- Create class "player"
This commit is contained in:
Kum1ta
2024-08-18 01:48:50 +02:00
parent a265843b82
commit 44ad413120
1218 changed files with 638609 additions and 0 deletions

View File

@ -0,0 +1,180 @@
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import { Vector3 } from '../math/Vector3.js';
class BoxGeometry extends BufferGeometry {
constructor( width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1 ) {
super();
this.type = 'BoxGeometry';
this.parameters = {
width: width,
height: height,
depth: depth,
widthSegments: widthSegments,
heightSegments: heightSegments,
depthSegments: depthSegments
};
const scope = this;
// segments
widthSegments = Math.floor( widthSegments );
heightSegments = Math.floor( heightSegments );
depthSegments = Math.floor( depthSegments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
let numberOfVertices = 0;
let groupStart = 0;
// build each side of the box geometry
buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px
buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx
buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py
buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny
buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz
buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) {
const segmentWidth = width / gridX;
const segmentHeight = height / gridY;
const widthHalf = width / 2;
const heightHalf = height / 2;
const depthHalf = depth / 2;
const gridX1 = gridX + 1;
const gridY1 = gridY + 1;
let vertexCounter = 0;
let groupCount = 0;
const vector = new Vector3();
// generate vertices, normals and uvs
for ( let iy = 0; iy < gridY1; iy ++ ) {
const y = iy * segmentHeight - heightHalf;
for ( let ix = 0; ix < gridX1; ix ++ ) {
const x = ix * segmentWidth - widthHalf;
// set values to correct vector component
vector[ u ] = x * udir;
vector[ v ] = y * vdir;
vector[ w ] = depthHalf;
// now apply vector to vertex buffer
vertices.push( vector.x, vector.y, vector.z );
// set values to correct vector component
vector[ u ] = 0;
vector[ v ] = 0;
vector[ w ] = depth > 0 ? 1 : - 1;
// now apply vector to normal buffer
normals.push( vector.x, vector.y, vector.z );
// uvs
uvs.push( ix / gridX );
uvs.push( 1 - ( iy / gridY ) );
// counters
vertexCounter += 1;
}
}
// indices
// 1. you need three indices to draw a single face
// 2. a single segment consists of two faces
// 3. so we need to generate six (2*3) indices per segment
for ( let iy = 0; iy < gridY; iy ++ ) {
for ( let ix = 0; ix < gridX; ix ++ ) {
const a = numberOfVertices + ix + gridX1 * iy;
const b = numberOfVertices + ix + gridX1 * ( iy + 1 );
const c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 );
const d = numberOfVertices + ( ix + 1 ) + gridX1 * iy;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
// increase counter
groupCount += 6;
}
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, materialIndex );
// calculate new start value for groups
groupStart += groupCount;
// update total number of vertices
numberOfVertices += vertexCounter;
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new BoxGeometry( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments );
}
}
export { BoxGeometry };

View File

@ -0,0 +1,33 @@
import { Path } from '../extras/core/Path.js';
import { LatheGeometry } from './LatheGeometry.js';
class CapsuleGeometry extends LatheGeometry {
constructor( radius = 1, length = 1, capSegments = 4, radialSegments = 8 ) {
const path = new Path();
path.absarc( 0, - length / 2, radius, Math.PI * 1.5, 0 );
path.absarc( 0, length / 2, radius, 0, Math.PI * 0.5 );
super( path.getPoints( capSegments ), radialSegments );
this.type = 'CapsuleGeometry';
this.parameters = {
radius: radius,
length: length,
capSegments: capSegments,
radialSegments: radialSegments,
};
}
static fromJSON( data ) {
return new CapsuleGeometry( data.radius, data.length, data.capSegments, data.radialSegments );
}
}
export { CapsuleGeometry };

View File

@ -0,0 +1,101 @@
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import { Vector3 } from '../math/Vector3.js';
import { Vector2 } from '../math/Vector2.js';
class CircleGeometry extends BufferGeometry {
constructor( radius = 1, segments = 32, thetaStart = 0, thetaLength = Math.PI * 2 ) {
super();
this.type = 'CircleGeometry';
this.parameters = {
radius: radius,
segments: segments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
segments = Math.max( 3, segments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
const vertex = new Vector3();
const uv = new Vector2();
// center point
vertices.push( 0, 0, 0 );
normals.push( 0, 0, 1 );
uvs.push( 0.5, 0.5 );
for ( let s = 0, i = 3; s <= segments; s ++, i += 3 ) {
const segment = thetaStart + s / segments * thetaLength;
// vertex
vertex.x = radius * Math.cos( segment );
vertex.y = radius * Math.sin( segment );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normals.push( 0, 0, 1 );
// uvs
uv.x = ( vertices[ i ] / radius + 1 ) / 2;
uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2;
uvs.push( uv.x, uv.y );
}
// indices
for ( let i = 1; i <= segments; i ++ ) {
indices.push( i, i + 1, 0 );
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new CircleGeometry( data.radius, data.segments, data.thetaStart, data.thetaLength );
}
}
export { CircleGeometry };

View File

@ -0,0 +1,31 @@
import { CylinderGeometry } from './CylinderGeometry.js';
class ConeGeometry extends CylinderGeometry {
constructor( radius = 1, height = 1, radialSegments = 32, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2 ) {
super( 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );
this.type = 'ConeGeometry';
this.parameters = {
radius: radius,
height: height,
radialSegments: radialSegments,
heightSegments: heightSegments,
openEnded: openEnded,
thetaStart: thetaStart,
thetaLength: thetaLength
};
}
static fromJSON( data ) {
return new ConeGeometry( data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength );
}
}
export { ConeGeometry };

View File

@ -0,0 +1,286 @@
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import { Vector3 } from '../math/Vector3.js';
import { Vector2 } from '../math/Vector2.js';
class CylinderGeometry extends BufferGeometry {
constructor( radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 32, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2 ) {
super();
this.type = 'CylinderGeometry';
this.parameters = {
radiusTop: radiusTop,
radiusBottom: radiusBottom,
height: height,
radialSegments: radialSegments,
heightSegments: heightSegments,
openEnded: openEnded,
thetaStart: thetaStart,
thetaLength: thetaLength
};
const scope = this;
radialSegments = Math.floor( radialSegments );
heightSegments = Math.floor( heightSegments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
let index = 0;
const indexArray = [];
const halfHeight = height / 2;
let groupStart = 0;
// generate geometry
generateTorso();
if ( openEnded === false ) {
if ( radiusTop > 0 ) generateCap( true );
if ( radiusBottom > 0 ) generateCap( false );
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
function generateTorso() {
const normal = new Vector3();
const vertex = new Vector3();
let groupCount = 0;
// this will be used to calculate the normal
const slope = ( radiusBottom - radiusTop ) / height;
// generate vertices, normals and uvs
for ( let y = 0; y <= heightSegments; y ++ ) {
const indexRow = [];
const v = y / heightSegments;
// calculate the radius of the current row
const radius = v * ( radiusBottom - radiusTop ) + radiusTop;
for ( let x = 0; x <= radialSegments; x ++ ) {
const u = x / radialSegments;
const theta = u * thetaLength + thetaStart;
const sinTheta = Math.sin( theta );
const cosTheta = Math.cos( theta );
// vertex
vertex.x = radius * sinTheta;
vertex.y = - v * height + halfHeight;
vertex.z = radius * cosTheta;
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normal.set( sinTheta, slope, cosTheta ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( u, 1 - v );
// save index of vertex in respective row
indexRow.push( index ++ );
}
// now save vertices of the row in our index array
indexArray.push( indexRow );
}
// generate indices
for ( let x = 0; x < radialSegments; x ++ ) {
for ( let y = 0; y < heightSegments; y ++ ) {
// we use the index array to access the correct indices
const a = indexArray[ y ][ x ];
const b = indexArray[ y + 1 ][ x ];
const c = indexArray[ y + 1 ][ x + 1 ];
const d = indexArray[ y ][ x + 1 ];
// faces
indices.push( a, b, d );
indices.push( b, c, d );
// update group counter
groupCount += 6;
}
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, 0 );
// calculate new start value for groups
groupStart += groupCount;
}
function generateCap( top ) {
// save the index of the first center vertex
const centerIndexStart = index;
const uv = new Vector2();
const vertex = new Vector3();
let groupCount = 0;
const radius = ( top === true ) ? radiusTop : radiusBottom;
const sign = ( top === true ) ? 1 : - 1;
// first we generate the center vertex data of the cap.
// because the geometry needs one set of uvs per face,
// we must generate a center vertex per face/segment
for ( let x = 1; x <= radialSegments; x ++ ) {
// vertex
vertices.push( 0, halfHeight * sign, 0 );
// normal
normals.push( 0, sign, 0 );
// uv
uvs.push( 0.5, 0.5 );
// increase index
index ++;
}
// save the index of the last center vertex
const centerIndexEnd = index;
// now we generate the surrounding vertices, normals and uvs
for ( let x = 0; x <= radialSegments; x ++ ) {
const u = x / radialSegments;
const theta = u * thetaLength + thetaStart;
const cosTheta = Math.cos( theta );
const sinTheta = Math.sin( theta );
// vertex
vertex.x = radius * sinTheta;
vertex.y = halfHeight * sign;
vertex.z = radius * cosTheta;
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normals.push( 0, sign, 0 );
// uv
uv.x = ( cosTheta * 0.5 ) + 0.5;
uv.y = ( sinTheta * 0.5 * sign ) + 0.5;
uvs.push( uv.x, uv.y );
// increase index
index ++;
}
// generate indices
for ( let x = 0; x < radialSegments; x ++ ) {
const c = centerIndexStart + x;
const i = centerIndexEnd + x;
if ( top === true ) {
// face top
indices.push( i, i + 1, c );
} else {
// face bottom
indices.push( i + 1, i, c );
}
groupCount += 3;
}
// add a group to the geometry. this will ensure multi material support
scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 );
// calculate new start value for groups
groupStart += groupCount;
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new CylinderGeometry( data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength );
}
}
export { CylinderGeometry };

