."); return null; } for (const name in geometry.attributes) { if (!attributesUsed.has(name)) { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + '. All geometries must have compatible attributes; make sure "' + name + '" attribute exists among all geometries, or in none of them.'); return null; } if (attributes[name] === void 0) attributes[name] = []; attributes[name].push(geometry.attributes[name]); attributesCount++; } if (attributesCount !== attributesUsed.size) { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". Make sure all geometries have the same number of attributes."); return null; } if (morphTargetsRelative !== geometry.morphTargetsRelative) { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". .morphTargetsRelative must be consistent throughout all geometries."); return null; } for (const name in geometry.morphAttributes) { if (!morphAttributesUsed.has(name)) { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". .morphAttributes must be consistent throughout all geometries."); return null; } if (morphAttributes[name] === void 0) morphAttributes[name] = []; morphAttributes[name].push(geometry.morphAttributes[name]); } if (useGroups) { let count; if (isIndexed) { count = geometry.index.count; } else if (geometry.attributes.position !== void 0) { count = geometry.attributes.position.count; } else { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". The geometry must have either an index or a position attribute"); return null; } mergedGeometry.addGroup(offset, count, i); offset += count; } } if (isIndexed) { let indexOffset = 0; const mergedIndex = []; for (let i = 0; i < geometries.length; ++i) { const index = geometries[i].index; for (let j = 0; j < index.count; ++j) { mergedIndex.push(index.getX(j) + indexOffset); } indexOffset += geometries[i].attributes.position.count; } mergedGeometry.setIndex(mergedIndex); } for (const name in attributes) { const mergedAttribute = mergeAttributes(attributes[name]); if (!mergedAttribute) { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed while trying to merge the " + name + " attribute."); return null; } mergedGeometry.setAttribute(name, mergedAttribute); } for (const name in morphAttributes) { const numMorphTargets = morphAttributes[name][0].length; if (numMorphTargets === 0) break; mergedGeometry.morphAttributes = mergedGeometry.morphAttributes || {}; mergedGeometry.morphAttributes[name] = []; for (let i = 0; i < numMorphTargets; ++i) { const morphAttributesToMerge = []; for (let j = 0; j < morphAttributes[name].length; ++j) { morphAttributesToMerge.push(morphAttributes[name][j][i]); } const mergedMorphAttribute = mergeAttributes(morphAttributesToMerge); if (!mergedMorphAttribute) { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed while trying to merge the " + name + " morphAttribute."); return null; } mergedGeometry.morphAttributes[name].push(mergedMorphAttribute); } } return mergedGeometry; } function mergeAttributes(attributes) { let TypedArray; let itemSize; let normalized; let gpuType = -1; let arrayLength = 0; for (let i = 0; i < attributes.length; ++i) { const attribute = attributes[i]; if (TypedArray === void 0) TypedArray = attribute.array.constructor; if (TypedArray !== attribute.array.constructor) { console.error("THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.array must be of consistent array types across matching attributes."); return null; } if (itemSize === void 0) itemSize = attribute.itemSize; if (itemSize !== attribute.itemSize) { console.error("THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.itemSize must be consistent across matching attributes."); return null; } if (normalized === void 0) normalized = attribute.normalized; if (normalized !== attribute.normalized) { console.error("THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.normalized must be consistent across matching attributes."); return null; } if (gpuType === -1) gpuType = attribute.gpuType; if (gpuType !== attribute.gpuType) { console.error("THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.gpuType must be consistent across matching attributes."); return null; } arrayLength += attribute.count * itemSize; } const array = new TypedArray(arrayLength); const result = new BufferAttribute(array, itemSize, normalized); let offset = 0; for (let i = 0; i < attributes.length; ++i) { const attribute = attributes[i]; if (attribute.isInterleavedBufferAttribute) { const tupleOffset = offset / itemSize; for (let j = 0, l = attribute.count; j < l; j++) { for (let c = 0; c < itemSize; c++) { const value = attribute.getComponent(j, c); result.setComponent(j + tupleOffset, c, value); } } } else { array.set(attribute.array, offset); } offset += attribute.count * itemSize; } if (gpuType !== void 0) { result.gpuType = gpuType; } return result; } function deepCloneAttribute(attribute) { if (attribute.isInstancedInterleavedBufferAttribute || attribute.isInterleavedBufferAttribute) { return deinterleaveAttribute(attribute); } if (attribute.isInstancedBufferAttribute) { return new InstancedBufferAttribute().copy(attribute); } return new BufferAttribute().copy(attribute); } function interleaveAttributes(attributes) { let TypedArray; let arrayLength = 0; let stride = 0; for (let i = 0, l = attributes.length; i < l; ++i) { const attribute = attributes[i]; if (TypedArray === void 0) TypedArray = attribute.array.constructor; if (TypedArray !== attribute.array.constructor) { console.error("AttributeBuffers of different types cannot be interleaved"); return null; } arrayLength += attribute.array.length; stride += attribute.itemSize; } const interleavedBuffer = new InterleavedBuffer(new TypedArray(arrayLength), stride); let offset = 0; const res = []; const getters = ["getX", "getY", "getZ", "getW"]; const setters = ["setX", "setY", "setZ", "setW"]; for (let j = 0, l = attributes.length; j < l; j++) { const attribute = attributes[j]; const itemSize = attribute.itemSize; const count = attribute.count; const iba = new InterleavedBufferAttribute(interleavedBuffer, itemSize, offset, attribute.normalized); res.push(iba); offset += itemSize; for (let c = 0; c < count; c++) { for (let k = 0; k < itemSize; k++) { iba[setters[k]](c, attribute[getters[k]](c)); } } } return res; } function deinterleaveAttribute(attribute) { const cons = attribute.data.array.constructor; const count = attribute.count; const itemSize = attribute.itemSize; const normalized = attribute.normalized; const array = new cons(count * itemSize); let newAttribute; if (attribute.isInstancedInterleavedBufferAttribute) { newAttribute = new InstancedBufferAttribute(array, itemSize, normalized, attribute.meshPerAttribute); } else { newAttribute = new BufferAttribute(array, itemSize, normalized); } for (let i = 0; i < count; i++) { newAttribute.setX(i, attribute.getX(i)); if (itemSize >= 2) { newAttribute.setY(i, attribute.getY(i)); } if (itemSize >= 3) { newAttribute.setZ(i, attribute.getZ(i)); } if (itemSize >= 4) { newAttribute.setW(i, attribute.getW(i)); } } return newAttribute; } function deinterleaveGeometry(geometry) { const attributes = geometry.attributes; const morphTargets = geometry.morphTargets; const attrMap = /* @__PURE__ */ new Map(); for (const key in attributes) { const attr = attributes[key]; if (attr.isInterleavedBufferAttribute) { if (!attrMap.has(attr)) { attrMap.set(attr, deinterleaveAttribute(attr)); } attributes[key] = attrMap.get(attr); } } for (const key in morphTargets) { const attr = morphTargets[key]; if (attr.isInterleavedBufferAttribute) { if (!attrMap.has(attr)) { attrMap.set(attr, deinterleaveAttribute(attr)); } morphTargets[key] = attrMap.get(attr); } } } function estimateBytesUsed(geometry) { let mem = 0; for (const name in geometry.attributes) { const attr = geometry.getAttribute(name); mem += attr.count * attr.itemSize * attr.array.BYTES_PER_ELEMENT; } const indices = geometry.getIndex(); mem += indices ? indices.count * indices.itemSize * indices.array.BYTES_PER_ELEMENT : 0; return mem; } function mergeVertices(geometry, tolerance = 1e-4) { tolerance = Math.max(tolerance, Number.EPSILON); const hashToIndex = {}; const indices = geometry.getIndex(); const positions = geometry.getAttribute("position"); const vertexCount = indices ? indices.count : positions.count; let nextIndex = 0; const attributeNames = Object.keys(geometry.attributes); const tmpAttributes = {}; const tmpMorphAttributes = {}; const newIndices = []; const getters = ["getX", "getY", "getZ", "getW"]; const setters = ["setX", "setY", "setZ", "setW"]; for (let i = 0, l = attributeNames.length; i < l; i++) { const name = attributeNames[i]; const attr = geometry.attributes[name]; tmpAttributes[name] = new attr.constructor( new attr.array.constructor(attr.count * attr.itemSize), attr.itemSize, attr.normalized ); const morphAttributes = geometry.morphAttributes[name]; if (morphAttributes) { if (!tmpMorphAttributes[name]) tmpMorphAttributes[name] = []; morphAttributes.forEach((morphAttr, i2) => { const array = new morphAttr.array.constructor(morphAttr.count * morphAttr.itemSize); tmpMorphAttributes[name][i2] = new morphAttr.constructor(array, morphAttr.itemSize, morphAttr.normalized); }); } } const halfTolerance = tolerance * 0.5; const exponent = Math.log10(1 / tolerance); const hashMultiplier = Math.pow(10, exponent); const hashAdditive = halfTolerance * hashMultiplier; for (let i = 0; i < vertexCount; i++) { const index = indices ? indices.getX(i) : i; let hash = ""; for (let j = 0, l = attributeNames.length; j < l; j++) { const name = attributeNames[j]; const attribute = geometry.getAttribute(name); const itemSize = attribute.itemSize; for (let k = 0; k < itemSize; k++) { hash += `${~~(attribute[getters[k]](index) * hashMultiplier + hashAdditive)},`; } } if (hash in hashToIndex) { newIndices.push(hashToIndex[hash]); } else { for (let j = 0, l = attributeNames.length; j < l; j++) { const name = attributeNames[j]; const attribute = geometry.getAttribute(name); const morphAttributes = geometry.morphAttributes[name]; const itemSize = attribute.itemSize; const newArray = tmpAttributes[name]; const newMorphArrays = tmpMorphAttributes[name]; for (let k = 0; k < itemSize; k++) { const getterFunc = getters[k]; const setterFunc = setters[k]; newArray[setterFunc](nextIndex, attribute[getterFunc](index)); if (morphAttributes) { for (let m = 0, ml = morphAttributes.length; m < ml; m++) { newMorphArrays[m][setterFunc](nextIndex, morphAttributes[m][getterFunc](index)); } } } } hashToIndex[hash] = nextIndex; newIndices.push(nextIndex); nextIndex++; } } const result = geometry.clone(); for (const name in geometry.attributes) { const tmpAttribute = tmpAttributes[name]; result.setAttribute(name, new tmpAttribute.constructor( tmpAttribute.array.slice(0, nextIndex * tmpAttribute.itemSize), tmpAttribute.itemSize, tmpAttribute.normalized )); if (!(name in tmpMorphAttributes)) continue; for (let j = 0; j < tmpMorphAttributes[name].length; j++) { const tmpMorphAttribute = tmpMorphAttributes[name][j]; result.morphAttributes[name][j] = new tmpMorphAttribute.constructor( tmpMorphAttribute.array.slice(0, nextIndex * tmpMorphAttribute.itemSize), tmpMorphAttribute.itemSize, tmpMorphAttribute.normalized ); } } result.setIndex(newIndices); return result; } function toTrianglesDrawMode(geometry, drawMode) { if (drawMode === TrianglesDrawMode) { console.warn("THREE.BufferGeometryUtils.toTrianglesDrawMode(): Geometry already defined as triangles."); return geometry; } if (drawMode === TriangleFanDrawMode || drawMode === TriangleStripDrawMode) { let index = geometry.getIndex(); if (index === null) { const indices = []; const position = geometry.getAttribute("position"); if (position !== void 0) { for (let i = 0; i < position.count; i++) { indices.push(i); } geometry.setIndex(indices); index = geometry.getIndex(); } else { console.error("THREE.BufferGeometryUtils.toTrianglesDrawMode(): Undefined position attribute. Processing not possible."); return geometry; } } const numberOfTriangles = index.count - 2; const newIndices = []; if (drawMode === TriangleFanDrawMode) { for (let i = 1; i <= numberOfTriangles; i++) { newIndices.push(index.getX(0)); newIndices.push(index.getX(i)); newIndices.push(index.getX(i + 1)); } } else { for (let i = 0; i < numberOfTriangles; i++) { if (i % 2 === 0) { newIndices.push(index.getX(i)); newIndices.push(index.getX(i + 1)); newIndices.push(index.getX(i + 2)); } else { newIndices.push(index.getX(i + 2)); newIndices.push(index.getX(i + 1)); newIndices.push(index.getX(i)); } } } if (newIndices.length / 3 !