View File

@ -0,0 +1,66 @@
import { PolyhedronGeometry } from './PolyhedronGeometry.js';
class DodecahedronGeometry extends PolyhedronGeometry {
constructor( radius = 1, detail = 0 ) {
const t = ( 1 + Math.sqrt( 5 ) ) / 2;
const r = 1 / t;
const vertices = [
// (±1, ±1, ±1)
- 1, - 1, - 1, - 1, - 1, 1,
- 1, 1, - 1, - 1, 1, 1,
1, - 1, - 1, 1, - 1, 1,
1, 1, - 1, 1, 1, 1,
// (0, ±1/φ, ±φ)
0, - r, - t, 0, - r, t,
0, r, - t, 0, r, t,
// (±1/φ, ±φ, 0)
- r, - t, 0, - r, t, 0,
r, - t, 0, r, t, 0,
// (±φ, 0, ±1/φ)
- t, 0, - r, t, 0, - r,
- t, 0, r, t, 0, r
];
const indices = [
3, 11, 7, 3, 7, 15, 3, 15, 13,
7, 19, 17, 7, 17, 6, 7, 6, 15,
17, 4, 8, 17, 8, 10, 17, 10, 6,
8, 0, 16, 8, 16, 2, 8, 2, 10,
0, 12, 1, 0, 1, 18, 0, 18, 16,
6, 10, 2, 6, 2, 13, 6, 13, 15,
2, 16, 18, 2, 18, 3, 2, 3, 13,
18, 1, 9, 18, 9, 11, 18, 11, 3,
4, 14, 12, 4, 12, 0, 4, 0, 8,
11, 9, 5, 11, 5, 19, 11, 19, 7,
19, 5, 14, 19, 14, 4, 19, 4, 17,
1, 12, 14, 1, 14, 5, 1, 5, 9
];
super( vertices, indices, radius, detail );
this.type = 'DodecahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
static fromJSON( data ) {
return new DodecahedronGeometry( data.radius, data.detail );
}
}
export { DodecahedronGeometry };

View File

@ -0,0 +1,152 @@
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import * as MathUtils from '../math/MathUtils.js';
import { Triangle } from '../math/Triangle.js';
import { Vector3 } from '../math/Vector3.js';
const _v0 = /*@__PURE__*/ new Vector3();
const _v1 = /*@__PURE__*/ new Vector3();
const _normal = /*@__PURE__*/ new Vector3();
const _triangle = /*@__PURE__*/ new Triangle();
class EdgesGeometry extends BufferGeometry {
constructor( geometry = null, thresholdAngle = 1 ) {
super();
this.type = 'EdgesGeometry';
this.parameters = {
geometry: geometry,
thresholdAngle: thresholdAngle
};
if ( geometry !== null ) {
const precisionPoints = 4;
const precision = Math.pow( 10, precisionPoints );
const thresholdDot = Math.cos( MathUtils.DEG2RAD * thresholdAngle );
const indexAttr = geometry.getIndex();
const positionAttr = geometry.getAttribute( 'position' );
const indexCount = indexAttr ? indexAttr.count : positionAttr.count;
const indexArr = [ 0, 0, 0 ];
const vertKeys = [ 'a', 'b', 'c' ];
const hashes = new Array( 3 );
const edgeData = {};
const vertices = [];
for ( let i = 0; i < indexCount; i += 3 ) {
if ( indexAttr ) {
indexArr[ 0 ] = indexAttr.getX( i );
indexArr[ 1 ] = indexAttr.getX( i + 1 );
indexArr[ 2 ] = indexAttr.getX( i + 2 );
} else {
indexArr[ 0 ] = i;
indexArr[ 1 ] = i + 1;
indexArr[ 2 ] = i + 2;
}
const { a, b, c } = _triangle;
a.fromBufferAttribute( positionAttr, indexArr[ 0 ] );
b.fromBufferAttribute( positionAttr, indexArr[ 1 ] );
c.fromBufferAttribute( positionAttr, indexArr[ 2 ] );
_triangle.getNormal( _normal );
// create hashes for the edge from the vertices
hashes[ 0 ] = `${ Math.round( a.x * precision ) },${ Math.round( a.y * precision ) },${ Math.round( a.z * precision ) }`;
hashes[ 1 ] = `${ Math.round( b.x * precision ) },${ Math.round( b.y * precision ) },${ Math.round( b.z * precision ) }`;
hashes[ 2 ] = `${ Math.round( c.x * precision ) },${ Math.round( c.y * precision ) },${ Math.round( c.z * precision ) }`;
// skip degenerate triangles
if ( hashes[ 0 ] === hashes[ 1 ] || hashes[ 1 ] === hashes[ 2 ] || hashes[ 2 ] === hashes[ 0 ] ) {
continue;
}
// iterate over every edge
for ( let j = 0; j < 3; j ++ ) {
// get the first and next vertex making up the edge
const jNext = ( j + 1 ) % 3;
const vecHash0 = hashes[ j ];
const vecHash1 = hashes[ jNext ];
const v0 = _triangle[ vertKeys[ j ] ];
const v1 = _triangle[ vertKeys[ jNext ] ];
const hash = `${ vecHash0 }_${ vecHash1 }`;
const reverseHash = `${ vecHash1 }_${ vecHash0 }`;
if ( reverseHash in edgeData && edgeData[ reverseHash ] ) {
// if we found a sibling edge add it into the vertex array if
// it meets the angle threshold and delete the edge from the map.
if ( _normal.dot( edgeData[ reverseHash ].normal ) <= thresholdDot ) {
vertices.push( v0.x, v0.y, v0.z );
vertices.push( v1.x, v1.y, v1.z );
}
edgeData[ reverseHash ] = null;
} else if ( ! ( hash in edgeData ) ) {
// if we've already got an edge here then skip adding a new one
edgeData[ hash ] = {
index0: indexArr[ j ],
index1: indexArr[ jNext ],
normal: _normal.clone(),
};
}
}
}
// iterate over all remaining, unmatched edges and add them to the vertex array
for ( const key in edgeData ) {
if ( edgeData[ key ] ) {
const { index0, index1 } = edgeData[ key ];
_v0.fromBufferAttribute( positionAttr, index0 );
_v1.fromBufferAttribute( positionAttr, index1 );
vertices.push( _v0.x, _v0.y, _v0.z );
vertices.push( _v1.x, _v1.y, _v1.z );
}
}
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
}
export { EdgesGeometry };

View File

@ -0,0 +1,814 @@
/**
* Creates extruded geometry from a path shape.
*
* parameters = {
*
* curveSegments: <int>, // number of points on the curves
* steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
* depth: <float>, // Depth to extrude the shape
*
* bevelEnabled: <bool>, // turn on bevel
* bevelThickness: <float>, // how deep into the original shape bevel goes
* bevelSize: <float>, // how far from shape outline (including bevelOffset) is bevel
* bevelOffset: <float>, // how far from shape outline does bevel start
* bevelSegments: <int>, // number of bevel layers
*
* extrudePath: <THREE.Curve> // curve to extrude shape along
*
* UVGenerator: <Object> // object that provides UV generator functions
*
* }
*/
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import * as Curves from '../extras/curves/Curves.js';
import { Vector2 } from '../math/Vector2.js';
import { Vector3 } from '../math/Vector3.js';
import { Shape } from '../extras/core/Shape.js';
import { ShapeUtils } from '../extras/ShapeUtils.js';
class ExtrudeGeometry extends BufferGeometry {
constructor( shapes = new Shape( [ new Vector2( 0.5, 0.5 ), new Vector2( - 0.5, 0.5 ), new Vector2( - 0.5, - 0.5 ), new Vector2( 0.5, - 0.5 ) ] ), options = {} ) {
super();
this.type = 'ExtrudeGeometry';
this.parameters = {
shapes: shapes,
options: options
};
shapes = Array.isArray( shapes ) ? shapes : [ shapes ];
const scope = this;
const verticesArray = [];
const uvArray = [];
for ( let i = 0, l = shapes.length; i < l; i ++ ) {
const shape = shapes[ i ];
addShape( shape );
}
// build geometry
this.setAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) );
this.computeVertexNormals();
// functions
function addShape( shape ) {
const placeholder = [];
// options
const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
const steps = options.steps !== undefined ? options.steps : 1;
const depth = options.depth !== undefined ? options.depth : 1;
let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true;
let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 0.2;
let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 0.1;
let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0;
let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;
const extrudePath = options.extrudePath;
const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator;
//
let extrudePts, extrudeByPath = false;
let splineTube, binormal, normal, position2;
if ( extrudePath ) {
extrudePts = extrudePath.getSpacedPoints( steps );
extrudeByPath = true;
bevelEnabled = false; // bevels not supported for path extrusion
// SETUP TNB variables
// TODO1 - have a .isClosed in spline?
splineTube = extrudePath.computeFrenetFrames( steps, false );
// console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);
binormal = new Vector3();
normal = new Vector3();
position2 = new Vector3();
}
// Safeguards if bevels are not enabled
if ( ! bevelEnabled ) {
bevelSegments = 0;
bevelThickness = 0;
bevelSize = 0;
bevelOffset = 0;
}
// Variables initialization
const shapePoints = shape.extractPoints( curveSegments );
let vertices = shapePoints.shape;
const holes = shapePoints.holes;
const reverse = ! ShapeUtils.isClockWise( vertices );
if ( reverse ) {
vertices = vertices.reverse();
// Maybe we should also check if holes are in the opposite direction, just to be safe ...
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
if ( ShapeUtils.isClockWise( ahole ) ) {
holes[ h ] = ahole.reverse();
}
}
}
const faces = ShapeUtils.triangulateShape( vertices, holes );
/* Vertices */
const contour = vertices; // vertices has all points but contour has only points of circumference
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
vertices = vertices.concat( ahole );
}
function scalePt2( pt, vec, size ) {
if ( ! vec ) console.error( 'THREE.ExtrudeGeometry: vec does not exist' );
return pt.clone().addScaledVector( vec, size );
}
const vlen = vertices.length, flen = faces.length;
// Find directions for point movement
function getBevelVec( inPt, inPrev, inNext ) {
// computes for inPt the corresponding point inPt' on a new contour
// shifted by 1 unit (length of normalized vector) to the left
// if we walk along contour clockwise, this new contour is outside the old one
//
// inPt' is the intersection of the two lines parallel to the two
// adjacent edges of inPt at a distance of 1 unit on the left side.
let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt
// good reading for geometry algorithms (here: line-line intersection)
// http://geomalgorithms.com/a05-_intersect-1.html
const v_prev_x = inPt.x - inPrev.x,
v_prev_y = inPt.y - inPrev.y;
const v_next_x = inNext.x - inPt.x,
v_next_y = inNext.y - inPt.y;
const v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y );
// check for collinear edges
const collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x );
if ( Math.abs( collinear0 ) > Number.EPSILON ) {
// not collinear
// length of vectors for normalizing
const v_prev_len = Math.sqrt( v_prev_lensq );
const v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y );
// shift adjacent points by unit vectors to the left
const ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len );
const ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len );
const ptNextShift_x = ( inNext.x - v_next_y / v_next_len );
const ptNextShift_y = ( inNext.y + v_next_x / v_next_len );
// scaling factor for v_prev to intersection point
const sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y -
( ptNextShift_y - ptPrevShift_y ) * v_next_x ) /
( v_prev_x * v_next_y - v_prev_y * v_next_x );
// vector from inPt to intersection point
v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x );
v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y );
// Don't normalize!, otherwise sharp corners become ugly
// but prevent crazy spikes
const v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y );
if ( v_trans_lensq <= 2 ) {
return new Vector2( v_trans_x, v_trans_y );
} else {
shrink_by = Math.sqrt( v_trans_lensq / 2 );
}
} else {
// handle special case of collinear edges
let direction_eq = false; // assumes: opposite
if ( v_prev_x > Number.EPSILON ) {
if ( v_next_x > Number.EPSILON ) {
direction_eq = true;
}
} else {
if ( v_prev_x < - Number.EPSILON ) {
if ( v_next_x < - Number.EPSILON ) {
direction_eq = true;
}
} else {
if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) {
direction_eq = true;
}
}
}
if ( direction_eq ) {
// console.log("Warning: lines are a straight sequence");
v_trans_x = - v_prev_y;
v_trans_y = v_prev_x;
shrink_by = Math.sqrt( v_prev_lensq );
} else {
// console.log("Warning: lines are a straight spike");
v_trans_x = v_prev_x;
v_trans_y = v_prev_y;
shrink_by = Math.sqrt( v_prev_lensq / 2 );
}
}
return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by );
}
const contourMovements = [];
for ( let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
if ( j === il ) j = 0;
if ( k === il ) k = 0;
// (j)---(i)---(k)
// console.log('i,j,k', i, j , k)
contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] );
}
const holesMovements = [];
let oneHoleMovements, verticesMovements = contourMovements.concat();
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
oneHoleMovements = [];
for ( let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {
if ( j === il ) j = 0;
if ( k === il ) k = 0;
// (j)---(i)---(k)
oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] );
}
holesMovements.push( oneHoleMovements );
verticesMovements = verticesMovements.concat( oneHoleMovements );
}
// Loop bevelSegments, 1 for the front, 1 for the back