== numberOfTriangles) { console.error("THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unable to generate correct amount of triangles."); } const newGeometry = geometry.clone(); newGeometry.setIndex(newIndices); newGeometry.clearGroups(); return newGeometry; } else { console.error("THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unknown draw mode:", drawMode); return geometry; } } function computeMorphedAttributes(object) { const _vA = new Vector3(); const _vB = new Vector3(); const _vC = new Vector3(); const _tempA = new Vector3(); const _tempB = new Vector3(); const _tempC = new Vector3(); const _morphA = new Vector3(); const _morphB = new Vector3(); const _morphC = new Vector3(); function _calculateMorphedAttributeData(object2, attribute, morphAttribute, morphTargetsRelative2, a2, b2, c2, modifiedAttributeArray) { _vA.fromBufferAttribute(attribute, a2); _vB.fromBufferAttribute(attribute, b2); _vC.fromBufferAttribute(attribute, c2); const morphInfluences = object2.morphTargetInfluences; if (morphAttribute && morphInfluences) { _morphA.set(0, 0, 0); _morphB.set(0, 0, 0); _morphC.set(0, 0, 0); for (let i2 = 0, il2 = morphAttribute.length; i2 < il2; i2++) { const influence = morphInfluences[i2]; const morph = morphAttribute[i2]; if (influence === 0) continue; _tempA.fromBufferAttribute(morph, a2); _tempB.fromBufferAttribute(morph, b2); _tempC.fromBufferAttribute(morph, c2); if (morphTargetsRelative2) { _morphA.addScaledVector(_tempA, influence); _morphB.addScaledVector(_tempB, influence); _morphC.addScaledVector(_tempC, influence); } else { _morphA.addScaledVector(_tempA.sub(_vA), influence); _morphB.addScaledVector(_tempB.sub(_vB), influence); _morphC.addScaledVector(_tempC.sub(_vC), influence); } } _vA.add(_morphA); _vB.add(_morphB); _vC.add(_morphC); } if (object2.isSkinnedMesh) { object2.applyBoneTransform(a2, _vA); object2.applyBoneTransform(b2, _vB); object2.applyBoneTransform(c2, _vC); } modifiedAttributeArray[a2 * 3 + 0] = _vA.x; modifiedAttributeArray[a2 * 3 + 1] = _vA.y; modifiedAttributeArray[a2 * 3 + 2] = _vA.z; modifiedAttributeArray[b2 * 3 + 0] = _vB.x; modifiedAttributeArray[b2 * 3 + 1] = _vB.y; modifiedAttributeArray[b2 * 3 + 2] = _vB.z; modifiedAttributeArray[c2 * 3 + 0] = _vC.x; modifiedAttributeArray[c2 * 3 + 1] = _vC.y; modifiedAttributeArray[c2 * 3 + 2] = _vC.z; } const geometry = object.geometry; const material = object.material; let a, b, c; const index = geometry.index; const positionAttribute = geometry.attributes.position; const morphPosition = geometry.morphAttributes.position; const morphTargetsRelative = geometry.morphTargetsRelative; const normalAttribute = geometry.attributes.normal; const morphNormal = geometry.morphAttributes.position; const groups = geometry.groups; const drawRange = geometry.drawRange; let i, j, il, jl; let group; let start, end; const modifiedPosition = new Float32Array(positionAttribute.count * positionAttribute.itemSize); const modifiedNormal = new Float32Array(normalAttribute.count * normalAttribute.itemSize); if (index !== null) { if (Array.isArray(material)) { for (i = 0, il = groups.length; i < il; i++) { group = groups[i]; start = Math.max(group.start, drawRange.start); end = Math.min(group.start + group.count, drawRange.start + drawRange.count); for (j = start, jl = end; j < jl; j += 3) { a = index.getX(j); b = index.getX(j + 1); c = index.getX(j + 2); _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else { start = Math.max(0, drawRange.start); end = Math.min(index.count, drawRange.start + drawRange.count); for (i = start, il = end; i < il; i += 3) { a = index.getX(i); b = index.getX(i + 1); c = index.getX(i + 2); _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else { if (Array.isArray(material)) { for (i = 0, il = groups.length; i < il; i++) { group = groups[i]; start = Math.max(group.start, drawRange.start); end = Math.min(group.start + group.count, drawRange.start + drawRange.count); for (j = start, jl = end; j < jl; j += 3) { a = j; b = j + 1; c = j + 2; _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else { start = Math.max(0, drawRange.start); end = Math.min(positionAttribute.count, drawRange.start + drawRange.count); for (i = start, il = end; i < il; i += 3) { a = i; b = i + 1; c = i + 2; _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } const morphedPositionAttribute = new Float32BufferAttribute(modifiedPosition, 3); const morphedNormalAttribute = new Float32BufferAttribute(modifiedNormal, 3); return { positionAttribute, normalAttribute, morphedPositionAttribute, morphedNormalAttribute }; } function mergeGroups(geometry) { if (geometry.groups.length === 0) { console.warn("THREE.BufferGeometryUtils.mergeGroups(): No groups are defined. Nothing to merge."); return geometry; } let groups = geometry.groups; groups = groups.sort((a, b) => { if (a.materialIndex !== b.materialIndex) return a.materialIndex - b.materialIndex; return a.start - b.start; }); if (geometry.getIndex() === null) { const positionAttribute = geometry.getAttribute("position"); const indices = []; for (let i = 0; i < positionAttribute.count; i += 3) { indices.push(i, i + 1, i + 2); } geometry.setIndex(indices); } const index = geometry.getIndex(); const newIndices = []; for (let i = 0; i < groups.length; i++) { const group = groups[i]; const groupStart = group.start; const groupLength = groupStart + group.count; for (let j = groupStart; j < groupLength; j++) { newIndices.push(index.getX(j)); } } geometry.dispose(); geometry.setIndex(newIndices); let start = 0; for (let i = 0; i < groups.length; i++) { const group = groups[i]; group.start = start; start += group.count; } let currentGroup = groups[0]; geometry.groups = [currentGroup]; for (let i = 1; i < groups.length; i++) { const group = groups[i]; if (currentGroup.materialIndex === group.materialIndex) { currentGroup.count += group.count; } else { currentGroup = group; geometry.groups.push(currentGroup); } } return geometry; } function toCreasedNormals(geometry, creaseAngle = Math.PI / 3) { const creaseDot = Math.cos(creaseAngle); const hashMultiplier = (1 + 1e-10) * 100; const verts = [new Vector3(), new Vector3(), new Vector3()]; const tempVec1 = new Vector3(); const tempVec2 = new Vector3(); const tempNorm = new Vector3(); const tempNorm2 = new Vector3(); function hashVertex(v) { const x = ~~(v.x * hashMultiplier); const y = ~~(v.y * hashMultiplier); const z = ~~(v.z * hashMultiplier); return `${x},${y},${z}`; } const resultGeometry = geometry.index ? geometry.toNonIndexed() : geometry; const posAttr = resultGeometry.attributes.position; const vertexMap = {}; for (let i = 0, l = posAttr.count / 3; i < l; i++) { const i3 = 3 * i; const a = verts[0].fromBufferAttribute(posAttr, i3 + 0); const b = verts[1].fromBufferAttribute(posAttr, i3 + 1); const c = verts[2].fromBufferAttribute(posAttr, i3 + 2); tempVec1.subVectors(c, b); tempVec2.subVectors(a, b); const normal = new Vector3().crossVectors(tempVec1, tempVec2).normalize(); for (let n = 0; n < 3; n++) { const vert = verts[n]; const hash = hashVertex(vert); if (!(hash in vertexMap)) { vertexMap[hash] = []; } vertexMap[hash].push(normal); } } const normalArray = new Float32Array(posAttr.count * 3); const normAttr = new BufferAttribute(normalArray, 3, false); for (let i = 0, l = posAttr.count / 3; i < l; i++) { const i3 = 3 * i; const a = verts[0].fromBufferAttribute(posAttr, i3 + 0); const b = verts[1].fromBufferAttribute(posAttr, i3 + 1); const c = verts[2].fromBufferAttribute(posAttr, i3 + 2); tempVec1.subVectors(c, b); tempVec2.subVectors(a, b); tempNorm.crossVectors(tempVec1, tempVec2).normalize(); for (let n = 0; n < 3; n++) { const vert = verts[n]; const hash = hashVertex(vert); const otherNormals = vertexMap[hash]; tempNorm2.set(0, 0, 0); for (let k = 0, lk = otherNormals.length; k < lk; k++) { const otherNorm = otherNormals[k]; if (tempNorm.dot(otherNorm) > creaseDot) { tempNorm2.add(otherNorm); } } tempNorm2.normalize(); normAttr.setXYZ(i3 + n, tempNorm2.x, tempNorm2.y, tempNorm2.z); } } resultGeometry.setAttribute("normal", normAttr); return resultGeometry; } // node_modules/three/examples/jsm/loaders/GLTFLoader.js var GLTFLoader = class extends Loader { constructor(manager) { super(manager); this.dracoLoader = null; this.ktx2Loader = null; this.meshoptDecoder = null; this.pluginCallbacks = []; this.register(function(parser) { return new GLTFMaterialsClearcoatExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsDispersionExtension(parser); }); this.register(function(parser) { return new GLTFTextureBasisUExtension(parser); }); this.register(function(parser) { return new GLTFTextureWebPExtension(parser); }); this.register(function(parser) { return new GLTFTextureAVIFExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsSheenExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsTransmissionExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsVolumeExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsIorExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsEmissiveStrengthExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsSpecularExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsIridescenceExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsAnisotropyExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsBumpExtension(parser); }); this.register(function(parser) { return new GLTFLightsExtension(parser); }); this.register(function(parser) { return new GLTFMeshoptCompression(parser); }); this.register(function(parser) { return new GLTFMeshGpuInstancing(parser); }); } load(url, onLoad, onProgress, onError) { const scope = this; let resourcePath; if (this.resourcePath !== "") { resourcePath = this.resourcePath; } else if (this.path !== "") { const relativeUrl = LoaderUtils.extractUrlBase(url); resourcePath = LoaderUtils.resolveURL(relativeUrl, this.path); } else { resourcePath = LoaderUtils.extractUrlBase(url); } this.manager.itemStart(url); const _onError = function(e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); scope.manager.itemEnd(url); }; const loader = new FileLoader(this.manager); loader.setPath(this.path); loader.setResponseType("arraybuffer"); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(this.withCredentials); loader.load(url, function(data) { try { scope.parse(data, resourcePath, function(gltf) { onLoad(gltf); scope.manager.itemEnd(url); }, _onError); } catch (e) { _onError(e); } }, onProgress, _onError); } setDRACOLoader(dracoLoader) { this.dracoLoader = dracoLoader; return this; } setDDSLoader() { throw new Error( 'THREE.GLTFLoader: "MSFT_texture_dds" no longer supported. Please update to "KHR_texture_basisu".' ); } setKTX2Loader(ktx2Loader) { this.ktx2Loader = ktx2Loader; return this; } setMeshoptDecoder(meshoptDecoder) { this.meshoptDecoder = meshoptDecoder; return this; } register(callback) { if (this.pluginCallbacks.indexOf(callback) === -1) { this.pluginCallbacks.push(callback); } return this; } unregister(callback) { if (this.pluginCallbacks.indexOf(callback) !== -1) { this.pluginCallbacks.splice(this.pluginCallbacks.indexOf(callback), 1); } return this; } parse(data, path, onLoad, onError) { let json; const extensions = {}; const plugins = {}; const textDecoder = new TextDecoder(); if (typeof data === "string") { json = JSON.parse(data); } else if (data instanceof ArrayBuffer) { const magic = textDecoder.decode(new Uint8Array(data, 0, 4)); if (magic === BINARY_EXTENSION_HEADER_MAGIC) { try { extensions[EXTENSIONS.KHR_BINARY_GLTF] = new GLTFBinaryExtension(data); } catch (error) { if (onError) onError(error); return; } json = JSON.parse(extensions[EXTENSIONS.KHR_BINARY_GLTF].content); } else { json = JSON.parse(textDecoder.decode(data)); } } else { json = data; } if (json.asset === void 0 || json.asset.version[0] < 2) { if (onError) onError(new Error("THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.")); return; } const parser = new GLTFParser(json, { path: path || this.resourcePath || "", crossOrigin: this.crossOrigin, requestHeader: this.requestHeader, manager: this.manager, ktx2Loader: this.ktx2Loader, meshoptDecoder: this.meshoptDecoder }); parser.fileLoader.setRequestHeader(this.requestHeader); for (let i = 0; i < this.pluginCallbacks.length; i++) { const plugin = this.pluginCallbacks[i](parser); if (!plugin.name) console.error("THREE.GLTFLoader: Invalid plugin found: missing name"); plugins[plugin.name] = plugin; extensions[plugin.name] = true; } if (json.extensionsUsed) { for (let i = 0; i < json.extensionsUsed.length; ++i) { const extensionName = json.extensionsUsed[i]; const extensionsRequired = json.extensionsRequired || []; switch (extensionName) { case EXTENSIONS.KHR_MATERIALS_UNLIT: extensions[extensionName] = new GLTFMaterialsUnlitExtension(); break; case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION: extensions[extensionName] = new GLTFDracoMeshCompressionExtension(json, this.dracoLoader); break; case EXTENSIONS.KHR_TEXTURE_TRANSFORM: extensions[extensionName] = new GLTFTextureTransformExtension(); break; case EXTENSIONS.KHR_MESH_QUANTIZATION: extensions[extensionName] = new GLTFMeshQuantizationExtension(); break; default: if (extensionsRequired.indexOf(extensionName) >= 0 && plugins[extensionName] === void 0) { console.warn('THREE.GLTFLoader: Unknown extension "' + extensionName + '".'); } } } } parser.setExtensions(extensions); parser.setPlugins(plugins); parser.parse(onLoad, onError); } parseAsync(data, path) { const scope = this; return new Promise(function(resolve, reject) { scope.parse(data, path, resolve, reject); }); } }; function GLTFRegistry() { let objects = {}; return { get: function(key) { return objects[key]; }, add: function(key, object) { objects[key] = object; }, remove: function(key) { delete objects[key]; }, removeAll: function() { objects = {}; } }; } var EXTENSIONS = { KHR_BINARY_GLTF: "KHR_binary_glTF", KHR_DRACO_MESH_COMPRESSION: "KHR_draco_mesh_compression", KHR_LIGHTS_PUNCTUAL: "KHR_lights_punctual", KHR_MATERIALS_CLEARCOAT: "KHR_materials_clearcoat", KHR_MATERIALS_DISPERSION: "KHR_materials_dispersion", KHR_MATERIALS_IOR: "KHR_materials_ior", KHR_MATERIALS_SHEEN: "KHR_materials_sheen", KHR_MATERIALS_SPECULAR: "KHR_materials_specular", KHR_MATERIALS_TRANSMISSION: "KHR_materials_transmission", KHR_MATERIALS_IRIDESCENCE: "KHR_materials_iridescence", KHR_MATERIALS_ANISOTROPY: "KHR_materials_anisotropy", KHR_MATERIALS_UNLIT: "KHR_materials_unlit", KHR_MATERIALS_VOLUME: "KHR_materials_volume", KHR_TEXTURE_BASISU: "KHR_texture_basisu", KHR_TEXTURE_TRANSFORM: "KHR_texture_transform", KHR_MESH_QUANTIZATION: "KHR_mesh_quantization", KHR_MATERIALS_EMISSIVE_STRENGTH: "KHR_materials_emissive_strength", EXT_MATERIALS_BUMP: "EXT_materials_bump", EXT_TEXTURE_WEBP: "EXT_texture_webp", EXT_TEXTURE_AVIF: "EXT_texture_avif", EXT_MESHOPT_COMPRESSION: "EXT_meshopt_compression", EXT_MESH_GPU_INSTANCING: "EXT_mesh_gpu_instancing" }; var GLTFLightsExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL; this.cache = { refs: {}, uses: {} }; } _markDefs() { const parser = this.parser; const nodeDefs = this.parser.json.nodes || []; for (let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex++) { const nodeDef = nodeDefs[nodeIndex]; if (nodeDef.extensions && nodeDef.extensions[this.name] && nodeDef.extensions[this.name].light !== void 0) { parser._addNodeRef(this.cache, nodeDef.extensions[this.name].light); } } } _loadLight(lightIndex) { const parser = this.parser; const cacheKey = "light:" + lightIndex; let dependency = parser.cache.get(cacheKey); if (dependency) return dependency; const json = parser.json; const extensions = json.extensions && json.extensions[this.name] || {}; const lightDefs = extensions.lights || []; const lightDef = lightDefs[lightIndex]; let lightNode; const color = new Color(16777215); if (lightDef.color !== void 0) color.setRGB(lightDef.color[0], lightDef.color[1], lightDef.color[2], LinearSRGBColorSpace); const range = lightDef.range !== void 0 ? lightDef.range : 0; switch (lightDef.type) { case "directional": lightNode = new DirectionalLight(color); lightNode.target.position.set(0, 0, -1); lightNode.add(lightNode.target); break; case "point": lightNode = new PointLight(color); lightNode.distance = range; break; case "spot": lightNode = new SpotLight(color); lightNode.distance = range; lightDef.spot = lightDef.spot || {}; lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== void 0 ? lightDef.spot.innerConeAngle : 0; lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== void 0 ? lightDef.spot.outerConeAngle : Math.PI / 4; lightNode.angle = lightDef.spot.outerConeAngle; lightNode.penumbra = 1 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle; lightNode.target.position.set(0, 0, -1); lightNode.add(lightNode.target); break; default: throw new Error("THREE.GLTFLoader: Unexpected light type: " + lightDef.type); } lightNode.position.set(0, 0, 0); lightNode.decay = 2; assignExtrasToUserData(lightNode, lightDef); if (lightDef.intensity !== void 0) lightNode.intensity = lightDef.intensity; lightNode.name = parser.createUniqueName(lightDef.name || "light_" + lightIndex); dependency = Promise.resolve(lightNode); parser.cache.add(cacheKey, dependency); return dependency; } getDependency(type, index) { if (type !== "light") return; return this._loadLight(index); } createNodeAttachment(nodeIndex) { const self2 = this; const parser = this.parser; const json = parser.json; const nodeDef = json.nodes[nodeIndex]; const lightDef = nodeDef.extensions && nodeDef.extensions[this.name] || {}; const lightIndex = lightDef.light; if (lightIndex === void 0) return null; return this._loadLight(lightIndex).then(function(light) { return parser._getNodeRef(self2.cache, lightIndex, light); }); } }; var GLTFMaterialsUnlitExtension = class { constructor() { this.name = EXTENSIONS.KHR_MATERIALS_UNLIT; } getMaterialType() { return MeshBasicMaterial; } extendParams(materialParams, materialDef, parser) { const pending = []; materialParams.color = new Color(1, 1, 1); materialParams.opacity = 1; const metallicRoughness = materialDef.pbrMetallicRoughness; if (metallicRoughness) { if (Array.isArray(metallicRoughness.baseColorFactor)) { const array = metallicRoughness.baseColorFactor; materialParams.color.setRGB(array[0], array[1], array[2], LinearSRGBColorSpace); materialParams.opacity = array[3]; } if (metallicRoughness.baseColorTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "map", metallicRoughness.baseColorTexture, SRGBColorSpace)); } } return Promise.all(pending); } }; var GLTFMaterialsEmissiveStrengthExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_EMISSIVE_STRENGTH; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const emissiveStrength = materialDef.extensions[this.name].emissiveStrength; if (emissiveStrength !== void 0) { materialParams.emissiveIntensity = emissiveStrength; } return Promise.resolve(); } }; var GLTFMaterialsClearcoatExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; if (extension.clearcoatFactor !== void 0) { materialParams.clearcoat = extension.clearcoatFactor; } if (extension.clearcoatTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "clearcoatMap", extension.clearcoatTexture)); } if (extension.clearcoatRoughnessFactor !== void 0) { materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor; } if (extension.clearcoatRoughnessTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "clearcoatRoughnessMap", extension.clearcoatRoughnessTexture)); } if (extension.clearcoatNormalTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "clearcoatNormalMap", extension.clearcoatNormalTexture)); if (extension.clearcoatNormalTexture.scale !== void 0) { const scale = extension.clearcoatNormalTexture.scale; materialParams.clearcoatNormalScale = new Vector2(scale, scale); } } return Promise.all(pending); } }; var GLTFMaterialsDispersionExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_DISPERSION; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const extension = materialDef.extensions[this.name]; materialParams.dispersion = extension.dispersion !== void 0 ? extension.dispersion : 0; return Promise.resolve(); } }; var GLTFMaterialsIridescenceExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_IRIDESCENCE; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; if (extension.iridescenceFactor !== void 0) { materialParams.iridescence = extension.iridescenceFactor; } if (extension.iridescenceTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "iridescenceMap", extension.iridescenceTexture)); } if (extension.iridescenceIor !== void 0) { materialParams.iridescenceIOR = extension.iridescenceIor; } if (materialParams.iridescenceThicknessRange === void 0) { materialParams.iridescenceThicknessRange = [100, 400]; } if (extension.iridescenceThicknessMinimum !== void 0) { materialParams.iridescenceThicknessRange[0] = extension.iridescenceThicknessMinimum; } if (extension.iridescenceThicknessMaximum !== void 0) { materialParams.iridescenceThicknessRange[1] = extension.iridescenceThicknessMaximum; } if (extension.iridescenceThicknessTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "iridescenceThicknessMap", extension.iridescenceThicknessTexture)); } return Promise.all(pending); } }; var GLTFMaterialsSheenExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_SHEEN; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; materialParams.sheenColor = new Color(0, 0, 0); materialParams.sheenRoughness = 0; materialParams.sheen = 1; const extension = materialDef.extensions[this.name]; if (extension.sheenColorFactor !== void 0) { const colorFactor = extension.sheenColorFactor; materialParams.sheenColor.setRGB(colorFactor[0], colorFactor[1], colorFactor[2], LinearSRGBColorSpace); } if (extension.sheenRoughnessFactor !== void 0) { materialParams.sheenRoughness = extension.sheenRoughnessFactor; } if (extension.sheenColorTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "sheenColorMap", extension.sheenColorTexture, SRGBColorSpace)); } if (extension.sheenRoughnessTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "sheenRoughnessMap", extension.sheenRoughnessTexture)); } return Promise.all(pending); } }; var GLTFMaterialsTransmissionExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_TRANSMISSION; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; if (extension.transmissionFactor !== void 0) { materialParams.transmission = extension.transmissionFactor; } if (extension.transmissionTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "transmissionMap", extension.transmissionTexture)); } return Promise.all(pending); } }; var GLTFMaterialsVolumeExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_VOLUME; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; materialParams.thickness = extension.thicknessFactor !== void 0 ? extension.thicknessFactor : 0; if (extension.thicknessTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "thicknessMap", extension.thicknessTexture)); } materialParams.attenuationDistance = extension.attenuationDistance || Infinity; const colorArray = extension.attenuationColor || [1, 1, 1]; materialParams.attenuationColor = new Color().setRGB(colorArray[0], colorArray[1], colorArray[2], LinearSRGBColorSpace); return Promise.all(pending); } }; var GLTFMaterialsIorExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_IOR; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const extension = materialDef.extensions[this.name]; materialParams.ior = extension.ior !== void 0 ? extension.ior : 1.5; return Promise.resolve(); } }; var GLTFMaterialsSpecularExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_SPECULAR; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; materialParams.specularIntensity = extension.specularFactor !== void 0 ? extension.specularFactor : 1; if (extension.specularTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "specularIntensityMap", extension.specularTexture)); } const colorArray = extension.specularColorFactor || [1, 1, 1]; materialParams.specularColor = new Color().setRGB(colorArray[0], colorArray[1], colorArray[2], LinearSRGBColorSpace); if (extension.specularColorTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "specularColorMap", extension.specularColorTexture, SRGBColorSpace)); } return Promise.all(pending); } }; var GLTFMaterialsBumpExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.EXT_MATERIALS_BUMP; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; materialParams.bumpScale = extension.bumpFactor !