for ( let b = 0; b < bevelSegments; b ++ ) {
//for ( b = bevelSegments; b > 0; b -- ) {
const t = b / bevelSegments;
const z = bevelThickness * Math.cos( t * Math.PI / 2 );
const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset;
// contract shape
for ( let i = 0, il = contour.length; i < il; i ++ ) {
const vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
v( vert.x, vert.y, - z );
}
// expand holes
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
oneHoleMovements = holesMovements[ h ];
for ( let i = 0, il = ahole.length; i < il; i ++ ) {
const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
v( vert.x, vert.y, - z );
}
}
}
const bs = bevelSize + bevelOffset;
// Back facing vertices
for ( let i = 0; i < vlen; i ++ ) {
const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
if ( ! extrudeByPath ) {
v( vert.x, vert.y, 0 );
} else {
// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );
normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x );
binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y );
position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal );
v( position2.x, position2.y, position2.z );
}
}
// Add stepped vertices...
// Including front facing vertices
for ( let s = 1; s <= steps; s ++ ) {
for ( let i = 0; i < vlen; i ++ ) {
const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];
if ( ! extrudeByPath ) {
v( vert.x, vert.y, depth / steps * s );
} else {
// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );
normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x );
binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y );
position2.copy( extrudePts[ s ] ).add( normal ).add( binormal );
v( position2.x, position2.y, position2.z );
}
}
}
// Add bevel segments planes
//for ( b = 1; b <= bevelSegments; b ++ ) {
for ( let b = bevelSegments - 1; b >= 0; b -- ) {
const t = b / bevelSegments;
const z = bevelThickness * Math.cos( t * Math.PI / 2 );
const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset;
// contract shape
for ( let i = 0, il = contour.length; i < il; i ++ ) {
const vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
v( vert.x, vert.y, depth + z );
}
// expand holes
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
oneHoleMovements = holesMovements[ h ];
for ( let i = 0, il = ahole.length; i < il; i ++ ) {
const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );
if ( ! extrudeByPath ) {
v( vert.x, vert.y, depth + z );
} else {
v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z );
}
}
}
}
/* Faces */
// Top and bottom faces
buildLidFaces();
// Sides faces
buildSideFaces();
///// Internal functions
function buildLidFaces() {
const start = verticesArray.length / 3;
if ( bevelEnabled ) {
let layer = 0; // steps + 1
let offset = vlen * layer;
// Bottom faces
for ( let i = 0; i < flen; i ++ ) {
const face = faces[ i ];
f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset );
}
layer = steps + bevelSegments * 2;
offset = vlen * layer;
// Top faces
for ( let i = 0; i < flen; i ++ ) {
const face = faces[ i ];
f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset );
}
} else {
// Bottom faces
for ( let i = 0; i < flen; i ++ ) {
const face = faces[ i ];
f3( face[ 2 ], face[ 1 ], face[ 0 ] );
}
// Top faces
for ( let i = 0; i < flen; i ++ ) {
const face = faces[ i ];
f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps );
}
}
scope.addGroup( start, verticesArray.length / 3 - start, 0 );
}
// Create faces for the z-sides of the shape
function buildSideFaces() {
const start = verticesArray.length / 3;
let layeroffset = 0;
sidewalls( contour, layeroffset );
layeroffset += contour.length;
for ( let h = 0, hl = holes.length; h < hl; h ++ ) {
const ahole = holes[ h ];
sidewalls( ahole, layeroffset );
//, true
layeroffset += ahole.length;
}
scope.addGroup( start, verticesArray.length / 3 - start, 1 );
}
function sidewalls( contour, layeroffset ) {
let i = contour.length;
while ( -- i >= 0 ) {
const j = i;
let k = i - 1;
if ( k < 0 ) k = contour.length - 1;
//console.log('b', i,j, i-1, k,vertices.length);
for ( let s = 0, sl = ( steps + bevelSegments * 2 ); s < sl; s ++ ) {
const slen1 = vlen * s;
const slen2 = vlen * ( s + 1 );
const a = layeroffset + j + slen1,
b = layeroffset + k + slen1,
c = layeroffset + k + slen2,
d = layeroffset + j + slen2;
f4( a, b, c, d );
}
}
}
function v( x, y, z ) {
placeholder.push( x );
placeholder.push( y );
placeholder.push( z );
}
function f3( a, b, c ) {
addVertex( a );
addVertex( b );
addVertex( c );
const nextIndex = verticesArray.length / 3;
const uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 );
addUV( uvs[ 0 ] );
addUV( uvs[ 1 ] );
addUV( uvs[ 2 ] );
}
function f4( a, b, c, d ) {
addVertex( a );
addVertex( b );
addVertex( d );
addVertex( b );
addVertex( c );
addVertex( d );
const nextIndex = verticesArray.length / 3;
const uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 );
addUV( uvs[ 0 ] );
addUV( uvs[ 1 ] );
addUV( uvs[ 3 ] );
addUV( uvs[ 1 ] );
addUV( uvs[ 2 ] );
addUV( uvs[ 3 ] );
}
function addVertex( index ) {
verticesArray.push( placeholder[ index * 3 + 0 ] );
verticesArray.push( placeholder[ index * 3 + 1 ] );
verticesArray.push( placeholder[ index * 3 + 2 ] );
}
function addUV( vector2 ) {
uvArray.push( vector2.x );
uvArray.push( vector2.y );
}
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
toJSON() {
const data = super.toJSON();
const shapes = this.parameters.shapes;
const options = this.parameters.options;
return toJSON( shapes, options, data );
}
static fromJSON( data, shapes ) {
const geometryShapes = [];
for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) {
const shape = shapes[ data.shapes[ j ] ];
geometryShapes.push( shape );
}
const extrudePath = data.options.extrudePath;
if ( extrudePath !== undefined ) {
data.options.extrudePath = new Curves[ extrudePath.type ]().fromJSON( extrudePath );
}
return new ExtrudeGeometry( geometryShapes, data.options );
}
}
const WorldUVGenerator = {
generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) {
const a_x = vertices[ indexA * 3 ];
const a_y = vertices[ indexA * 3 + 1 ];
const b_x = vertices[ indexB * 3 ];
const b_y = vertices[ indexB * 3 + 1 ];
const c_x = vertices[ indexC * 3 ];
const c_y = vertices[ indexC * 3 + 1 ];
return [
new Vector2( a_x, a_y ),
new Vector2( b_x, b_y ),
new Vector2( c_x, c_y )
];
},
generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) {
const a_x = vertices[ indexA * 3 ];
const a_y = vertices[ indexA * 3 + 1 ];
const a_z = vertices[ indexA * 3 + 2 ];
const b_x = vertices[ indexB * 3 ];
const b_y = vertices[ indexB * 3 + 1 ];
const b_z = vertices[ indexB * 3 + 2 ];
const c_x = vertices[ indexC * 3 ];
const c_y = vertices[ indexC * 3 + 1 ];
const c_z = vertices[ indexC * 3 + 2 ];
const d_x = vertices[ indexD * 3 ];
const d_y = vertices[ indexD * 3 + 1 ];
const d_z = vertices[ indexD * 3 + 2 ];
if ( Math.abs( a_y - b_y ) < Math.abs( a_x - b_x ) ) {
return [
new Vector2( a_x, 1 - a_z ),
new Vector2( b_x, 1 - b_z ),
new Vector2( c_x, 1 - c_z ),
new Vector2( d_x, 1 - d_z )
];
} else {
return [
new Vector2( a_y, 1 - a_z ),
new Vector2( b_y, 1 - b_z ),
new Vector2( c_y, 1 - c_z ),
new Vector2( d_y, 1 - d_z )
];
}
}
};
function toJSON( shapes, options, data ) {
data.shapes = [];
if ( Array.isArray( shapes ) ) {
for ( let i = 0, l = shapes.length; i < l; i ++ ) {
const shape = shapes[ i ];
data.shapes.push( shape.uuid );
}
} else {
data.shapes.push( shapes.uuid );
}
data.options = Object.assign( {}, options );
if ( options.extrudePath !== undefined ) data.options.extrudePath = options.extrudePath.toJSON();
return data;
}
export { ExtrudeGeometry };