== void 0 ? extension.bumpFactor : 1; if (extension.bumpTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "bumpMap", extension.bumpTexture)); } return Promise.all(pending); } }; var GLTFMaterialsAnisotropyExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_ANISOTROPY; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; if (extension.anisotropyStrength !== void 0) { materialParams.anisotropy = extension.anisotropyStrength; } if (extension.anisotropyRotation !== void 0) { materialParams.anisotropyRotation = extension.anisotropyRotation; } if (extension.anisotropyTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "anisotropyMap", extension.anisotropyTexture)); } return Promise.all(pending); } }; var GLTFTextureBasisUExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_TEXTURE_BASISU; } loadTexture(textureIndex) { const parser = this.parser; const json = parser.json; const textureDef = json.textures[textureIndex]; if (!textureDef.extensions || !textureDef.extensions[this.name]) { return null; } const extension = textureDef.extensions[this.name]; const loader = parser.options.ktx2Loader; if (!loader) { if (json.extensionsRequired && json.extensionsRequired.indexOf(this.name) >= 0) { throw new Error("THREE.GLTFLoader: setKTX2Loader must be called before loading KTX2 textures"); } else { return null; } } return parser.loadTextureImage(textureIndex, extension.source, loader); } }; var GLTFTextureWebPExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.EXT_TEXTURE_WEBP; this.isSupported = null; } loadTexture(textureIndex) { const name = this.name; const parser = this.parser; const json = parser.json; const textureDef = json.textures[textureIndex]; if (!textureDef.extensions || !textureDef.extensions[name]) { return null; } const extension = textureDef.extensions[name]; const source = json.images[extension.source]; let loader = parser.textureLoader; if (source.uri) { const handler = parser.options.manager.getHandler(source.uri); if (handler !== null) loader = handler; } return this.detectSupport().then(function(isSupported) { if (isSupported) return parser.loadTextureImage(textureIndex, extension.source, loader); if (json.extensionsRequired && json.extensionsRequired.indexOf(name) >= 0) { throw new Error("THREE.GLTFLoader: WebP required by asset but unsupported."); } return parser.loadTexture(textureIndex); }); } detectSupport() { if (!this.isSupported) { this.isSupported = new Promise(function(resolve) { const image = new Image(); image.src = ""; image.onload = image.onerror = function() { resolve(image.height === 1); }; }); } return this.isSupported; } }; var GLTFTextureAVIFExtension = class { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.EXT_TEXTURE_AVIF; this.isSupported = null; } loadTexture(textureIndex) { const name = this.name; const parser = this.parser; const json = parser.json; const textureDef = json.textures[textureIndex]; if (!textureDef.extensions || !textureDef.extensions[name]) { return null; } const extension = textureDef.extensions[name]; const source = json.images[extension.source]; let loader = parser.textureLoader; if (source.uri) { const handler = parser.options.manager.getHandler(source.uri); if (handler !== null) loader = handler; } return this.detectSupport().then(function(isSupported) { if (isSupported) return parser.loadTextureImage(textureIndex, extension.source, loader); if (json.extensionsRequired && json.extensionsRequired.indexOf(name) >= 0) { throw new Error("THREE.GLTFLoader: AVIF required by asset but unsupported."); } return parser.loadTexture(textureIndex); }); } detectSupport() { if (!this.isSupported) { this.isSupported = new Promise(function(resolve) { const image = new Image(); image.src = ""; image.onload = image.onerror = function() { resolve(image.height === 1); }; }); } return this.isSupported; } }; var GLTFMeshoptCompression = class { constructor(parser) { this.name = EXTENSIONS.EXT_MESHOPT_COMPRESSION; this.parser = parser; } loadBufferView(index) { const json = this.parser.json; const bufferView = json.bufferViews[index]; if (bufferView.extensions && bufferView.extensions[this.name]) { const extensionDef = bufferView.extensions[this.name]; const buffer = this.parser.getDependency("buffer", extensionDef.buffer); const decoder = this.parser.options.meshoptDecoder; if (!decoder || !decoder.supported) { if (json.extensionsRequired && json.extensionsRequired.indexOf(this.name) >= 0) { throw new Error("THREE.GLTFLoader: setMeshoptDecoder must be called before loading compressed files"); } else { return null; } } return buffer.then(function(res) { const byteOffset = extensionDef.byteOffset || 0; const byteLength = extensionDef.byteLength || 0; const count = extensionDef.count; const stride = extensionDef.byteStride; const source = new Uint8Array(res, byteOffset, byteLength); if (decoder.decodeGltfBufferAsync) { return decoder.decodeGltfBufferAsync(count, stride, source, extensionDef.mode, extensionDef.filter).then(function(res2) { return res2.buffer; }); } else { return decoder.ready.then(function() { const result = new ArrayBuffer(count * stride); decoder.decodeGltfBuffer(new Uint8Array(result), count, stride, source, extensionDef.mode, extensionDef.filter); return result; }); } }); } else { return null; } } }; var GLTFMeshGpuInstancing = class { constructor(parser) { this.name = EXTENSIONS.EXT_MESH_GPU_INSTANCING; this.parser = parser; } createNodeMesh(nodeIndex) { const json = this.parser.json; const nodeDef = json.nodes[nodeIndex]; if (!nodeDef.extensions || !nodeDef.extensions[this.name] || nodeDef.mesh === void 0) { return null; } const meshDef = json.meshes[nodeDef.mesh]; for (const primitive of meshDef.primitives) { if (primitive.mode !== WEBGL_CONSTANTS.TRIANGLES && primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_STRIP && primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_FAN && primitive.mode !== void 0) { return null; } } const extensionDef = nodeDef.extensions[this.name]; const attributesDef = extensionDef.attributes; const pending = []; const attributes = {}; for (const key in attributesDef) { pending.push(this.parser.getDependency("accessor", attributesDef[key]).then((accessor) => { attributes[key] = accessor; return attributes[key]; })); } if (pending.length < 1) { return null; } pending.push(this.parser.createNodeMesh(nodeIndex)); return Promise.all(pending).then((results) => { const nodeObject = results.pop(); const meshes = nodeObject.isGroup ? nodeObject.children : [nodeObject]; const count = results[0].count; const instancedMeshes = []; for (const mesh of meshes) { const m = new Matrix4(); const p = new Vector3(); const q = new Quaternion(); const s = new Vector3(1, 1, 1); const instancedMesh = new InstancedMesh(mesh.geometry, mesh.material, count); for (let i = 0; i < count; i++) { if (attributes.TRANSLATION) { p.fromBufferAttribute(attributes.TRANSLATION, i); } if (attributes.ROTATION) { q.fromBufferAttribute(attributes.ROTATION, i); } if (attributes.SCALE) { s.fromBufferAttribute(attributes.SCALE, i); } instancedMesh.setMatrixAt(i, m.compose(p, q, s)); } for (const attributeName in attributes) { if (attributeName === "_COLOR_0") { const attr = attributes[attributeName]; instancedMesh.instanceColor = new InstancedBufferAttribute(attr.array, attr.itemSize, attr.normalized); } else if (attributeName !== "TRANSLATION" && attributeName !== "ROTATION" && attributeName !== "SCALE") { mesh.geometry.setAttribute(attributeName, attributes[attributeName]); } } Object3D.prototype.copy.call(instancedMesh, mesh); this.parser.assignFinalMaterial(instancedMesh); instancedMeshes.push(instancedMesh); } if (nodeObject.isGroup) { nodeObject.clear(); nodeObject.add(...instancedMeshes); return nodeObject; } return instancedMeshes[0]; }); } }; var BINARY_EXTENSION_HEADER_MAGIC = "glTF"; var BINARY_EXTENSION_HEADER_LENGTH = 12; var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 1313821514, BIN: 5130562 }; var GLTFBinaryExtension = class { constructor(data) { this.name = EXTENSIONS.KHR_BINARY_GLTF; this.content = null; this.body = null; const headerView = new DataView(data, 0, BINARY_EXTENSION_HEADER_LENGTH); const textDecoder = new TextDecoder(); this.header = { magic: textDecoder.decode(new Uint8Array(data.slice(0, 4))), version: headerView.getUint32(4, true), length: headerView.getUint32(8, true) }; if (this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC) { throw new Error("THREE.GLTFLoader: Unsupported glTF-Binary header."); } else if (this.header.version < 2) { throw new Error("THREE.GLTFLoader: Legacy binary file detected."); } const chunkContentsLength = this.header.length - BINARY_EXTENSION_HEADER_LENGTH; const chunkView = new DataView(data, BINARY_EXTENSION_HEADER_LENGTH); let chunkIndex = 0; while (chunkIndex < chunkContentsLength) { const chunkLength = chunkView.getUint32(chunkIndex, true); chunkIndex += 4; const chunkType = chunkView.getUint32(chunkIndex, true); chunkIndex += 4; if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON) { const contentArray = new Uint8Array(data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength); this.content = textDecoder.decode(contentArray); } else if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN) { const byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex; this.body = data.slice(byteOffset, byteOffset + chunkLength); } chunkIndex += chunkLength; } if (this.content === null) { throw new Error("THREE.GLTFLoader: JSON content not found."); } } }; var GLTFDracoMeshCompressionExtension = class { constructor(json, dracoLoader) { if (!dracoLoader) { throw new Error("THREE.GLTFLoader: No DRACOLoader instance provided."); } this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION; this.json = json; this.dracoLoader = dracoLoader; this.dracoLoader.preload(); } decodePrimitive(primitive, parser) { const json = this.json; const dracoLoader = this.dracoLoader; const bufferViewIndex = primitive.extensions[this.name].bufferView; const gltfAttributeMap = primitive.extensions[this.name].attributes; const threeAttributeMap = {}; const attributeNormalizedMap = {}; const attributeTypeMap = {}; for (const attributeName in gltfAttributeMap) { const threeAttributeName = ATTRIBUTES[attributeName] || attributeName.toLowerCase(); threeAttributeMap[threeAttributeName] = gltfAttributeMap[attributeName]; } for (const attributeName in primitive.attributes) { const threeAttributeName = ATTRIBUTES[attributeName] || attributeName.toLowerCase(); if (gltfAttributeMap[attributeName] !== void 0) { const accessorDef = json.accessors[primitive.attributes[attributeName]]; const componentType = WEBGL_COMPONENT_TYPES[accessorDef.componentType]; attributeTypeMap[threeAttributeName] = componentType.name; attributeNormalizedMap[threeAttributeName] = accessorDef.normalized === true; } } return parser.getDependency("bufferView", bufferViewIndex).then(function(bufferView) { return new Promise(function(resolve, reject) { dracoLoader.decodeDracoFile(bufferView, function(geometry) { for (const attributeName in geometry.attributes) { const attribute = geometry.attributes[attributeName]; const normalized = attributeNormalizedMap[attributeName]; if (normalized !== void 0) attribute.normalized = normalized; } resolve(geometry); }, threeAttributeMap, attributeTypeMap, LinearSRGBColorSpace, reject); }); }); } }; var GLTFTextureTransformExtension = class { constructor() { this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM; } extendTexture(texture, transform) { if ((transform.texCoord === void 0 || transform.texCoord === texture.channel) && transform.offset === void 0 && transform.rotation === void 0 && transform.scale === void 0) { return texture; } texture = texture.clone(); if (transform.texCoord !== void 0) { texture.channel = transform.texCoord; } if (transform.offset !== void 0) { texture.offset.fromArray(transform.offset); } if (transform.rotation !== void 0) { texture.rotation = transform.rotation; } if (transform.scale !== void 0) { texture.repeat.fromArray(transform.scale); } texture.needsUpdate = true; return texture; } }; var GLTFMeshQuantizationExtension = class { constructor() { this.name = EXTENSIONS.KHR_MESH_QUANTIZATION; } }; var GLTFCubicSplineInterpolant = class extends Interpolant { constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer); } copySampleValue_(index) { const result = this.resultBuffer, values = this.sampleValues, valueSize = this.valueSize, offset = index * valueSize * 3 + valueSize; for (let i = 0; i !== valueSize; i++) { result[i] = values[offset + i]; } return result; } interpolate_(i1, t0, t, t1) { const result = this.resultBuffer; const values = this.sampleValues; const stride = this.valueSize; const stride2 = stride * 2; const stride3 = stride * 3; const td = t1 - t0; const p = (t - t0) / td; const pp = p * p; const ppp = pp * p; const offset1 = i1 * stride3; const offset0 = offset1 - stride3; const s2 = -2 * ppp + 3 * pp; const s3 = ppp - pp; const s0 = 1 - s2; const s1 = s3 - pp + p; for (let i = 0; i !== stride; i++) { const p0 = values[offset0 + i + stride]; const m0 = values[offset0 + i + stride2] * td; const p1 = values[offset1 + i + stride]; const m1 = values[offset1 + i] * td; result[i] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1; } return result; } }; var _q = new Quaternion(); var GLTFCubicSplineQuaternionInterpolant = class extends GLTFCubicSplineInterpolant { interpolate_(i1, t0, t, t1) { const result = super.interpolate_(i1, t0, t, t1); _q.fromArray(result).normalize().toArray(result); return result; } }; var WEBGL_CONSTANTS = { FLOAT: 5126, //FLOAT_MAT2: 35674, FLOAT_MAT3: 35675, FLOAT_MAT4: 35676, FLOAT_VEC2: 35664, FLOAT_VEC3: 35665, FLOAT_VEC4: 35666, LINEAR: 9729, REPEAT: 10497, SAMPLER_2D: 35678, POINTS: 0, LINES: 1, LINE_LOOP: 2, LINE_STRIP: 3, TRIANGLES: 4, TRIANGLE_STRIP: 5, TRIANGLE_FAN: 6, UNSIGNED_BYTE: 5121, UNSIGNED_SHORT: 5123 }; var WEBGL_COMPONENT_TYPES = { 5120: Int8Array, 5121: Uint8Array, 5122: Int16Array, 5123: Uint16Array, 5125: Uint32Array, 5126: Float32Array }; var WEBGL_FILTERS = { 9728: NearestFilter, 9729: LinearFilter, 9984: NearestMipmapNearestFilter, 9985: LinearMipmapNearestFilter, 9986: NearestMipmapLinearFilter, 9987: LinearMipmapLinearFilter }; var WEBGL_WRAPPINGS = { 33071: ClampToEdgeWrapping, 33648: MirroredRepeatWrapping, 10497: RepeatWrapping }; var WEBGL_TYPE_SIZES = { "SCALAR": 1, "VEC2": 2, "VEC3": 3, "VEC4": 4, "MAT2": 4, "MAT3": 9, "MAT4": 16 }; var ATTRIBUTES = { POSITION: "position", NORMAL: "normal", TANGENT: "tangent", TEXCOORD_0: "uv", TEXCOORD_1: "uv1", TEXCOORD_2: "uv2", TEXCOORD_3: "uv3", COLOR_0: "color", WEIGHTS_0: "skinWeight", JOINTS_0: "skinIndex" }; var PATH_PROPERTIES = { scale: "scale", translation: "position", rotation: "quaternion", weights: "morphTargetInfluences" }; var INTERPOLATION = { CUBICSPLINE: void 0, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each // keyframe track will be initialized with a default interpolation type, then modified. LINEAR: InterpolateLinear, STEP: InterpolateDiscrete }; var ALPHA_MODES = { OPAQUE: "OPAQUE", MASK: "MASK", BLEND: "BLEND" }; function createDefaultMaterial(cache) { if (cache["DefaultMaterial"] === void 0) { cache["DefaultMaterial"] = new MeshStandardMaterial({ color: 16777215, emissive: 0, metalness: 1, roughness: 1, transparent: false, depthTest: true, side: FrontSide }); } return cache["DefaultMaterial"]; } function addUnknownExtensionsToUserData(knownExtensions, object, objectDef) { for (const name in objectDef.extensions) { if (knownExtensions[name] === void 0) { object.userData.gltfExtensions = object.userData.gltfExtensions || {}; object.userData.gltfExtensions[name] = objectDef.extensions[name]; } } } function assignExtrasToUserData(object, gltfDef) { if (gltfDef.extras !== void 0) { if (typeof gltfDef.extras === "object") { Object.assign(object.userData, gltfDef.extras); } else { console.warn("THREE.GLTFLoader: Ignoring primitive type .extras, " + gltfDef.extras); } } } function addMorphTargets(geometry, targets, parser) { let hasMorphPosition = false; let hasMorphNormal = false; let hasMorphColor = false; for (let i = 0, il = targets.length; i < il; i++) { const target = targets[i]; if (target.POSITION !== void 0) hasMorphPosition = true; if (target.NORMAL !== void 0) hasMorphNormal = true; if (target.COLOR_0 !== void 0) hasMorphColor = true; if (hasMorphPosition && hasMorphNormal && hasMorphColor) break; } if (!hasMorphPosition && !hasMorphNormal && !hasMorphColor) return Promise.resolve(geometry); const pendingPositionAccessors = []; const pendingNormalAccessors = []; const pendingColorAccessors = []; for (let i = 0, il = targets.length; i < il; i++) { const target = targets[i]; if (hasMorphPosition) { const pendingAccessor = target.POSITION !== void 0 ? parser.getDependency("accessor", target.POSITION) : geometry.attributes.position; pendingPositionAccessors.push(pendingAccessor); } if (hasMorphNormal) { const pendingAccessor = target.NORMAL !== void 0 ? parser.getDependency("accessor", target.NORMAL) : geometry.attributes.normal; pendingNormalAccessors.push(pendingAccessor); } if (hasMorphColor) { const pendingAccessor = target.COLOR_0 !== void 0 ? parser.getDependency("accessor", target.COLOR_0) : geometry.attributes.color; pendingColorAccessors.push(pendingAccessor); } } return Promise.all([ Promise.all(pendingPositionAccessors), Promise.all(pendingNormalAccessors), Promise.all(pendingColorAccessors) ]).then(function(accessors) { const morphPositions = accessors[0]; const morphNormals = accessors[1]; const morphColors = accessors[2]; if (hasMorphPosition) geometry.morphAttributes.position = morphPositions; if (hasMorphNormal) geometry.morphAttributes.normal = morphNormals; if (hasMorphColor) geometry.morphAttributes.color = morphColors; geometry.morphTargetsRelative = true; return geometry; }); } function updateMorphTargets(mesh, meshDef) { mesh.updateMorphTargets(); if (meshDef.weights !== void 0) { for (let i = 0, il = meshDef.weights.length; i < il; i++) { mesh.morphTargetInfluences[i] = meshDef.weights[i]; } } if (meshDef.extras && Array.isArray(meshDef.extras.targetNames)) { const targetNames = meshDef.extras.targetNames; if (mesh.morphTargetInfluences.length === targetNames.length) { mesh.morphTargetDictionary = {}; for (let i = 0, il = targetNames.length; i < il; i++) { mesh.morphTargetDictionary[targetNames[i]] = i; } } else { console.warn("THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names."); } } } function createPrimitiveKey(primitiveDef) { let geometryKey; const dracoExtension = primitiveDef.extensions && primitiveDef.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]; if (dracoExtension) { geometryKey = "draco:" + dracoExtension.bufferView + ":" + dracoExtension.indices + ":" + createAttributesKey(dracoExtension.attributes); } else { geometryKey = primitiveDef.indices + ":" + createAttributesKey(primitiveDef.attributes) + ":" + primitiveDef.mode; } if (primitiveDef.targets !== void 0) { for (let i = 0, il = primitiveDef.targets.length; i < il; i++) { geometryKey += ":" + createAttributesKey(primitiveDef.targets[i]); } } return geometryKey; } function createAttributesKey(attributes) { let attributesKey = ""; const keys = Object.keys(attributes).sort(); for (let i = 0, il = keys.length; i < il; i++) { attributesKey += keys[i] + ":" + attributes[keys[i]] + ";"; } return attributesKey; } function getNormalizedComponentScale(constructor) { switch (constructor) { case Int8Array: return 1 / 127; case Uint8Array: return 1 / 255; case Int16Array: return 1 / 32767; case Uint16Array: return 1 / 65535; default: throw new Error("THREE.GLTFLoader: Unsupported normalized accessor component type."); } } function getImageURIMimeType(uri) { if (uri.search(/\.jpe?g($|\?)/i) > 0 || uri.search(/^data\:image\/jpeg/) === 0) return "image/jpeg"; if (uri.search(/\.webp($|\?)/i) > 0 || uri.search(/^data\:image\/webp/) === 0) return "image/webp"; return "image/png"; } var _identityMatrix = new Matrix4(); var GLTFParser = class { constructor(json = {}, options = {}) { this.json = json; this.extensions = {}; this.plugins = {}; this.options = options; this.cache = new GLTFRegistry(); this.associations = /* @__PURE__ */ new Map(); this.primitiveCache = {}; this.nodeCache = {}; this.meshCache = { refs: {}, uses: {} }; this.cameraCache = { refs: {}, uses: {} }; this.lightCache = { refs: {}, uses: {} }; this.sourceCache = {}; this.textureCache = {}; this.nodeNamesUsed = {}; let isSafari = false; let safariVersion = -1; let isFirefox = false; let firefoxVersion = -1; if (typeof navigator !== "undefined") { const userAgent = navigator.userAgent; isSafari = /^((?!chrome|android).)*safari/i.test(userAgent) === true; const safariMatch = userAgent.match(/Version\/(\d+)/); safariVersion = isSafari && safariMatch ? parseInt(safariMatch[1], 10) : -1; isFirefox = userAgent.indexOf("Firefox") > -1; firefoxVersion = isFirefox ? userAgent.match(/Firefox\/([0-9]+)\./)[1] : -1; } if (typeof createImageBitmap === "undefined" || isSafari && safariVersion < 17 || isFirefox && firefoxVersion < 98) { this.textureLoader = new TextureLoader(this.options.manager); } else { this.textureLoader = new ImageBitmapLoader(this.options.manager); } this.textureLoader.setCrossOrigin(this.options.crossOrigin); this.textureLoader.setRequestHeader(this.options.requestHeader); this.fileLoader = new FileLoader(this.options.manager); this.fileLoader.setResponseType("arraybuffer"); if (this.options.crossOrigin === "use-credentials") { this.fileLoader.setWithCredentials(true); } } setExtensions(extensions) { this.extensions = extensions; } setPlugins(plugins) { this.plugins = plugins; } parse(onLoad, onError) { const parser = this; const json = this.json; const extensions = this.extensions; this.cache.removeAll(); this.nodeCache = {}; this._invokeAll(function(ext) { return ext._markDefs && ext._markDefs(); }); Promise.all(this._invokeAll(function(ext) { return ext.beforeRoot && ext.beforeRoot(); })).then(function() { return Promise.all([ parser.getDependencies("scene"), parser.getDependencies("animation"), parser.getDependencies("camera") ]); }).then(function(dependencies) { const result = { scene: dependencies[0][json.scene || 0], scenes: dependencies[0], animations: dependencies[1], cameras: dependencies[2], asset: json.asset, parser, userData: {} }; addUnknownExtensionsToUserData(extensions, result, json); assignExtrasToUserData(result, json); return Promise.all(parser._invokeAll(function(ext) { return ext.afterRoot && ext.afterRoot(result); })).then(function() { for (const scene of result.scenes) { scene.updateMatrixWorld(); } onLoad(result); }); }).catch(onError); } /** * Marks the special nodes/meshes in json for efficient parse. */ _markDefs() { const nodeDefs = this.json.nodes || []; const skinDefs = this.json.skins || []; const meshDefs = this.json.meshes || []; for (let skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex++) { const joints = skinDefs[skinIndex].joints; for (let i = 0, il = joints.length; i < il; i++) { nodeDefs[joints[i]].isBone = true; } } for (let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex++) { const nodeDef = nodeDefs[nodeIndex]; if (nodeDef.mesh !== void 0) { this._addNodeRef(this.meshCache, nodeDef.mesh); if (nodeDef.skin !== void 0) { meshDefs[nodeDef.mesh].isSkinnedMesh = true; } } if (nodeDef.camera !