View File

@ -0,0 +1,21 @@
export * from './BoxGeometry.js';
export * from './CapsuleGeometry.js';
export * from './CircleGeometry.js';
export * from './ConeGeometry.js';
export * from './CylinderGeometry.js';
export * from './DodecahedronGeometry.js';
export * from './EdgesGeometry.js';
export * from './ExtrudeGeometry.js';
export * from './IcosahedronGeometry.js';
export * from './LatheGeometry.js';
export * from './OctahedronGeometry.js';
export * from './PlaneGeometry.js';
export * from './PolyhedronGeometry.js';
export * from './RingGeometry.js';
export * from './ShapeGeometry.js';
export * from './SphereGeometry.js';
export * from './TetrahedronGeometry.js';
export * from './TorusGeometry.js';
export * from './TorusKnotGeometry.js';
export * from './TubeGeometry.js';
export * from './WireframeGeometry.js';

View File

@ -0,0 +1,42 @@
import { PolyhedronGeometry } from './PolyhedronGeometry.js';
class IcosahedronGeometry extends PolyhedronGeometry {
constructor( radius = 1, detail = 0 ) {
const t = ( 1 + Math.sqrt( 5 ) ) / 2;
const vertices = [
- 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, 0,
0, - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t,
t, 0, - 1, t, 0, 1, - t, 0, - 1, - t, 0, 1
];
const indices = [
0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11,
1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8,
3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9,
4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1
];
super( vertices, indices, radius, detail );
this.type = 'IcosahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
static fromJSON( data ) {
return new IcosahedronGeometry( data.radius, data.detail );
}
}
export { IcosahedronGeometry };

View File

@ -0,0 +1,189 @@
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Vector3 } from '../math/Vector3.js';
import { Vector2 } from '../math/Vector2.js';
import * as MathUtils from '../math/MathUtils.js';
class LatheGeometry extends BufferGeometry {
constructor( points = [ new Vector2( 0, - 0.5 ), new Vector2( 0.5, 0 ), new Vector2( 0, 0.5 ) ], segments = 12, phiStart = 0, phiLength = Math.PI * 2 ) {
super();
this.type = 'LatheGeometry';
this.parameters = {
points: points,
segments: segments,
phiStart: phiStart,
phiLength: phiLength
};
segments = Math.floor( segments );
// clamp phiLength so it's in range of [ 0, 2PI ]
phiLength = MathUtils.clamp( phiLength, 0, Math.PI * 2 );
// buffers
const indices = [];
const vertices = [];
const uvs = [];
const initNormals = [];
const normals = [];
// helper variables
const inverseSegments = 1.0 / segments;
const vertex = new Vector3();
const uv = new Vector2();
const normal = new Vector3();
const curNormal = new Vector3();
const prevNormal = new Vector3();
let dx = 0;
let dy = 0;
// pre-compute normals for initial "meridian"
for ( let j = 0; j <= ( points.length - 1 ); j ++ ) {
switch ( j ) {
case 0: // special handling for 1st vertex on path
dx = points[ j + 1 ].x - points[ j ].x;
dy = points[ j + 1 ].y - points[ j ].y;
normal.x = dy * 1.0;
normal.y = - dx;
normal.z = dy * 0.0;
prevNormal.copy( normal );
normal.normalize();
initNormals.push( normal.x, normal.y, normal.z );
break;
case ( points.length - 1 ): // special handling for last Vertex on path
initNormals.push( prevNormal.x, prevNormal.y, prevNormal.z );
break;
default: // default handling for all vertices in between
dx = points[ j + 1 ].x - points[ j ].x;
dy = points[ j + 1 ].y - points[ j ].y;
normal.x = dy * 1.0;
normal.y = - dx;
normal.z = dy * 0.0;
curNormal.copy( normal );
normal.x += prevNormal.x;
normal.y += prevNormal.y;
normal.z += prevNormal.z;
normal.normalize();
initNormals.push( normal.x, normal.y, normal.z );
prevNormal.copy( curNormal );
}
}
// generate vertices, uvs and normals
for ( let i = 0; i <= segments; i ++ ) {
const phi = phiStart + i * inverseSegments * phiLength;
const sin = Math.sin( phi );
const cos = Math.cos( phi );
for ( let j = 0; j <= ( points.length - 1 ); j ++ ) {
// vertex
vertex.x = points[ j ].x * sin;
vertex.y = points[ j ].y;
vertex.z = points[ j ].x * cos;
vertices.push( vertex.x, vertex.y, vertex.z );
// uv
uv.x = i / segments;
uv.y = j / ( points.length - 1 );
uvs.push( uv.x, uv.y );
// normal
const x = initNormals[ 3 * j + 0 ] * sin;
const y = initNormals[ 3 * j + 1 ];
const z = initNormals[ 3 * j + 0 ] * cos;
normals.push( x, y, z );
}
}
// indices
for ( let i = 0; i < segments; i ++ ) {
for ( let j = 0; j < ( points.length - 1 ); j ++ ) {
const base = j + i * points.length;
const a = base;
const b = base + points.length;
const c = base + points.length + 1;
const d = base + 1;
// faces
indices.push( a, b, d );
indices.push( c, d, b );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new LatheGeometry( data.points, data.segments, data.phiStart, data.phiLength );
}
}
export { LatheGeometry };

View File

@ -0,0 +1,37 @@
import { PolyhedronGeometry } from './PolyhedronGeometry.js';
class OctahedronGeometry extends PolyhedronGeometry {
constructor( radius = 1, detail = 0 ) {
const vertices = [
1, 0, 0, - 1, 0, 0, 0, 1, 0,
0, - 1, 0, 0, 0, 1, 0, 0, - 1
];
const indices = [
0, 2, 4, 0, 4, 3, 0, 3, 5,
0, 5, 2, 1, 2, 5, 1, 5, 3,
1, 3, 4, 1, 4, 2
];
super( vertices, indices, radius, detail );
this.type = 'OctahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
static fromJSON( data ) {
return new OctahedronGeometry( data.radius, data.detail );
}
}
export { OctahedronGeometry };

View File

@ -0,0 +1,98 @@
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
class PlaneGeometry extends BufferGeometry {
constructor( width = 1, height = 1, widthSegments = 1, heightSegments = 1 ) {
super();
this.type = 'PlaneGeometry';
this.parameters = {
width: width,
height: height,
widthSegments: widthSegments,
heightSegments: heightSegments
};
const width_half = width / 2;
const height_half = height / 2;
const gridX = Math.floor( widthSegments );
const gridY = Math.floor( heightSegments );
const gridX1 = gridX + 1;
const gridY1 = gridY + 1;
const segment_width = width / gridX;
const segment_height = height / gridY;
//
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
for ( let iy = 0; iy < gridY1; iy ++ ) {
const y = iy * segment_height - height_half;
for ( let ix = 0; ix < gridX1; ix ++ ) {
const x = ix * segment_width - width_half;
vertices.push( x, - y, 0 );
normals.push( 0, 0, 1 );
uvs.push( ix / gridX );
uvs.push( 1 - ( iy / gridY ) );
}
}
for ( let iy = 0; iy < gridY; iy ++ ) {
for ( let ix = 0; ix < gridX; ix ++ ) {
const a = ix + gridX1 * iy;
const b = ix + gridX1 * ( iy + 1 );
const c = ( ix + 1 ) + gridX1 * ( iy + 1 );
const d = ( ix + 1 ) + gridX1 * iy;
indices.push( a, b, d );
indices.push( b, c, d );
}
}
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new PlaneGeometry( data.width, data.height, data.widthSegments, data.heightSegments );
}
}
export { PlaneGeometry };