== void 0) { this._addNodeRef(this.cameraCache, nodeDef.camera); } } } /** * Counts references to shared node / Object3D resources. These resources * can be reused, or "instantiated", at multiple nodes in the scene * hierarchy. Mesh, Camera, and Light instances are instantiated and must * be marked. Non-scenegraph resources (like Materials, Geometries, and * Textures) can be reused directly and are not marked here. * * Example: CesiumMilkTruck sample model reuses "Wheel" meshes. */ _addNodeRef(cache, index) { if (index === void 0) return; if (cache.refs[index] === void 0) { cache.refs[index] = cache.uses[index] = 0; } cache.refs[index]++; } /** Returns a reference to a shared resource, cloning it if necessary. */ _getNodeRef(cache, index, object) { if (cache.refs[index] <= 1) return object; const ref = object.clone(); const updateMappings = (original, clone) => { const mappings = this.associations.get(original); if (mappings != null) { this.associations.set(clone, mappings); } for (const [i, child] of original.children.entries()) { updateMappings(child, clone.children[i]); } }; updateMappings(object, ref); ref.name += "_instance_" + cache.uses[index]++; return ref; } _invokeOne(func) { const extensions = Object.values(this.plugins); extensions.push(this); for (let i = 0; i < extensions.length; i++) { const result = func(extensions[i]); if (result) return result; } return null; } _invokeAll(func) { const extensions = Object.values(this.plugins); extensions.unshift(this); const pending = []; for (let i = 0; i < extensions.length; i++) { const result = func(extensions[i]); if (result) pending.push(result); } return pending; } /** * Requests the specified dependency asynchronously, with caching. * @param {string} type * @param {number} index * @return {Promise} */ getDependency(type, index) { const cacheKey = type + ":" + index; let dependency = this.cache.get(cacheKey); if (!dependency) { switch (type) { case "scene": dependency = this.loadScene(index); break; case "node": dependency = this._invokeOne(function(ext) { return ext.loadNode && ext.loadNode(index); }); break; case "mesh": dependency = this._invokeOne(function(ext) { return ext.loadMesh && ext.loadMesh(index); }); break; case "accessor": dependency = this.loadAccessor(index); break; case "bufferView": dependency = this._invokeOne(function(ext) { return ext.loadBufferView && ext.loadBufferView(index); }); break; case "buffer": dependency = this.loadBuffer(index); break; case "material": dependency = this._invokeOne(function(ext) { return ext.loadMaterial && ext.loadMaterial(index); }); break; case "texture": dependency = this._invokeOne(function(ext) { return ext.loadTexture && ext.loadTexture(index); }); break; case "skin": dependency = this.loadSkin(index); break; case "animation": dependency = this._invokeOne(function(ext) { return ext.loadAnimation && ext.loadAnimation(index); }); break; case "camera": dependency = this.loadCamera(index); break; default: dependency = this._invokeOne(function(ext) { return ext != this && ext.getDependency && ext.getDependency(type, index); }); if (!dependency) { throw new Error("Unknown type: " + type); } break; } this.cache.add(cacheKey, dependency); } return dependency; } /** * Requests all dependencies of the specified type asynchronously, with caching. * @param {string} type * @return {Promise>} */ getDependencies(type) { let dependencies = this.cache.get(type); if (!dependencies) { const parser = this; const defs = this.json[type + (type === "mesh" ? "es" : "s")] || []; dependencies = Promise.all(defs.map(function(def, index) { return parser.getDependency(type, index); })); this.cache.add(type, dependencies); } return dependencies; } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferIndex * @return {Promise} */ loadBuffer(bufferIndex) { const bufferDef = this.json.buffers[bufferIndex]; const loader = this.fileLoader; if (bufferDef.type && bufferDef.type !== "arraybuffer") { throw new Error("THREE.GLTFLoader: " + bufferDef.type + " buffer type is not supported."); } if (bufferDef.uri === void 0 && bufferIndex === 0) { return Promise.resolve(this.extensions[EXTENSIONS.KHR_BINARY_GLTF].body); } const options = this.options; return new Promise(function(resolve, reject) { loader.load(LoaderUtils.resolveURL(bufferDef.uri, options.path), resolve, void 0, function() { reject(new Error('THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".')); }); }); } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferViewIndex * @return {Promise} */ loadBufferView(bufferViewIndex) { const bufferViewDef = this.json.bufferViews[bufferViewIndex]; return this.getDependency("buffer", bufferViewDef.buffer).then(function(buffer) { const byteLength = bufferViewDef.byteLength || 0; const byteOffset = bufferViewDef.byteOffset || 0; return buffer.slice(byteOffset, byteOffset + byteLength); }); } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors * @param {number} accessorIndex * @return {Promise} */ loadAccessor(accessorIndex) { const parser = this; const json = this.json; const accessorDef = this.json.accessors[accessorIndex]; if (accessorDef.bufferView === void 0 && accessorDef.sparse === void 0) { const itemSize = WEBGL_TYPE_SIZES[accessorDef.type]; const TypedArray = WEBGL_COMPONENT_TYPES[accessorDef.componentType]; const normalized = accessorDef.normalized === true; const array = new TypedArray(accessorDef.count * itemSize); return Promise.resolve(new BufferAttribute(array, itemSize, normalized)); } const pendingBufferViews = []; if (accessorDef.bufferView !== void 0) { pendingBufferViews.push(this.getDependency("bufferView", accessorDef.bufferView)); } else { pendingBufferViews.push(null); } if (accessorDef.sparse !== void 0) { pendingBufferViews.push(this.getDependency("bufferView", accessorDef.sparse.indices.bufferView)); pendingBufferViews.push(this.getDependency("bufferView", accessorDef.sparse.values.bufferView)); } return Promise.all(pendingBufferViews).then(function(bufferViews) { const bufferView = bufferViews[0]; const itemSize = WEBGL_TYPE_SIZES[accessorDef.type]; const TypedArray = WEBGL_COMPONENT_TYPES[accessorDef.componentType]; const elementBytes = TypedArray.BYTES_PER_ELEMENT; const itemBytes = elementBytes * itemSize; const byteOffset = accessorDef.byteOffset || 0; const byteStride = accessorDef.bufferView !== void 0 ? json.bufferViews[accessorDef.bufferView].byteStride : void 0; const normalized = accessorDef.normalized === true; let array, bufferAttribute; if (byteStride && byteStride !== itemBytes) { const ibSlice = Math.floor(byteOffset / byteStride); const ibCacheKey = "InterleavedBuffer:" + accessorDef.bufferView + ":" + accessorDef.componentType + ":" + ibSlice + ":" + accessorDef.count; let ib = parser.cache.get(ibCacheKey); if (!ib) { array = new TypedArray(bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes); ib = new InterleavedBuffer(array, byteStride / elementBytes); parser.cache.add(ibCacheKey, ib); } bufferAttribute = new InterleavedBufferAttribute(ib, itemSize, byteOffset % byteStride / elementBytes, normalized); } else { if (bufferView === null) { array = new TypedArray(accessorDef.count * itemSize); } else { array = new TypedArray(bufferView, byteOffset, accessorDef.count * itemSize); } bufferAttribute = new BufferAttribute(array, itemSize, normalized); } if (accessorDef.sparse !== void 0) { const itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR; const TypedArrayIndices = WEBGL_COMPONENT_TYPES[accessorDef.sparse.indices.componentType]; const byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0; const byteOffsetValues = accessorDef.sparse.values.byteOffset || 0; const sparseIndices = new TypedArrayIndices(bufferViews[1], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices); const sparseValues = new TypedArray(bufferViews[2], byteOffsetValues, accessorDef.sparse.count * itemSize); if (bufferView !== null) { bufferAttribute = new BufferAttribute(bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized); } for (let i = 0, il = sparseIndices.length; i < il; i++) { const index = sparseIndices[i]; bufferAttribute.setX(index, sparseValues[i * itemSize]); if (itemSize >= 2) bufferAttribute.setY(index, sparseValues[i * itemSize + 1]); if (itemSize >= 3) bufferAttribute.setZ(index, sparseValues[i * itemSize + 2]); if (itemSize >= 4) bufferAttribute.setW(index, sparseValues[i * itemSize + 3]); if (itemSize >= 5) throw new Error("THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute."); } } return bufferAttribute; }); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures * @param {number} textureIndex * @return {Promise} */ loadTexture(textureIndex) { const json = this.json; const options = this.options; const textureDef = json.textures[textureIndex]; const sourceIndex = textureDef.source; const sourceDef = json.images[sourceIndex]; let loader = this.textureLoader; if (sourceDef.uri) { const handler = options.manager.getHandler(sourceDef.uri); if (handler !== null) loader = handler; } return this.loadTextureImage(textureIndex, sourceIndex, loader); } loadTextureImage(textureIndex, sourceIndex, loader) { const parser = this; const json = this.json; const textureDef = json.textures[textureIndex]; const sourceDef = json.images[sourceIndex]; const cacheKey = (sourceDef.uri || sourceDef.bufferView) + ":" + textureDef.sampler; if (this.textureCache[cacheKey]) { return this.textureCache[cacheKey]; } const promise = this.loadImageSource(sourceIndex, loader).then(function(texture) { texture.flipY = false; texture.name = textureDef.name || sourceDef.name || ""; if (texture.name === "" && typeof sourceDef.uri === "string" && sourceDef.uri.startsWith("data:image/") === false) { texture.name = sourceDef.uri; } const samplers = json.samplers || {}; const sampler = samplers[textureDef.sampler] || {}; texture.magFilter = WEBGL_FILTERS[sampler.magFilter] || LinearFilter; texture.minFilter = WEBGL_FILTERS[sampler.minFilter] || LinearMipmapLinearFilter; texture.wrapS = WEBGL_WRAPPINGS[sampler.wrapS] || RepeatWrapping; texture.wrapT = WEBGL_WRAPPINGS[sampler.wrapT] || RepeatWrapping; parser.associations.set(texture, { textures: textureIndex }); return texture; }).catch(function() { return null; }); this.textureCache[cacheKey] = promise; return promise; } loadImageSource(sourceIndex, loader) { const parser = this; const json = this.json; const options = this.options; if (this.sourceCache[sourceIndex] !== void 0) { return this.sourceCache[sourceIndex].then((texture) => texture.clone()); } const sourceDef = json.images[sourceIndex]; const URL = self.URL || self.webkitURL; let sourceURI = sourceDef.uri || ""; let isObjectURL = false; if (sourceDef.bufferView !== void 0) { sourceURI = parser.getDependency("bufferView", sourceDef.bufferView).then(function(bufferView) { isObjectURL = true; const blob = new Blob([bufferView], { type: sourceDef.mimeType }); sourceURI = URL.createObjectURL(blob); return sourceURI; }); } else if (sourceDef.uri === void 0) { throw new Error("THREE.GLTFLoader: Image " + sourceIndex + " is missing URI and bufferView"); } const promise = Promise.resolve(sourceURI).then(function(sourceURI2) { return new Promise(function(resolve, reject) { let onLoad = resolve; if (loader.isImageBitmapLoader === true) { onLoad = function(imageBitmap) { const texture = new Texture(imageBitmap); texture.needsUpdate = true; resolve(texture); }; } loader.load(LoaderUtils.resolveURL(sourceURI2, options.path), onLoad, void 0, reject); }); }).then(function(texture) { if (isObjectURL === true) { URL.revokeObjectURL(sourceURI); } assignExtrasToUserData(texture, sourceDef); texture.userData.mimeType = sourceDef.mimeType || getImageURIMimeType(sourceDef.uri); return texture; }).catch(function(error) { console.error("THREE.GLTFLoader: Couldn't load texture", sourceURI); throw error; }); this.sourceCache[sourceIndex] = promise; return promise; } /** * Asynchronously assigns a texture to the given material parameters. * @param {Object} materialParams * @param {string} mapName * @param {Object} mapDef * @return {Promise} */ assignTexture(materialParams, mapName, mapDef, colorSpace) { const parser = this; return this.getDependency("texture", mapDef.index).then(function(texture) { if (!texture) return null; if (mapDef.texCoord !== void 0 && mapDef.texCoord > 0) { texture = texture.clone(); texture.channel = mapDef.texCoord; } if (parser.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM]) { const transform = mapDef.extensions !== void 0 ? mapDef.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM] : void 0; if (transform) { const gltfReference = parser.associations.get(texture); texture = parser.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM].extendTexture(texture, transform); parser.associations.set(texture, gltfReference); } } if (colorSpace !== void 0) { texture.colorSpace = colorSpace; } materialParams[mapName] = texture; return texture; }); } /** * Assigns final material to a Mesh, Line, or Points instance. The instance * already has a material (generated from the glTF material options alone) * but reuse of the same glTF material may require multiple threejs materials * to accommodate different primitive types, defines, etc. New materials will * be created if necessary, and reused from a cache. * @param {Object3D} mesh Mesh, Line, or Points instance. */ assignFinalMaterial(mesh) { const geometry = mesh.geometry; let material = mesh.material; const useDerivativeTangents = geometry.attributes.tangent === void 0; const useVertexColors = geometry.attributes.color !