View File

@ -0,0 +1,319 @@
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import { Vector3 } from '../math/Vector3.js';
import { Vector2 } from '../math/Vector2.js';
class PolyhedronGeometry extends BufferGeometry {
constructor( vertices = [], indices = [], radius = 1, detail = 0 ) {
super();
this.type = 'PolyhedronGeometry';
this.parameters = {
vertices: vertices,
indices: indices,
radius: radius,
detail: detail
};
// default buffer data
const vertexBuffer = [];
const uvBuffer = [];
// the subdivision creates the vertex buffer data
subdivide( detail );
// all vertices should lie on a conceptual sphere with a given radius
applyRadius( radius );
// finally, create the uv data
generateUVs();
// build non-indexed geometry
this.setAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) );
if ( detail === 0 ) {
this.computeVertexNormals(); // flat normals
} else {
this.normalizeNormals(); // smooth normals
}
// helper functions
function subdivide( detail ) {
const a = new Vector3();
const b = new Vector3();
const c = new Vector3();
// iterate over all faces and apply a subdivision with the given detail value
for ( let i = 0; i < indices.length; i += 3 ) {
// get the vertices of the face
getVertexByIndex( indices[ i + 0 ], a );
getVertexByIndex( indices[ i + 1 ], b );
getVertexByIndex( indices[ i + 2 ], c );
// perform subdivision
subdivideFace( a, b, c, detail );
}
}
function subdivideFace( a, b, c, detail ) {
const cols = detail + 1;
// we use this multidimensional array as a data structure for creating the subdivision
const v = [];
// construct all of the vertices for this subdivision
for ( let i = 0; i <= cols; i ++ ) {
v[ i ] = [];
const aj = a.clone().lerp( c, i / cols );
const bj = b.clone().lerp( c, i / cols );
const rows = cols - i;
for ( let j = 0; j <= rows; j ++ ) {
if ( j === 0 && i === cols ) {
v[ i ][ j ] = aj;
} else {
v[ i ][ j ] = aj.clone().lerp( bj, j / rows );
}
}
}
// construct all of the faces
for ( let i = 0; i < cols; i ++ ) {
for ( let j = 0; j < 2 * ( cols - i ) - 1; j ++ ) {
const k = Math.floor( j / 2 );
if ( j % 2 === 0 ) {
pushVertex( v[ i ][ k + 1 ] );
pushVertex( v[ i + 1 ][ k ] );
pushVertex( v[ i ][ k ] );
} else {
pushVertex( v[ i ][ k + 1 ] );
pushVertex( v[ i + 1 ][ k + 1 ] );
pushVertex( v[ i + 1 ][ k ] );
}
}
}
}
function applyRadius( radius ) {
const vertex = new Vector3();
// iterate over the entire buffer and apply the radius to each vertex
for ( let i = 0; i < vertexBuffer.length; i += 3 ) {
vertex.x = vertexBuffer[ i + 0 ];
vertex.y = vertexBuffer[ i + 1 ];
vertex.z = vertexBuffer[ i + 2 ];
vertex.normalize().multiplyScalar( radius );
vertexBuffer[ i + 0 ] = vertex.x;
vertexBuffer[ i + 1 ] = vertex.y;
vertexBuffer[ i + 2 ] = vertex.z;
}
}
function generateUVs() {
const vertex = new Vector3();
for ( let i = 0; i < vertexBuffer.length; i += 3 ) {
vertex.x = vertexBuffer[ i + 0 ];
vertex.y = vertexBuffer[ i + 1 ];
vertex.z = vertexBuffer[ i + 2 ];
const u = azimuth( vertex ) / 2 / Math.PI + 0.5;
const v = inclination( vertex ) / Math.PI + 0.5;
uvBuffer.push( u, 1 - v );
}
correctUVs();
correctSeam();
}
function correctSeam() {
// handle case when face straddles the seam, see #3269
for ( let i = 0; i < uvBuffer.length; i += 6 ) {
// uv data of a single face
const x0 = uvBuffer[ i + 0 ];
const x1 = uvBuffer[ i + 2 ];
const x2 = uvBuffer[ i + 4 ];
const max = Math.max( x0, x1, x2 );
const min = Math.min( x0, x1, x2 );
// 0.9 is somewhat arbitrary
if ( max > 0.9 && min < 0.1 ) {
if ( x0 < 0.2 ) uvBuffer[ i + 0 ] += 1;
if ( x1 < 0.2 ) uvBuffer[ i + 2 ] += 1;
if ( x2 < 0.2 ) uvBuffer[ i + 4 ] += 1;
}
}
}
function pushVertex( vertex ) {
vertexBuffer.push( vertex.x, vertex.y, vertex.z );
}
function getVertexByIndex( index, vertex ) {
const stride = index * 3;
vertex.x = vertices[ stride + 0 ];
vertex.y = vertices[ stride + 1 ];
vertex.z = vertices[ stride + 2 ];
}
function correctUVs() {
const a = new Vector3();
const b = new Vector3();
const c = new Vector3();
const centroid = new Vector3();
const uvA = new Vector2();
const uvB = new Vector2();
const uvC = new Vector2();
for ( let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) {
a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] );
b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] );
c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] );
uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] );
uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] );
uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] );
centroid.copy( a ).add( b ).add( c ).divideScalar( 3 );
const azi = azimuth( centroid );
correctUV( uvA, j + 0, a, azi );
correctUV( uvB, j + 2, b, azi );
correctUV( uvC, j + 4, c, azi );
}
}
function correctUV( uv, stride, vector, azimuth ) {
if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) {
uvBuffer[ stride ] = uv.x - 1;
}
if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) {
uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5;
}
}
// Angle around the Y axis, counter-clockwise when looking from above.
function azimuth( vector ) {
return Math.atan2( vector.z, - vector.x );
}
// Angle above the XZ plane.
function inclination( vector ) {
return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) );
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new PolyhedronGeometry( data.vertices, data.indices, data.radius, data.details );
}
}
export { PolyhedronGeometry };

View File

@ -0,0 +1,128 @@
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import { Vector2 } from '../math/Vector2.js';
import { Vector3 } from '../math/Vector3.js';
class RingGeometry extends BufferGeometry {
constructor( innerRadius = 0.5, outerRadius = 1, thetaSegments = 32, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2 ) {
super();
this.type = 'RingGeometry';
this.parameters = {
innerRadius: innerRadius,
outerRadius: outerRadius,
thetaSegments: thetaSegments,
phiSegments: phiSegments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
thetaSegments = Math.max( 3, thetaSegments );
phiSegments = Math.max( 1, phiSegments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// some helper variables
let radius = innerRadius;
const radiusStep = ( ( outerRadius - innerRadius ) / phiSegments );
const vertex = new Vector3();
const uv = new Vector2();
// generate vertices, normals and uvs
for ( let j = 0; j <= phiSegments; j ++ ) {
for ( let i = 0; i <= thetaSegments; i ++ ) {
// values are generate from the inside of the ring to the outside
const segment = thetaStart + i / thetaSegments * thetaLength;
// vertex
vertex.x = radius * Math.cos( segment );
vertex.y = radius * Math.sin( segment );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normals.push( 0, 0, 1 );
// uv
uv.x = ( vertex.x / outerRadius + 1 ) / 2;
uv.y = ( vertex.y / outerRadius + 1 ) / 2;
uvs.push( uv.x, uv.y );
}
// increase the radius for next row of vertices
radius += radiusStep;
}
// indices
for ( let j = 0; j < phiSegments; j ++ ) {
const thetaSegmentLevel = j * ( thetaSegments + 1 );
for ( let i = 0; i < thetaSegments; i ++ ) {
const segment = i + thetaSegmentLevel;
const a = segment;
const b = segment + thetaSegments + 1;
const c = segment + thetaSegments + 2;
const d = segment + 1;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new RingGeometry( data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength );
}
}
export { RingGeometry };

View File

@ -0,0 +1,195 @@
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import { Shape } from '../extras/core/Shape.js';
import { ShapeUtils } from '../extras/ShapeUtils.js';
import { Vector2 } from '../math/Vector2.js';
class ShapeGeometry extends BufferGeometry {
constructor( shapes = new Shape( [ new Vector2( 0, 0.5 ), new Vector2( - 0.5, - 0.5 ), new Vector2( 0.5, - 0.5 ) ] ), curveSegments = 12 ) {
super();
this.type = 'ShapeGeometry';
this.parameters = {
shapes: shapes,
curveSegments: curveSegments
};
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
let groupStart = 0;
let groupCount = 0;
// allow single and array values for "shapes" parameter
if ( Array.isArray( shapes ) === false ) {
addShape( shapes );
} else {
for ( let i = 0; i < shapes.length; i ++ ) {
addShape( shapes[ i ] );
this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support
groupStart += groupCount;
groupCount = 0;
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
// helper functions
function addShape( shape ) {
const indexOffset = vertices.length / 3;
const points = shape.extractPoints( curveSegments );
let shapeVertices = points.shape;
const shapeHoles = points.holes;
// check direction of vertices
if ( ShapeUtils.isClockWise( shapeVertices ) === false ) {
shapeVertices = shapeVertices.reverse();
}
for ( let i = 0, l = shapeHoles.length; i < l; i ++ ) {
const shapeHole = shapeHoles[ i ];
if ( ShapeUtils.isClockWise( shapeHole ) === true ) {
shapeHoles[ i ] = shapeHole.reverse();
}
}
const faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles );
// join vertices of inner and outer paths to a single array
for ( let i = 0, l = shapeHoles.length; i < l; i ++ ) {
const shapeHole = shapeHoles[ i ];
shapeVertices = shapeVertices.concat( shapeHole );
}
// vertices, normals, uvs
for ( let i = 0, l = shapeVertices.length; i < l; i ++ ) {
const vertex = shapeVertices[ i ];
vertices.push( vertex.x, vertex.y, 0 );
normals.push( 0, 0, 1 );
uvs.push( vertex.x, vertex.y ); // world uvs
}
// indices
for ( let i = 0, l = faces.length; i < l; i ++ ) {
const face = faces[ i ];
const a = face[ 0 ] + indexOffset;
const b = face[ 1 ] + indexOffset;
const c = face[ 2 ] + indexOffset;
indices.push( a, b, c );
groupCount += 3;
}
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
toJSON() {
const data = super.toJSON();
const shapes = this.parameters.shapes;
return toJSON( shapes, data );
}
static fromJSON( data, shapes ) {
const geometryShapes = [];
for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) {
const shape = shapes[ data.shapes[ j ] ];
geometryShapes.push( shape );
}
return new ShapeGeometry( geometryShapes, data.curveSegments );
}
}
function toJSON( shapes, data ) {
data.shapes = [];
if ( Array.isArray( shapes ) ) {
for ( let i = 0, l = shapes.length; i < l; i ++ ) {
const shape = shapes[ i ];
data.shapes.push( shape.uuid );
}
} else {
data.shapes.push( shapes.uuid );
}
return data;
}
export { ShapeGeometry };

View File

@ -0,0 +1,137 @@
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import { Vector3 } from '../math/Vector3.js';
class SphereGeometry extends BufferGeometry {
constructor( radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI ) {
super();
this.type = 'SphereGeometry';
this.parameters = {
radius: radius,
widthSegments: widthSegments,
heightSegments: heightSegments,
phiStart: phiStart,
phiLength: phiLength,
thetaStart: thetaStart,
thetaLength: thetaLength
};
widthSegments = Math.max( 3, Math.floor( widthSegments ) );
heightSegments = Math.max( 2, Math.floor( heightSegments ) );
const thetaEnd = Math.min( thetaStart + thetaLength, Math.PI );
let index = 0;
const grid = [];
const vertex = new Vector3();
const normal = new Vector3();
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// generate vertices, normals and uvs
for ( let iy = 0; iy <= heightSegments; iy ++ ) {
const verticesRow = [];
const v = iy / heightSegments;
// special case for the poles
let uOffset = 0;
if ( iy === 0 && thetaStart === 0 ) {
uOffset = 0.5 / widthSegments;
} else if ( iy === heightSegments && thetaEnd === Math.PI ) {
uOffset = - 0.5 / widthSegments;
}
for ( let ix = 0; ix <= widthSegments; ix ++ ) {
const u = ix / widthSegments;
// vertex
vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
vertex.y = radius * Math.cos( thetaStart + v * thetaLength );
vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
normal.copy( vertex ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( u + uOffset, 1 - v );
verticesRow.push( index ++ );
}
grid.push( verticesRow );
}
// indices
for ( let iy = 0; iy < heightSegments; iy ++ ) {
for ( let ix = 0; ix < widthSegments; ix ++ ) {
const a = grid[ iy ][ ix + 1 ];
const b = grid[ iy ][ ix ];
const c = grid[ iy + 1 ][ ix ];
const d = grid[ iy + 1 ][ ix + 1 ];
if ( iy !== 0 || thetaStart > 0 ) indices.push( a, b, d );
if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new SphereGeometry( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength );
}
}
export { SphereGeometry };

View File

@ -0,0 +1,34 @@
import { PolyhedronGeometry } from './PolyhedronGeometry.js';
class TetrahedronGeometry extends PolyhedronGeometry {
constructor( radius = 1, detail = 0 ) {
const vertices = [
1, 1, 1, - 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1
];
const indices = [
2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1
];
super( vertices, indices, radius, detail );
this.type = 'TetrahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
static fromJSON( data ) {
return new TetrahedronGeometry( data.radius, data.detail );
}
}
export { TetrahedronGeometry };

View File

@ -0,0 +1,120 @@
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import { Vector3 } from '../math/Vector3.js';
class TorusGeometry extends BufferGeometry {
constructor( radius = 1, tube = 0.4, radialSegments = 12, tubularSegments = 48, arc = Math.PI * 2 ) {
super();
this.type = 'TorusGeometry';
this.parameters = {
radius: radius,
tube: tube,
radialSegments: radialSegments,
tubularSegments: tubularSegments,
arc: arc
};
radialSegments = Math.floor( radialSegments );
tubularSegments = Math.floor( tubularSegments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
const center = new Vector3();
const vertex = new Vector3();
const normal = new Vector3();
// generate vertices, normals and uvs
for ( let j = 0; j <= radialSegments; j ++ ) {
for ( let i = 0; i <= tubularSegments; i ++ ) {
const u = i / tubularSegments * arc;
const v = j / radialSegments * Math.PI * 2;
// vertex
vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u );
vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u );
vertex.z = tube * Math.sin( v );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal
center.x = radius * Math.cos( u );
center.y = radius * Math.sin( u );
normal.subVectors( vertex, center ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( i / tubularSegments );
uvs.push( j / radialSegments );
}
}
// generate indices
for ( let j = 1; j <= radialSegments; j ++ ) {
for ( let i = 1; i <= tubularSegments; i ++ ) {
// indices
const a = ( tubularSegments + 1 ) * j + i - 1;
const b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1;
const c = ( tubularSegments + 1 ) * ( j - 1 ) + i;
const d = ( tubularSegments + 1 ) * j + i;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new TorusGeometry( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc );
}
}
export { TorusGeometry };