== void 0; const useFlatShading = geometry.attributes.normal === void 0; if (mesh.isPoints) { const cacheKey = "PointsMaterial:" + material.uuid; let pointsMaterial = this.cache.get(cacheKey); if (!pointsMaterial) { pointsMaterial = new PointsMaterial(); Material.prototype.copy.call(pointsMaterial, material); pointsMaterial.color.copy(material.color); pointsMaterial.map = material.map; pointsMaterial.sizeAttenuation = false; this.cache.add(cacheKey, pointsMaterial); } material = pointsMaterial; } else if (mesh.isLine) { const cacheKey = "LineBasicMaterial:" + material.uuid; let lineMaterial = this.cache.get(cacheKey); if (!lineMaterial) { lineMaterial = new LineBasicMaterial(); Material.prototype.copy.call(lineMaterial, material); lineMaterial.color.copy(material.color); lineMaterial.map = material.map; this.cache.add(cacheKey, lineMaterial); } material = lineMaterial; } if (useDerivativeTangents || useVertexColors || useFlatShading) { let cacheKey = "ClonedMaterial:" + material.uuid + ":"; if (useDerivativeTangents) cacheKey += "derivative-tangents:"; if (useVertexColors) cacheKey += "vertex-colors:"; if (useFlatShading) cacheKey += "flat-shading:"; let cachedMaterial = this.cache.get(cacheKey); if (!cachedMaterial) { cachedMaterial = material.clone(); if (useVertexColors) cachedMaterial.vertexColors = true; if (useFlatShading) cachedMaterial.flatShading = true; if (useDerivativeTangents) { if (cachedMaterial.normalScale) cachedMaterial.normalScale.y *= -1; if (cachedMaterial.clearcoatNormalScale) cachedMaterial.clearcoatNormalScale.y *= -1; } this.cache.add(cacheKey, cachedMaterial); this.associations.set(cachedMaterial, this.associations.get(material)); } material = cachedMaterial; } mesh.material = material; } getMaterialType() { return MeshStandardMaterial; } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials * @param {number} materialIndex * @return {Promise} */ loadMaterial(materialIndex) { const parser = this; const json = this.json; const extensions = this.extensions; const materialDef = json.materials[materialIndex]; let materialType; const materialParams = {}; const materialExtensions = materialDef.extensions || {}; const pending = []; if (materialExtensions[EXTENSIONS.KHR_MATERIALS_UNLIT]) { const kmuExtension = extensions[EXTENSIONS.KHR_MATERIALS_UNLIT]; materialType = kmuExtension.getMaterialType(); pending.push(kmuExtension.extendParams(materialParams, materialDef, parser)); } else { const metallicRoughness = materialDef.pbrMetallicRoughness || {}; materialParams.color = new Color(1, 1, 1); materialParams.opacity = 1; if (Array.isArray(metallicRoughness.baseColorFactor)) { const array = metallicRoughness.baseColorFactor; materialParams.color.setRGB(array[0], array[1], array[2], LinearSRGBColorSpace); materialParams.opacity = array[3]; } if (metallicRoughness.baseColorTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "map", metallicRoughness.baseColorTexture, SRGBColorSpace)); } materialParams.metalness = metallicRoughness.metallicFactor !== void 0 ? metallicRoughness.metallicFactor : 1; materialParams.roughness = metallicRoughness.roughnessFactor !== void 0 ? metallicRoughness.roughnessFactor : 1; if (metallicRoughness.metallicRoughnessTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "metalnessMap", metallicRoughness.metallicRoughnessTexture)); pending.push(parser.assignTexture(materialParams, "roughnessMap", metallicRoughness.metallicRoughnessTexture)); } materialType = this._invokeOne(function(ext) { return ext.getMaterialType && ext.getMaterialType(materialIndex); }); pending.push(Promise.all(this._invokeAll(function(ext) { return ext.extendMaterialParams && ext.extendMaterialParams(materialIndex, materialParams); }))); } if (materialDef.doubleSided === true) { materialParams.side = DoubleSide; } const alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE; if (alphaMode === ALPHA_MODES.BLEND) { materialParams.transparent = true; materialParams.depthWrite = false; } else { materialParams.transparent = false; if (alphaMode === ALPHA_MODES.MASK) { materialParams.alphaTest = materialDef.alphaCutoff !== void 0 ? materialDef.alphaCutoff : 0.5; } } if (materialDef.normalTexture !== void 0 && materialType !== MeshBasicMaterial) { pending.push(parser.assignTexture(materialParams, "normalMap", materialDef.normalTexture)); materialParams.normalScale = new Vector2(1, 1); if (materialDef.normalTexture.scale !== void 0) { const scale = materialDef.normalTexture.scale; materialParams.normalScale.set(scale, scale); } } if (materialDef.occlusionTexture !== void 0 && materialType !== MeshBasicMaterial) { pending.push(parser.assignTexture(materialParams, "aoMap", materialDef.occlusionTexture)); if (materialDef.occlusionTexture.strength !== void 0) { materialParams.aoMapIntensity = materialDef.occlusionTexture.strength; } } if (materialDef.emissiveFactor !== void 0 && materialType !== MeshBasicMaterial) { const emissiveFactor = materialDef.emissiveFactor; materialParams.emissive = new Color().setRGB(emissiveFactor[0], emissiveFactor[1], emissiveFactor[2], LinearSRGBColorSpace); } if (materialDef.emissiveTexture !== void 0 && materialType !== MeshBasicMaterial) { pending.push(parser.assignTexture(materialParams, "emissiveMap", materialDef.emissiveTexture, SRGBColorSpace)); } return Promise.all(pending).then(function() { const material = new materialType(materialParams); if (materialDef.name) material.name = materialDef.name; assignExtrasToUserData(material, materialDef); parser.associations.set(material, { materials: materialIndex }); if (materialDef.extensions) addUnknownExtensionsToUserData(extensions, material, materialDef); return material; }); } /** When Object3D instances are targeted by animation, they need unique names. */ createUniqueName(originalName) { const sanitizedName = PropertyBinding.sanitizeNodeName(originalName || ""); if (sanitizedName in this.nodeNamesUsed) { return sanitizedName + "_" + ++this.nodeNamesUsed[sanitizedName]; } else { this.nodeNamesUsed[sanitizedName] = 0; return sanitizedName; } } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry * * Creates BufferGeometries from primitives. * * @param {Array} primitives * @return {Promise>} */ loadGeometries(primitives) { const parser = this; const extensions = this.extensions; const cache = this.primitiveCache; function createDracoPrimitive(primitive) { return extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION].decodePrimitive(primitive, parser).then(function(geometry) { return addPrimitiveAttributes(geometry, primitive, parser); }); } const pending = []; for (let i = 0, il = primitives.length; i < il; i++) { const primitive = primitives[i]; const cacheKey = createPrimitiveKey(primitive); const cached = cache[cacheKey]; if (cached) { pending.push(cached.promise); } else { let geometryPromise; if (primitive.extensions && primitive.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]) { geometryPromise = createDracoPrimitive(primitive); } else { geometryPromise = addPrimitiveAttributes(new BufferGeometry(), primitive, parser); } cache[cacheKey] = { primitive, promise: geometryPromise }; pending.push(geometryPromise); } } return Promise.all(pending); } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes * @param {number} meshIndex * @return {Promise} */ loadMesh(meshIndex) { const parser = this; const json = this.json; const extensions = this.extensions; const meshDef = json.meshes[meshIndex]; const primitives = meshDef.primitives; const pending = []; for (let i = 0, il = primitives.length; i < il; i++) { const material = primitives[i].material === void 0 ? createDefaultMaterial(this.cache) : this.getDependency("material", primitives[i].material); pending.push(material); } pending.push(parser.loadGeometries(primitives)); return Promise.all(pending).then(function(results) { const materials = results.slice(0, results.length - 1); const geometries = results[results.length - 1]; const meshes = []; for (let i = 0, il = geometries.length; i < il; i++) { const geometry = geometries[i]; const primitive = primitives[i]; let mesh; const material = materials[i]; if (primitive.mode === WEBGL_CONSTANTS.TRIANGLES || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN || primitive.mode === void 0) { mesh = meshDef.isSkinnedMesh === true ? new SkinnedMesh(geometry, material) : new Mesh(geometry, material); if (mesh.isSkinnedMesh === true) { mesh.normalizeSkinWeights(); } if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP) { mesh.geometry = toTrianglesDrawMode(mesh.geometry, TriangleStripDrawMode); } else if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN) { mesh.geometry = toTrianglesDrawMode(mesh.geometry, TriangleFanDrawMode); } } else if (primitive.mode === WEBGL_CONSTANTS.LINES) { mesh = new LineSegments(geometry, material); } else if (primitive.mode === WEBGL_CONSTANTS.LINE_STRIP) { mesh = new Line(geometry, material); } else if (primitive.mode === WEBGL_CONSTANTS.LINE_LOOP) { mesh = new LineLoop(geometry, material); } else if (primitive.mode === WEBGL_CONSTANTS.POINTS) { mesh = new Points(geometry, material); } else { throw new Error("THREE.GLTFLoader: Primitive mode unsupported: " + primitive.mode); } if (Object.keys(mesh.geometry.morphAttributes).length > 0) { updateMorphTargets(mesh, meshDef); } mesh.name = parser.createUniqueName(meshDef.name || "mesh_" + meshIndex); assignExtrasToUserData(mesh, meshDef); if (primitive.extensions) addUnknownExtensionsToUserData(extensions, mesh, primitive); parser.assignFinalMaterial(mesh); meshes.push(mesh); } for (let i = 0, il = meshes.length; i < il; i++) { parser.associations.set(meshes[i], { meshes: meshIndex, primitives: i }); } if (meshes.length === 1) { if (meshDef.extensions) addUnknownExtensionsToUserData(extensions, meshes[0], meshDef); return meshes[0]; } const group = new Group(); if (meshDef.extensions) addUnknownExtensionsToUserData(extensions, group, meshDef); parser.associations.set(group, { meshes: meshIndex }); for (let i = 0, il = meshes.length; i < il; i++) { group.add(meshes[i]); } return group; }); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras * @param {number} cameraIndex * @return {Promise} */ loadCamera(cameraIndex) { let camera; const cameraDef = this.json.cameras[cameraIndex]; const params = cameraDef[cameraDef.type]; if (!params) { console.warn("THREE.GLTFLoader: Missing camera parameters."); return; } if (cameraDef.type === "perspective") { camera = new PerspectiveCamera(MathUtils.radToDeg(params.yfov), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6); } else if (cameraDef.type === "orthographic") { camera = new OrthographicCamera(-params.xmag, params.xmag, params.ymag, -params.ymag, params.znear, params.zfar); } if (cameraDef.name) camera.name = this.createUniqueName(cameraDef.name); assignExtrasToUserData(camera, cameraDef); return Promise.resolve(camera); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins * @param {number} skinIndex * @return {Promise} */ loadSkin(skinIndex) { const skinDef = this.json.skins[skinIndex]; const pending = []; for (let i = 0, il = skinDef.joints.length; i < il; i++) { pending.push(this._loadNodeShallow(skinDef.joints[i])); } if (skinDef.inverseBindMatrices !== void 0) { pending.push(this.getDependency("accessor", skinDef.inverseBindMatrices)); } else { pending.push(null); } return Promise.all(pending).then(function(results) { const inverseBindMatrices = results.pop(); const jointNodes = results; const bones = []; const boneInverses = []; for (let i = 0, il = jointNodes.length; i < il; i++) { const jointNode = jointNodes[i]; if (jointNode) { bones.push(jointNode); const mat = new Matrix4(); if (inverseBindMatrices !