View File

@ -0,0 +1,167 @@
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import { Vector3 } from '../math/Vector3.js';
class TorusKnotGeometry extends BufferGeometry {
constructor( radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3 ) {
super();
this.type = 'TorusKnotGeometry';
this.parameters = {
radius: radius,
tube: tube,
tubularSegments: tubularSegments,
radialSegments: radialSegments,
p: p,
q: q
};
tubularSegments = Math.floor( tubularSegments );
radialSegments = Math.floor( radialSegments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
const vertex = new Vector3();
const normal = new Vector3();
const P1 = new Vector3();
const P2 = new Vector3();
const B = new Vector3();
const T = new Vector3();
const N = new Vector3();
// generate vertices, normals and uvs
for ( let i = 0; i <= tubularSegments; ++ i ) {
// the radian "u" is used to calculate the position on the torus curve of the current tubular segment
const u = i / tubularSegments * p * Math.PI * 2;
// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
calculatePositionOnCurve( u, p, q, radius, P1 );
calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );
// calculate orthonormal basis
T.subVectors( P2, P1 );
N.addVectors( P2, P1 );
B.crossVectors( T, N );
N.crossVectors( B, T );
// normalize B, N. T can be ignored, we don't use it
B.normalize();
N.normalize();
for ( let j = 0; j <= radialSegments; ++ j ) {
// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
const v = j / radialSegments * Math.PI * 2;
const cx = - tube * Math.cos( v );
const cy = tube * Math.sin( v );
// now calculate the final vertex position.
// first we orient the extrusion with our basis vectors, then we add it to the current position on the curve
vertex.x = P1.x + ( cx * N.x + cy * B.x );
vertex.y = P1.y + ( cx * N.y + cy * B.y );
vertex.z = P1.z + ( cx * N.z + cy * B.z );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
normal.subVectors( vertex, P1 ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( i / tubularSegments );
uvs.push( j / radialSegments );
}
}
// generate indices
for ( let j = 1; j <= tubularSegments; j ++ ) {
for ( let i = 1; i <= radialSegments; i ++ ) {
// indices
const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
const b = ( radialSegments + 1 ) * j + ( i - 1 );
const c = ( radialSegments + 1 ) * j + i;
const d = ( radialSegments + 1 ) * ( j - 1 ) + i;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
// this function calculates the current position on the torus curve
function calculatePositionOnCurve( u, p, q, radius, position ) {
const cu = Math.cos( u );
const su = Math.sin( u );
const quOverP = q / p * u;
const cs = Math.cos( quOverP );
position.x = radius * ( 2 + cs ) * 0.5 * cu;
position.y = radius * ( 2 + cs ) * su * 0.5;
position.z = radius * Math.sin( quOverP ) * 0.5;
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new TorusKnotGeometry( data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q );
}
}
export { TorusKnotGeometry };

View File

@ -0,0 +1,203 @@
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import * as Curves from '../extras/curves/Curves.js';
import { Vector2 } from '../math/Vector2.js';
import { Vector3 } from '../math/Vector3.js';
class TubeGeometry extends BufferGeometry {
constructor( path = new Curves[ 'QuadraticBezierCurve3' ]( new Vector3( - 1, - 1, 0 ), new Vector3( - 1, 1, 0 ), new Vector3( 1, 1, 0 ) ), tubularSegments = 64, radius = 1, radialSegments = 8, closed = false ) {
super();
this.type = 'TubeGeometry';
this.parameters = {
path: path,
tubularSegments: tubularSegments,
radius: radius,
radialSegments: radialSegments,
closed: closed
};
const frames = path.computeFrenetFrames( tubularSegments, closed );
// expose internals
this.tangents = frames.tangents;
this.normals = frames.normals;
this.binormals = frames.binormals;
// helper variables
const vertex = new Vector3();
const normal = new Vector3();
const uv = new Vector2();
let P = new Vector3();
// buffer
const vertices = [];
const normals = [];
const uvs = [];
const indices = [];
// create buffer data
generateBufferData();
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
// functions
function generateBufferData() {
for ( let i = 0; i < tubularSegments; i ++ ) {
generateSegment( i );
}
// if the geometry is not closed, generate the last row of vertices and normals
// at the regular position on the given path
//
// if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)
generateSegment( ( closed === false ) ? tubularSegments : 0 );
// uvs are generated in a separate function.
// this makes it easy compute correct values for closed geometries
generateUVs();
// finally create faces
generateIndices();
}
function generateSegment( i ) {
// we use getPointAt to sample evenly distributed points from the given path
P = path.getPointAt( i / tubularSegments, P );
// retrieve corresponding normal and binormal
const N = frames.normals[ i ];
const B = frames.binormals[ i ];
// generate normals and vertices for the current segment
for ( let j = 0; j <= radialSegments; j ++ ) {
const v = j / radialSegments * Math.PI * 2;
const sin = Math.sin( v );
const cos = - Math.cos( v );
// normal
normal.x = ( cos * N.x + sin * B.x );
normal.y = ( cos * N.y + sin * B.y );
normal.z = ( cos * N.z + sin * B.z );
normal.normalize();
normals.push( normal.x, normal.y, normal.z );
// vertex
vertex.x = P.x + radius * normal.x;
vertex.y = P.y + radius * normal.y;
vertex.z = P.z + radius * normal.z;
vertices.push( vertex.x, vertex.y, vertex.z );
}
}
function generateIndices() {
for ( let j = 1; j <= tubularSegments; j ++ ) {
for ( let i = 1; i <= radialSegments; i ++ ) {
const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
const b = ( radialSegments + 1 ) * j + ( i - 1 );
const c = ( radialSegments + 1 ) * j + i;
const d = ( radialSegments + 1 ) * ( j - 1 ) + i;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
}
function generateUVs() {
for ( let i = 0; i <= tubularSegments; i ++ ) {
for ( let j = 0; j <= radialSegments; j ++ ) {
uv.x = i / tubularSegments;
uv.y = j / radialSegments;
uvs.push( uv.x, uv.y );
}
}
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
toJSON() {
const data = super.toJSON();
data.path = this.parameters.path.toJSON();
return data;
}
static fromJSON( data ) {
// This only works for built-in curves (e.g. CatmullRomCurve3).
// User defined curves or instances of CurvePath will not be deserialized.
return new TubeGeometry(
new Curves[ data.path.type ]().fromJSON( data.path ),
data.tubularSegments,
data.radius,
data.radialSegments,
data.closed
);
}
}
export { TubeGeometry };

View File

@ -0,0 +1,147 @@
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import { Vector3 } from '../math/Vector3.js';
class WireframeGeometry extends BufferGeometry {
constructor( geometry = null ) {
super();
this.type = 'WireframeGeometry';
this.parameters = {
geometry: geometry
};
if ( geometry !== null ) {
// buffer
const vertices = [];
const edges = new Set();
// helper variables
const start = new Vector3();
const end = new Vector3();
if ( geometry.index !== null ) {
// indexed BufferGeometry
const position = geometry.attributes.position;
const indices = geometry.index;
let groups = geometry.groups;
if ( groups.length === 0 ) {
groups = [ { start: 0, count: indices.count, materialIndex: 0 } ];
}
// create a data structure that contains all edges without duplicates
for ( let o = 0, ol = groups.length; o < ol; ++ o ) {
const group = groups[ o ];
const groupStart = group.start;
const groupCount = group.count;
for ( let i = groupStart, l = ( groupStart + groupCount ); i < l; i += 3 ) {
for ( let j = 0; j < 3; j ++ ) {
const index1 = indices.getX( i + j );
const index2 = indices.getX( i + ( j + 1 ) % 3 );
start.fromBufferAttribute( position, index1 );
end.fromBufferAttribute( position, index2 );
if ( isUniqueEdge( start, end, edges ) === true ) {
vertices.push( start.x, start.y, start.z );
vertices.push( end.x, end.y, end.z );
}
}
}
}
} else {
// non-indexed BufferGeometry
const position = geometry.attributes.position;
for ( let i = 0, l = ( position.count / 3 ); i < l; i ++ ) {
for ( let j = 0; j < 3; j ++ ) {
// three edges per triangle, an edge is represented as (index1, index2)
// e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)
const index1 = 3 * i + j;
const index2 = 3 * i + ( ( j + 1 ) % 3 );
start.fromBufferAttribute( position, index1 );
end.fromBufferAttribute( position, index2 );
if ( isUniqueEdge( start, end, edges ) === true ) {
vertices.push( start.x, start.y, start.z );
vertices.push( end.x, end.y, end.z );
}
}
}
}
// build geometry
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
}
function isUniqueEdge( start, end, edges ) {
const hash1 = `${start.x},${start.y},${start.z}-${end.x},${end.y},${end.z}`;
const hash2 = `${end.x},${end.y},${end.z}-${start.x},${start.y},${start.z}`; // coincident edge
if ( edges.has( hash1 ) === true || edges.has( hash2 ) === true ) {
return false;
} else {
edges.add( hash1 );
edges.add( hash2 );
return true;
}
}
export { WireframeGeometry };