== null) { mat.fromArray(inverseBindMatrices.array, i * 16); } boneInverses.push(mat); } else { console.warn('THREE.GLTFLoader: Joint "%s" could not be found.', skinDef.joints[i]); } } return new Skeleton(bones, boneInverses); }); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations * @param {number} animationIndex * @return {Promise} */ loadAnimation(animationIndex) { const json = this.json; const parser = this; const animationDef = json.animations[animationIndex]; const animationName = animationDef.name ? animationDef.name : "animation_" + animationIndex; const pendingNodes = []; const pendingInputAccessors = []; const pendingOutputAccessors = []; const pendingSamplers = []; const pendingTargets = []; for (let i = 0, il = animationDef.channels.length; i < il; i++) { const channel = animationDef.channels[i]; const sampler = animationDef.samplers[channel.sampler]; const target = channel.target; const name = target.node; const input = animationDef.parameters !== void 0 ? animationDef.parameters[sampler.input] : sampler.input; const output = animationDef.parameters !== void 0 ? animationDef.parameters[sampler.output] : sampler.output; if (target.node === void 0) continue; pendingNodes.push(this.getDependency("node", name)); pendingInputAccessors.push(this.getDependency("accessor", input)); pendingOutputAccessors.push(this.getDependency("accessor", output)); pendingSamplers.push(sampler); pendingTargets.push(target); } return Promise.all([ Promise.all(pendingNodes), Promise.all(pendingInputAccessors), Promise.all(pendingOutputAccessors), Promise.all(pendingSamplers), Promise.all(pendingTargets) ]).then(function(dependencies) { const nodes = dependencies[0]; const inputAccessors = dependencies[1]; const outputAccessors = dependencies[2]; const samplers = dependencies[3]; const targets = dependencies[4]; const tracks = []; for (let i = 0, il = nodes.length; i < il; i++) { const node = nodes[i]; const inputAccessor = inputAccessors[i]; const outputAccessor = outputAccessors[i]; const sampler = samplers[i]; const target = targets[i]; if (node === void 0) continue; if (node.updateMatrix) { node.updateMatrix(); } const createdTracks = parser._createAnimationTracks(node, inputAccessor, outputAccessor, sampler, target); if (createdTracks) { for (let k = 0; k < createdTracks.length; k++) { tracks.push(createdTracks[k]); } } } return new AnimationClip(animationName, void 0, tracks); }); } createNodeMesh(nodeIndex) { const json = this.json; const parser = this; const nodeDef = json.nodes[nodeIndex]; if (nodeDef.mesh === void 0) return null; return parser.getDependency("mesh", nodeDef.mesh).then(function(mesh) { const node = parser._getNodeRef(parser.meshCache, nodeDef.mesh, mesh); if (nodeDef.weights !== void 0) { node.traverse(function(o) { if (!o.isMesh) return; for (let i = 0, il = nodeDef.weights.length; i < il; i++) { o.morphTargetInfluences[i] = nodeDef.weights[i]; } }); } return node; }); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy * @param {number} nodeIndex * @return {Promise} */ loadNode(nodeIndex) { const json = this.json; const parser = this; const nodeDef = json.nodes[nodeIndex]; const nodePending = parser._loadNodeShallow(nodeIndex); const childPending = []; const childrenDef = nodeDef.children || []; for (let i = 0, il = childrenDef.length; i < il; i++) { childPending.push(parser.getDependency("node", childrenDef[i])); } const skeletonPending = nodeDef.skin === void 0 ? Promise.resolve(null) : parser.getDependency("skin", nodeDef.skin); return Promise.all([ nodePending, Promise.all(childPending), skeletonPending ]).then(function(results) { const node = results[0]; const children = results[1]; const skeleton = results[2]; if (skeleton !== null) { node.traverse(function(mesh) { if (!mesh.isSkinnedMesh) return; mesh.bind(skeleton, _identityMatrix); }); } for (let i = 0, il = children.length; i < il; i++) { node.add(children[i]); } return node; }); } // ._loadNodeShallow() parses a single node. // skin and child nodes are created and added in .loadNode() (no '_' prefix). _loadNodeShallow(nodeIndex) { const json = this.json; const extensions = this.extensions; const parser = this; if (this.nodeCache[nodeIndex] !== void 0) { return this.nodeCache[nodeIndex]; } const nodeDef = json.nodes[nodeIndex]; const nodeName = nodeDef.name ? parser.createUniqueName(nodeDef.name) : ""; const pending = []; const meshPromise = parser._invokeOne(function(ext) { return ext.createNodeMesh && ext.createNodeMesh(nodeIndex); }); if (meshPromise) { pending.push(meshPromise); } if (nodeDef.camera !== void 0) { pending.push(parser.getDependency("camera", nodeDef.camera).then(function(camera) { return parser._getNodeRef(parser.cameraCache, nodeDef.camera, camera); })); } parser._invokeAll(function(ext) { return ext.createNodeAttachment && ext.createNodeAttachment(nodeIndex); }).forEach(function(promise) { pending.push(promise); }); this.nodeCache[nodeIndex] = Promise.all(pending).then(function(objects) { let node; if (nodeDef.isBone === true) { node = new Bone(); } else if (objects.length > 1) { node = new Group(); } else if (objects.length === 1) { node = objects[0]; } else { node = new Object3D(); } if (node !== objects[0]) { for (let i = 0, il = objects.length; i < il; i++) { node.add(objects[i]); } } if (nodeDef.name) { node.userData.name = nodeDef.name; node.name = nodeName; } assignExtrasToUserData(node, nodeDef); if (nodeDef.extensions) addUnknownExtensionsToUserData(extensions, node, nodeDef); if (nodeDef.matrix !== void 0) { const matrix = new Matrix4(); matrix.fromArray(nodeDef.matrix); node.applyMatrix4(matrix); } else { if (nodeDef.translation !== void 0) { node.position.fromArray(nodeDef.translation); } if (nodeDef.rotation !== void 0) { node.quaternion.fromArray(nodeDef.rotation); } if (nodeDef.scale !== void 0) { node.scale.fromArray(nodeDef.scale); } } if (!parser.associations.has(node)) { parser.associations.set(node, {}); } parser.associations.get(node).nodes = nodeIndex; return node; }); return this.nodeCache[nodeIndex]; } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes * @param {number} sceneIndex * @return {Promise} */ loadScene(sceneIndex) { const extensions = this.extensions; const sceneDef = this.json.scenes[sceneIndex]; const parser = this; const scene = new Group(); if (sceneDef.name) scene.name = parser.createUniqueName(sceneDef.name); assignExtrasToUserData(scene, sceneDef); if (sceneDef.extensions) addUnknownExtensionsToUserData(extensions, scene, sceneDef); const nodeIds = sceneDef.nodes || []; const pending = []; for (let i = 0, il = nodeIds.length; i < il; i++) { pending.push(parser.getDependency("node", nodeIds[i])); } return Promise.all(pending).then(function(nodes) { for (let i = 0, il = nodes.length; i < il; i++) { scene.add(nodes[i]); } const reduceAssociations = (node) => { const reducedAssociations = /* @__PURE__ */ new Map(); for (const [key, value] of parser.associations) { if (key instanceof Material || key instanceof Texture) { reducedAssociations.set(key, value); } } node.traverse((node2) => { const mappings = parser.associations.get(node2); if (mappings != null) { reducedAssociations.set(node2, mappings); } }); return reducedAssociations; }; parser.associations = reduceAssociations(scene); return scene; }); } _createAnimationTracks(node, inputAccessor, outputAccessor, sampler, target) { const tracks = []; const targetName = node.name ? node.name : node.uuid; const targetNames = []; if (PATH_PROPERTIES[target.path] === PATH_PROPERTIES.weights) { node.traverse(function(object) { if (object.morphTargetInfluences) { targetNames.push(object.name ? object.name : object.uuid); } }); } else { targetNames.push(targetName); } let TypedKeyframeTrack; switch (PATH_PROPERTIES[target.path]) { case PATH_PROPERTIES.weights: TypedKeyframeTrack = NumberKeyframeTrack; break; case PATH_PROPERTIES.rotation: TypedKeyframeTrack = QuaternionKeyframeTrack; break; case PATH_PROPERTIES.position: case PATH_PROPERTIES.scale: TypedKeyframeTrack = VectorKeyframeTrack; break; default: switch (outputAccessor.itemSize) { case 1: TypedKeyframeTrack = NumberKeyframeTrack; break; case 2: case 3: default: TypedKeyframeTrack = VectorKeyframeTrack; break; } break; } const interpolation = sampler.interpolation !== void 0 ? INTERPOLATION[sampler.interpolation] : InterpolateLinear; const outputArray = this._getArrayFromAccessor(outputAccessor); for (let j = 0, jl = targetNames.length; j < jl; j++) { const track = new TypedKeyframeTrack( targetNames[j] + "." + PATH_PROPERTIES[target.path], inputAccessor.array, outputArray, interpolation ); if (sampler.interpolation === "CUBICSPLINE") { this._createCubicSplineTrackInterpolant(track); } tracks.push(track); } return tracks; } _getArrayFromAccessor(accessor) { let outputArray = accessor.array; if (accessor.normalized) { const scale = getNormalizedComponentScale(outputArray.constructor); const scaled = new Float32Array(outputArray.length); for (let j = 0, jl = outputArray.length; j < jl; j++) { scaled[j] = outputArray[j] * scale; } outputArray = scaled; } return outputArray; } _createCubicSplineTrackInterpolant(track) { track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline(result) { const interpolantType = this instanceof QuaternionKeyframeTrack ? GLTFCubicSplineQuaternionInterpolant : GLTFCubicSplineInterpolant; return new interpolantType(this.times, this.values, this.getValueSize() / 3, result); }; track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true; } }; function computeBounds(geometry, primitiveDef, parser) { const attributes = primitiveDef.attributes; const box = new Box3(); if (attributes.POSITION !== void 0) { const accessor = parser.json.accessors[attributes.POSITION]; const min = accessor.min; const max = accessor.max; if (min !== void 0 && max !== void 0) { box.set( new Vector3(min[0], min[1], min[2]), new Vector3(max[0], max[1], max[2]) ); if (accessor.normalized) { const boxScale = getNormalizedComponentScale(WEBGL_COMPONENT_TYPES[accessor.componentType]); box.min.multiplyScalar(boxScale); box.max.multiplyScalar(boxScale); } } else { console.warn("THREE.GLTFLoader: Missing min/max properties for accessor POSITION."); return; } } else { return; } const targets = primitiveDef.targets; if (targets !== void 0) { const maxDisplacement = new Vector3(); const vector = new Vector3(); for (let i = 0, il = targets.length; i < il; i++) { const target = targets[i]; if (target.POSITION !== void 0) { const accessor = parser.json.accessors[target.POSITION]; const min = accessor.min; const max = accessor.max; if (min !== void 0 && max !== void 0) { vector.setX(Math.max(Math.abs(min[0]), Math.abs(max[0]))); vector.setY(Math.max(Math.abs(min[1]), Math.abs(max[1]))); vector.setZ(Math.max(Math.abs(min[2]), Math.abs(max[2]))); if (accessor.normalized) { const boxScale = getNormalizedComponentScale(WEBGL_COMPONENT_TYPES[accessor.componentType]); vector.multiplyScalar(boxScale); } maxDisplacement.max(vector); } else { console.warn("THREE.GLTFLoader: Missing min/max properties for accessor POSITION."); } } } box.expandByVector(maxDisplacement); } geometry.boundingBox = box; const sphere = new Sphere(); box.getCenter(sphere.center); sphere.radius = box.min.distanceTo(box.max) / 2; geometry.boundingSphere = sphere; } function addPrimitiveAttributes(geometry, primitiveDef, parser) { const attributes = primitiveDef.attributes; const pending = []; function assignAttributeAccessor(accessorIndex, attributeName) { return parser.getDependency("accessor", accessorIndex).then(function(accessor) { geometry.setAttribute(attributeName, accessor); }); } for (const gltfAttributeName in attributes) { const threeAttributeName = ATTRIBUTES[gltfAttributeName] || gltfAttributeName.toLowerCase(); if (threeAttributeName in geometry.attributes) continue; pending.push(assignAttributeAccessor(attributes[gltfAttributeName], threeAttributeName)); } if (primitiveDef.indices !== void 0 && !geometry.index) { const accessor = parser.getDependency("accessor", primitiveDef.indices).then(function(accessor2) { geometry.setIndex(accessor2); }); pending.push(accessor); } if (ColorManagement.workingColorSpace !== LinearSRGBColorSpace && "COLOR_0" in attributes) { console.warn(`THREE.GLTFLoader: Converting vertex colors from "srgb-linear" to "${ColorManagement.workingColorSpace}" not supported.`); } assignExtrasToUserData(geometry, primitiveDef); computeBounds(geometry, primitiveDef, parser); return Promise.all(pending).then(function() { return primitiveDef.targets !== void 0 ? addMorphTargets(geometry, primitiveDef.targets, parser) : geometry; }); } export { mergeGeometries, deepCloneAttribute, mergeVertices, mergeGroups, BufferGeometryUtils_exports, GLTFLoader }; //# sourceMappingURL=chunk-PJQOQ23Z.js.map